1
|
Ma SP, Wang C, Chen AZ, Zhang XL, Wang DP, Liu HB. Glycerophospholipids Analysis Using Conventional 1H- 31P HMBC and Its Application in Revealing the Characteristics of 18 Seaweeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40237314 DOI: 10.1021/acs.jafc.5c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Glycerophospholipids (GPLs) are typical membrane lipids with important physiological and pharmacological functions, but little is known about their distribution characteristics in economic seaweeds. This study established a systematic evaluation method, including conventional 2D 1H-31P heteronuclear multiple bond correlation (HMBC) NMR for identifying GPLs and 1D 31P NMR for determining the contents, which were then applied to reveal subclasses characteristics of GPLs in 18 economic seaweeds in Asia. The results indicated that phosphatidylglycerol (PG) was the characteristic GPL subclass distributed in all of the 18 seaweeds (ranging from 0.08 to 1.75‰), generally with higher contents than that of known terrestrial plants. The characteristic chemical shifts of protons in the GPLs headgroup (H-1') together with protons in the backbone (H-3) were summarized through 1H-31P HMBC spectrum, which were helpful in assigning GPL subclasses.
Collapse
Affiliation(s)
- Shan-Peng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Cong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - An-Zhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao 266000, China
- Qingdao Institute for Food and Drug Control, Qingdao 266000, China
| | - Xiu-Li Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - De-Peng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao 266000, China
| |
Collapse
|
2
|
Gouilleux B, Christensen NV, Malmos KG, Vosegaard T. Analytical Evaluation of Low-Field 31P NMR Spectroscopy for Lipid Analysis. Anal Chem 2019; 91:3035-3042. [PMID: 30657309 DOI: 10.1021/acs.analchem.8b05416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the potential of 31P NMR with simple, maintenance-free benchtop spectrometers to probe phospholipids in complex mixtures. 31P NMR-based lipidomics has become an important topic in a wide range of applications in food- and health-sciences, and the continuous improvements of compact, maintenance- and cryogen-free instruments opens new opportunities for NMR routine analyses. A prior milestone is the evaluation of the analytical performance provided by 31P NMR at low magnetic field. To address this, we assess the ability of state-of-the-art benchtop NMR spectrometers to detect, identify, and quantify several types of phospholipids in mixtures. Relying on heteronuclear cross-polarization experiments, phospholipids can be detected in 2 h with a limit of detection of 0.5 mM at 1 T and 0.2 mM at 2 T, while the headgroups of phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidyl-glycerol (PG) can be unambiguously assigned based on 2D 1H-31P total correlated spectroscopy (TOCSY) spectra. Furthermore, two quantitative methods to obtain absolute concentrations are proposed and discussed, and the performance is evaluated regarding precision and accuracy.
Collapse
Affiliation(s)
- Boris Gouilleux
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Kirsten G Malmos
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Sun M, Tian X, Yang Z. Microscale Mass Spectrometry Analysis of Extracellular Metabolites in Live Multicellular Tumor Spheroids. Anal Chem 2017; 89:9069-9076. [PMID: 28753268 PMCID: PMC5912160 DOI: 10.1021/acs.analchem.7b01746] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extracellular compounds in tumors play critical roles in intercellular communication, tumor proliferation, and cancer cell metastasis. However, the lack of appropriate techniques leads to limited studies of extracellular metabolite. Here, we introduced a microscale collection device, the Micro-funnel, fabricated from biocompatible fused silica capillary. With a small probe size (∼25 μm), the Micro-funnel can be implanted into live multicellular tumor spheroids to accumulate the extracellular metabolites produced by cancer cells. Metabolites collected in the Micro-funnel device were then extracted by a microscale sampling and ionization device, the Single-probe, for real-time mass spectrometry (MS) analysis. We successfully detected the abundance change of anticancer drug irinotecan and its metabolites inside spheroids treated under a series of conditions. Moreover, we found that irinotecan treatment dramatically altered the composition of extracellular compounds. Specifically, we observed the increased abundances of a large number of lipids, which are potentially related to the drug resistance of cancer cells. This study provides a novel way to detect the extracellular compounds inside live spheroids, and the successful development of our technique can benefit the research in multiple areas, including the microenvironment inside live tissues, cell-cell communication, biomarker discovery, and drug development.
