1
|
Tanaka H, Matsumoto M, Yagasaki T. On the phase behaviors of CH4-CO2 binary clathrate hydrates: Two-phase and three-phase coexistences. J Chem Phys 2023; 158:2895252. [PMID: 37290087 DOI: 10.1063/5.0155143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
We develop a statistical mechanical theory on clathrate hydrates in order to explore the phase behaviors of clathrate hydrates containing two kinds of guest species and apply it to CH4-CO2 binary hydrates. The two boundaries separating water and hydrate and hydrate and guest fluid mixtures are estimated, which are extended to the lower temperature and the higher pressure region far distant from the three-phase coexisting conditions. The chemical potentials of individual guest components can be calculated from free energies of cage occupations, which are available from intermolecular interactions between host water and guest molecules. This allows us to derive all thermodynamic properties pertinent to the phase behaviors in the whole space of thermodynamic variables of temperature, pressure, and guest compositions. It is found that the phase boundaries of CH4-CO2 binary hydrates with water and with fluid mixtures locate between simple CH4 and CO2 hydrates, but the composition ratios of CH4 guests in hydrates are disproportional to those in fluid mixtures. Such differences arise from the affinities of each guest species to the large and small cages of CS-I hydrates and significantly affect occupation of each cage type, which results in a deviation of the guest composition in hydrates from that in fluid on the two-phase equilibrium conditions. The present method provides a basis for the evaluation of the efficiency of the guest CH4 replacement to CO2 at the thermodynamic limit.
Collapse
Affiliation(s)
- Hideki Tanaka
- Toyota Physical and Chemical Research Institute, Nagakute 480-1192, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Masakazu Matsumoto
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Takuma Yagasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
2
|
Yanes-Rodríguez R, Prosmiti R. Computational investigations of stable multiple-cage-occupancy He clathrate-like hydrostructures. Phys Chem Chem Phys 2023. [PMID: 37314248 DOI: 10.1039/d3cp00603d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the several possibilities offered by the interesting clathrate hydrates is the opportunity to encapsulate several atoms or molecules, in such a way that more efficient storage materials could be explored or new molecules that otherwise do not exist could be created. These types of applications are receiving growing attention from technologists and chemists, given the future positive implications that they entail. In this context, we investigated the multiple cage occupancy of helium clathrate hydrates, to establish stable novel hydrate structures or ones similar to those predicted previously by experimental and theoretical studies. To this purpose, we analyzed the feasibility of including an increased number of He atoms inside the small (D) and large (H) cages of the sII structure through first-principles properly assessed density functional approaches. On the one hand, we have computed energetic and structural properties, in which we examined the guest-host and guest-guest interactions in both individual and two-adjacent clathrate-like sII cages by means of binding and evaporation energies. On the other hand, we have carried out a thermodynamical analysis on the stability of such He-containing hydrostructures in terms of changes in enthalpy, ΔH, Gibbs free energy, ΔG, and entropy, ΔS, during their formation process at various temperature and pressure values. In this way, we have been able to make a comparison with experiments, reaffirming the ability of computational DFT approaches to describe such weak guest-host interactions. In principle, the most stable structure involves the encapsulation of one and four He atoms inside the D and H sII cages, respectively; however, more He atoms could be entrapped under lower temperature and/or higher pressure thermodynamic conditions. We foresee such accurate computational quantum chemistry approaches contributing to the current emerging machine-learning model development.
Collapse
Affiliation(s)
- Raquel Yanes-Rodríguez
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
- Doctoral Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, Spain
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
3
|
Semenov A, Mendgaziev R, Stoporev A, Istomin V, Tulegenov T, Yarakhmedov M, Novikov A, Vinokurov V. Direct Measurement of the Four-Phase Equilibrium Coexistence Vapor-Aqueous Solution-Ice-Gas Hydrate in Water-Carbon Dioxide System. Int J Mol Sci 2023; 24:ijms24119321. [PMID: 37298281 DOI: 10.3390/ijms24119321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Precise data on the non-variant equilibrium of the four phases (vapor-aqueous solution-ice-gas hydrate) in P-T coordinates are highly desired for developing accurate thermodynamic models and can be used as reference points (similar to the triple point of water). Using the two-component hydrate-forming system CO2-H2O, we have proposed and validated a new express procedure for determining the temperature and pressure of the lower quadruple point Q1. The essence of the method is the direct measurement of these parameters after the successive formation of the gas hydrate and ice phases in the initial two-phase gas-water solution system under intense agitation of the fluids. After relaxation, the system occurs in the same equilibrium state (T = 271.60 K, P = 1.044 MPa), regardless of the initial parameters and the order of crystallization of the CO2 hydrate and ice phases. Considering the combined standard uncertainties (±0.023 K, ±0.021 MPa), the determined P and T values agree with the results of other authors obtained by a more sophisticated indirect method. Validating the developed approach for systems with other hydrate-forming gases is of great interest.