Collapse
Affiliation(s)
- Mei Sun
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Xiang Tian
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
4
|
Joyce RE, Williams TL, Serpell LC, Day IJ. Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Wu J, Domellöf M, Zivkovic AM, Larsson G, Öhman A, Nording ML. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation. Biochem Biophys Res Commun 2015; 469:626-32. [PMID: 26655810 DOI: 10.1016/j.bbrc.2015.11.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/09/2023]
Abstract
Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H2O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H2O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9-24 days after delivery) and late (31-87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Chemistry, Umeå University, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, Sweden
| | - Angela M Zivkovic
- Foods for Health Institute, University of California, Davis, CA, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Göran Larsson
- Department of Medical Biochemistry and Biophysics, Unit of Research, Education and Development-Östersund, Umeå University, Sweden
| | - Anders Öhman
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| | | |
Collapse
|
6
|
Inactivation of the Deg protease family in the cyanobacterium Synechocystis sp. PCC 6803 has impact on the outer cell layers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:383-94. [DOI: 10.1016/j.jphotobiol.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/13/2022]
|
7
|
Rivera-Ordaz A, Bracher S, Sarrach S, Li Z, Shi L, Quick M, Hilger D, Haas R, Jung H. The sodium/proline transporter PutP of Helicobacter pylori. PLoS One 2013; 8:e83576. [PMID: 24358297 PMCID: PMC3866251 DOI: 10.1371/journal.pone.0083576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/14/2013] [Indexed: 01/29/2023] Open
Abstract
Helicobacter pylori is cause of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. L-proline is a preferred energy source of the microaerophilic bacterium. Previous analyses revealed that HpputP and HpputA, the genes that are predicted to play a central role in proline metabolism as they encode for the proline transporter and proline dehydrogenase, respectively, are essential for stomach colonization. Here, the molecular basis of proline transport in H. pylori by HpPutP was investigated experimentally for the first time. Measuring radiolabeled substrate transport in H. pylori and E. coli heterologously expressing HpputP as well as in proteoliposomes reconstituted with HpPutP, we demonstrate that the observed proline transport in H. pylori is mediated by HpPutP. HpPutP is specific and exhibits a high affinity for L-proline. Notably, L-proline transport is exclusively dependent on Na+ as coupling ion, i.e., Na+/L-proline symport, reminiscent to the properties of PutP of E. coli even though H. pylori lives in a more acidic environment. Homology model-based structural comparisons and substitution analyses identified amino acids crucial for function. HpPutP-catalyzed proline uptake was efficiently inhibited by the known proline analogs 3,4-dehydro-D,L-proline and L-azetidine-2-carboxylic acid.
Collapse
Affiliation(s)
- Araceli Rivera-Ordaz
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Susanne Bracher
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sannia Sarrach
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Zheng Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Lei Shi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthias Quick
- Center for Molecular Recognition and Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Daniel Hilger
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University Munich, Munich, Germany
| | - Heinrich Jung
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
- * E-mail:
| |
Collapse
|
8
|
Kaffarnik S, Ehlers I, Gröbner G, Schleucher J, Vetter W. Two-dimensional ³¹P,¹H NMR spectroscopic profiling of phospholipids in cheese and fish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7061-7069. [PMID: 23802605 DOI: 10.1021/jf4021812] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phospholipids (PLs) comprise an important lipid class in food because of their technological use as emulsifiers and their nutritional value. This study used one-dimensional (31)P NMR and two-dimensional (2D) (31)P,(1)H COSY NMR spectroscopy for the determination of the PL composition of cheese and fish after liquid-liquid enrichment. This extraction step enabled the identification of 10 PLs in cheese and 9 PLs in fish by 2D (31)P,(1)H NMR. Variations in the (31)P shifts indicated differences in the fatty acids attached to the individual PLs. The total PL content in cheese fat and fish oil ranged from 0.3 to 0.4% and from 5 to 12%, respectively. Phosphatidylcholine was the most prominent PL in both matrices (up to 65%). Minor PLs (limit of detection = 4 nmol, i.e. 500 μL of an 8 μM solution) were identified in forms of phosphatidic acid, lysophosphatidic acid, and phosphatidylglycerol. Specific cross couplings and (1)H fine structures in the 2D (31)P,(1)H NMR spectra proved to be valuable for the assignment and verification of known and uncommon PLs in the samples.