Collapse
Affiliation(s)
- Anton Semenov
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
| | - Rais Mendgaziev
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
| | - Andrey Stoporev
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
- Department of Petroleum Engineering, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Vladimir Istomin
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
- Skolkovo Institute of Science and Technology (Skoltech), Nobelya Str. 3, 121205 Moscow, Russia
| | - Timur Tulegenov
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
| | - Murtazali Yarakhmedov
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
| | - Andrei Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin University, 65, Leninsky Prospekt, Building 1, 119991 Moscow, Russia
| |
Collapse
|
4
|
Grabowska J, Blazquez S, Sanz E, Noya EG, Zeron IM, Algaba J, Miguez JM, Blas FJ, Vega C. Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations. J Chem Phys 2023; 158:114505. [PMID: 36948790 DOI: 10.1063/5.0132681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
In this work, we shall estimate via computer simulations the homogeneous nucleation rate for the methane hydrate at 400 bars for a supercooling of about 35 K. The TIP4P/ICE model and a Lennard-Jones center were used for water and methane, respectively. To estimate the nucleation rate, the seeding technique was employed. Clusters of the methane hydrate of different sizes were inserted into the aqueous phase of a two-phase gas-liquid equilibrium system at 260 K and 400 bars. Using these systems, we determined the size at which the cluster of the hydrate is critical (i.e., it has 50% probability of either growing or melting). Since nucleation rates estimated from the seeding technique are sensitive to the choice of the order parameter used to determine the size of the cluster of the solid, we considered several possibilities. We performed brute force simulations of an aqueous solution of methane in water in which the concentration of methane was several times higher than the equilibrium concentration (i.e., the solution was supersaturated). From brute force runs, we infer the value of the nucleation rate for this system rigorously. Subsequently, seeding runs were carried out for this system, and it was found that only two of the considered order parameters were able to reproduce the value of the nucleation rate obtained from brute force simulations. By using these two order parameters, we estimated the nucleation rate under experimental conditions (400 bars and 260 K) to be of the order of log10 (J/(m3 s)) = -7(5).
Collapse
Affiliation(s)
- J Grabowska
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Sanz
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E G Noya
- Instituto de Química Física Rocasolano, CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - I M Zeron
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - J Algaba
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - J M Miguez
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - F J Blas
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - C Vega
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Takeya S, Fujihisa H, Alavi S, Ohmura R. Thermally Induced Phase Transition of Cubic Structure II Hydrate: Crystal Structures of Tetrahydropyran-CO 2 Binary Hydrate. J Phys Chem Lett 2023; 14:1885-1891. [PMID: 36780459 DOI: 10.1021/acs.jpclett.2c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report a thermally induced phase transition of cubic structure II hydrates of tetrahydropyran (THP) and CO2 below about 140 K. The phase transition was characterized by powder X-ray diffraction measurements at variable temperatures. A dynamical ordering of the CO2 guests in small pentagonal dodecahedral 512 host water cages, not previously observed in the simple CO2 hydrate, occurs simultaneously with the symmetry lowering transition from a cubic structure II (space group Fd-3m with cell dimensions a = 17.3202(7) Å at 153 K) to a tetragonal (space group I41/amd with cell dimensions a = 17.484(4) Å and c = 12.145(1) Å at 138 K) unit cell. The effect of guest molecules on the phase transition at low temperatures is discussed, which demonstrates that the clathrate hydrate structures and thermodynamic properties can be modified by adjusting the size and chemical structure of larger and smaller guest molecules.