Collapse
Affiliation(s)
- Stefanie Kaffarnik
- Department of Food Chemistry, Institute of Food Chemistry, University of Hohenheim , Garbenstrasse 28, D-70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
9
|
Mirotti L, Florsheim E, Rundqvist L, Larsson G, Spinozzi F, Leite-de-Moraes M, Russo M, Alcocer M. Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy 2013; 68:74-83. [PMID: 23137012 DOI: 10.1111/all.12057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Lipids are required for mice sensitization to Ber e 1, Brazil nut major allergen. Here, we characterized different lipid fractions extracted from Brazil nuts and the lipid-binding ability of Ber e 1. Further, we determined their in vivo ability to induce Ber-specific anaphylactic antibodies and the role of invariant natural killer T (iNKT) cells in this process. METHODS Wild-type (WT) and iNKT cell-deficient mice were sensitized with Ber e 1 and specific lipid fractions, and anaphylactic antibodies were measured by enzyme-linked immunosorbent assay (ELISA) and passive cutaneous anaphylaxis (PCA). The lipid-binding characteristic of Ber e 1 (Ber) was established by using fluorescent probes and (15) N-labeled NMR. In vitro production of IL-4 was determined in Ber/lipid C-stimulated mouse iNKT cells and human T-cell lines containing NKTs primed with CD1d+C1R transfectants by flow cytometry and ELISA, respectively. RESULTS Only one specific lipid fraction (lipid C), containing neutral and common phospholipids, induced Ber anaphylactic antibodies in mice. Ber e 1 has a lipid-binding site, and our results indicated an interaction between Ber e 1 and lipid C. iNKT-deficient mice produced lower levels of anaphylactic antibodies than WT mice. In vitro, Ber/lipid C-stimulated murine iNKT cells produced IL-4 but not IFN-gamma. Human T-cell lines derived from nut-allergic patients produced IL-4 to Ber/lipid C in a CD1d- and dose-dependent manner. CONCLUSION Lipid fraction C from Brazil nut presents an essential adjuvant activity to Ber e 1 sensitization, and iNKT cells play a critical role in the development of Brazil nut-allergic response.
Collapse
Affiliation(s)
- L. Mirotti
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo; Brasil
| | - E. Florsheim
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo; Brasil
| | - L. Rundqvist
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå; Sweden
| | - G. Larsson
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå; Sweden
| | - F. Spinozzi
- Laboratory of Experimental Immunology and Allergy; Department of Clinical and Experimental Medicine; University of Perugia; Perugia; Italy
| | - M. Leite-de-Moraes
- Unité Mixte de Recherche 8147; Centre National de la Recherche Scientifique; Faculté de Médecine René Descartes; Paris V, Hôpital Necker; Paris; France
| | - M. Russo
- Departamento de Imunologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo; Brasil
| | - M. Alcocer
- Division of Nutritional Sciences; School of Biosciences; University of Nottingham; Nottingham; UK
| |
Collapse
|
10
|
Vestergren J, Vincent AG, Jansson M, Persson P, Ilstedt U, Gröbner G, Giesler R, Schleucher J. High-resolution characterization of organic phosphorus in soil extracts using 2D 1H-31P NMR correlation spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3950-3956. [PMID: 22394413 DOI: 10.1021/es204016h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Organic phosphorus (P) compounds represent a major component of soil P in many soils and are key sources of P for microbes and plants. Solution NMR (nuclear magnetic resonance spectroscopy) is a powerful technique for characterizing organic P species. However, (31)P NMR spectra are often complicated by overlapping peaks, which hampers identification and quantification of the numerous P species present in soils. Overlap is often exacerbated by the presence of paramagnetic metal ions, even if they are in complexes with EDTA following NaOH/EDTA extraction. By removing paramagnetic impurities using a new precipitation protocol, we achieved a dramatic improvement in spectral resolution. Furthermore, the obtained reduction in line widths enabled the use of multidimensional NMR methods to resolve overlapping (31)P signals. Using the new protocol on samples from two boreal humus soils with different Fe contents, 2D (1)H-(31)P correlation spectra allowed unambiguous identification of a large number of P species based on their (31)P and (1)H chemical shifts and their characteristic coupling patterns, which would not have been possible using previous protocols. This approach can be used to identify organic P species in samples from both terrestrial and aquatic environments increasing our understanding of organic P biogeochemistry.