Collapse
Affiliation(s)
- Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroshi Fujihisa
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Saman Alavi
- University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ryo Ohmura
- Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Kainai D, Zhang J, Bai D. The Melting Kinetics of Gas Hydrate with Different Cage Occupancy and Empty Cage Distribution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Park KH, Kim DH, Cha M. Structure identification of binary (cyclic alcohol guests + methane) clathrate hydrates using Rietveld analysis with the direct space method. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Cabrera-Ramírez A, Prosmiti R. Modeling of Structure H Carbon Dioxide Clathrate Hydrates: Guest-Lattice Energies, Crystal Structure, and Pressure Dependencies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14832-14842. [PMID: 36110497 PMCID: PMC9465682 DOI: 10.1021/acs.jpcc.2c04140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We performed first-principles computations to investigate the complex interplay of molecular interaction energies in determining the lattice structure and stability of CO2@sH clathrate hydrates. Density functional theory computations using periodic boundary conditions were employed to characterize energetics and the key structural properties of the sH clathrate crystal under pressure, such as equilibrium lattice volume and bulk modulus. The performance of exchange-correlation functionals together with recently developed dispersion-corrected schemes was evaluated in describing interactions in both short-range and long-range regions of the potential. Structural relaxations of the fully CO2-filled and empty sH unit cells yield crystal structure and lattice energies, while their compressibility parameters were derived by including the pressure dependencies. The present quantum chemistry computations suggest anisotropy in the compressibility of the sH clathrate hydrates, with the crystal being less compressible along the a-axis direction than along the c-axis one, in distinction from nearly isotropic sI and sII structures. The detailed results presented here give insight into the complex nature of the underlying guest-host interactions, checking earlier assumptions, providing critical tests, and improving estimates. Such entries may eventually lead to better predictions of thermodynamic properties and formation conditions, with a direct impact on emerging hydrate-based technologies.
Collapse
Affiliation(s)
- Adriana Cabrera-Ramírez
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
- Doctoral
Programme in Theoretical Chemistry and Computational Modelling, Doctoral
School, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rita Prosmiti
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
9
|
Structure determination of clathrate hydrates formed from alcoholic guests with NH4F and H2O. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Kainai D, Bai D. Effect of Cage Occupancy on Stability and Decomposition of Methane Hydrate. J Phys Chem B 2022; 126:492-502. [PMID: 34985263 DOI: 10.1021/acs.jpcb.1c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas hydrates usually contain a certain number of empty cages that will both affect the hydrate stability and reduce the gas storage capacity. In this work, by MD simulations, we found that the hydrate stability is related to the cage occupancy, the empty cage types, and especially the distribution of empty cages. With the decrease of overall occupancy, the stability of hydrate becomes worse. Under the same overall occupancy, the more concentrated the empty cages are, the more unstable the hydrate is and hence the faster it decomposes. The methane molecules may migrate between distorted cages during the decomposition, resulting in a temporary increase in the stability of hydrate. Hydrates with different empty cage distributions show different decomposition mechanisms: when empty cages are concentrated, the melting rate is fast first due to the rapid decomposition of empty cages, but the remaining filled cages will reduce the melting rate; when empty cages are separated on the contrary, the early melting is slow because of the high local occupancy, and the following melting will be accelerated because of the high melting surface area. It indicates that the empty cage distribution plays a controlling role in hydrate decomposition kinetics at different stages.
Collapse
Affiliation(s)
- Dilare Kainai
- Department of Chemistry, College of Chemistry and Materials Engineering/Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Dongsheng Bai
- Department of Chemistry, College of Chemistry and Materials Engineering/Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
11
|
Abstract
Studies revealed that gas hydrate cages, especially small cages, are incompletely filled with guest gas molecules, primarily associated with pressure and gas composition. The ratio of hydrate cages occupied by guest molecules, defined as cage occupancy, is a critical parameter to estimate the resource amount of a natural gas hydrate reservoir and evaluate the storage capacity of methane or hydrogen hydrate as an energy storage medium and carbon dioxide hydrate as a carbon sequestration matrix. As the result, methods have been developed to investigate the cage occupancy of gas hydrate. In this review, several instrument methods widely applied for gas hydrate analysis are introduced, including Raman, NMR, XRD, neutron diffraction, and the approaches to estimate cage occupancy are summarized.