Collapse
|
11
|
Majumdar A, Sun Y, Shah M, Freel Meyers CL. Versatile (1)H-(31)P-(31)P COSY 2D NMR techniques for the characterization of polyphosphorylated small molecules. J Org Chem 2010; 75:3214-23. [PMID: 20408590 DOI: 10.1021/jo100042m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Di- and triphosphorylated small molecules represent key intermediates in a wide range of biological and chemical processes. The importance of polyphosphorylated species in biology and medicine underscores the need to develop methods for the detection and characterization of this compound class. We have reported two-dimensional HPP-COSY spectroscopy techniques to identify diphosphate-containing metabolic intermediates at submillimolar concentrations in the methylerythritol phosphate (MEP) isoprenoid biosynthetic pathway. (1) In this work, we explore the scope of HPP-COSY-based techniques to characterize a diverse group of small organic molecules bearing di- and triphosphorylated moieties. These include molecules containing P-O-P and P-C-P connectivities, multivalent P(III)-O-P(V) phosphorus nuclei with widely separated chemical shifts, as well as virtually overlapping (31)P resonances exhibiting strong coupling effects. We also demonstrate the utility of these experiments to rapidly distinguish between mono- and diphosphates. A detailed protocol for optimizing these experiments to achieve best performance is presented.
Collapse
Affiliation(s)
- Ananya Majumdar
- The Johns Hopkins University Biomolecular NMR Center, JohnsHopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
12
|
Olofsson A, Vallström A, Petzold K, Tegtmeyer N, Schleucher J, Carlsson S, Haas R, Backert S, Wai SN, Gröbner G, Arnqvist A. Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 2010; 77:1539-55. [PMID: 20659286 PMCID: PMC3068288 DOI: 10.1111/j.1365-2958.2010.07307.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori can cause peptic ulcer disease and/or gastric cancer. Adhesion of bacteria to the stomach mucosa is an important contributor to the vigour of infection and resulting virulence. H. pylori adheres primarily via binding of BabA adhesins to ABO/Lewis b (Leb) blood group antigens and the binding of SabA adhesins to sialyl-Lewis x/a (sLex/a) antigens. Similar to most Gram-negative bacteria, H. pylori continuously buds off vesicles and vesicles derived from pathogenic bacteria often include virulence-associated factors. Here we biochemically characterized highly purified H. pylori vesicles. Major protein and phospholipid components associated with the vesicles were identified with mass spectroscopy and nuclear magnetic resonance. A subset of virulence factors present was confirmed by immunoblots. Additional functional and biochemical analysis focused on the vesicle BabA and SabA adhesins and their respective interactions to human gastric epithelium. Vesicles exhibit heterogeneity in their protein composition, which were specifically studied in respect to the BabA adhesin. We also demonstrate that the oncoprotein, CagA, is associated with the surface of H. pylori vesicles. Thus, we have explored mechanisms for intimate H. pylori vesicle–host interactions and found that the vesicles carry effector-promoting properties that are important to disease development.
Collapse
Affiliation(s)
- Annelie Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|