Collapse
|
12
|
Choi W, Lee J, Kim YG, Kim H, Rhee TS, Jin YK, Kim JH, Seo Y. The impact of the abnormal salinity enrichment in pore water on the thermodynamic stability of marine natural gas hydrates in the Arctic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149357. [PMID: 34364280 DOI: 10.1016/j.scitotenv.2021.149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the thermodynamic and structural characteristics of natural gas hydrates (NGHs) retrieved from gas hydrate mounds (ARAON Mound 03 (AM03) and ARAON Mound 06 (AM06)) in the Chukchi Sea in the Arctic region were investigated. The gas compositions, crystalline structure, and cage occupancy of the NGHs at AM03 and AM06 were experimentally measured using gas chromatography (GC), 13C nuclear magnetic resonance (NMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). In the NGHs from AM03 and AM06, a significantly large fraction of CH4 (> 99%) and a very small amount of H2S were enclathrated in small (512) and large (51262) cages of sI hydrate. The NGHs from AM03 and AM06 were almost identical in composition, guest distributions, and existing environment to each other. The salinity of the residual pore water in the hydrate-bearing sediment (AM06) was measured to be 50.32‰, which was much higher than that of seawater (34.88‰). This abnormal salinity enrichment in the pore water of the low-permeability sediment might induce the dissociation of NGHs at a lower temperature than expected. The saturation changes in the NGHs that corresponded with an increase in the seawater temperature were also predicted on the basis of the salinity changes in the pore water. The experimental and predicted results of this study would be helpful for understanding the thermodynamic stability of NGHs and potential CH4-releasing phenomena in the Arctic region.
Collapse
Affiliation(s)
- Wonjung Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Joonseop Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Young-Gyun Kim
- Research Institute of Earth Resources, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Hanwoong Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Tae Siek Rhee
- Division of Polar Ocean Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Young Keun Jin
- Division of Polar Earth-system Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Ji-Hoon Kim
- Division of Petroleum and Marine Resources Research, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34312, Republic of Korea
| | - Yongwon Seo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
13
|
Lanza G, Chiacchio MA. On the size, shape and energetics of the hydration shell around alkanes. Phys Chem Chem Phys 2021; 23:24852-24865. [PMID: 34723301 DOI: 10.1039/d1cp02888j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A large number of clathrate-like cages have been proposed as the very first hydration shell of alkanes. The cages include canonical structures commonly found in clathrate hydrates and many others, not previously reported, derived from the carbon fullerene cavities. These structures have a rich and variegated form, which can adapt to the shape and conformation of the solute. They avoid "wasting" hydrogen bonds, while minimizing the volume cage and maximizing the solute-solvent van der Waals interactions. DFT/M06-2X and MP2 ab initio calculations give comparable structural and energetic results although the latter predicts slightly larger cages for a given solute. It is shown that the van der Waals interactions are substantial and the large exoenergetic values found for isobutane and cyclopentane provide an explanation for the surprising high melting points of related hydrates at room pressure. The encaging enthalpy for various hydrocarbons is similar to the enthalpy of solution measured at a temperature just above the melting point of aqueous hydrocarbon solutions, thus indicating that water molecules should not deviate too much from the configuration with O-H bonds tangentially oriented with respect to the solute surface. The computed trend differs from the enthalpy of solution measured at room temperature, thus the very first hydration shell departs, up to a certain degree, from the clathrate-like structures.
Collapse
Affiliation(s)
- Giuseppe Lanza
- A Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, Italy.
| | - Maria Assunta Chiacchio
- A Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, Italy.
| |
Collapse
|
14
|
Park KH, Kim DH, Cha M. Spectroscopic identifications of structure II hydrate with new large alcohol guest molecule (Cyclopentanemethanol). Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kim J, Lee B, Shin K, Kang SP, Park KH, Cha M, Alavi S, Ripmeester JA. Incorporation of Ammonium Fluoride and Methanol in Carbon Dioxide Clathrate Hydrates and Their Significance for Hydrate-Based Gas Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeongtak Kim
- Department of Applied Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Byeonggwan Lee
- Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
- Radioactive Waste Treatment Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Kyuchul Shin
- Department of Applied Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong-Pil Kang
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Ki Hun Park
- Department of Energy and Resources Engineering, Kangwon National University, Gangwon-do 24341, Republic of Korea
| | - Minjun Cha
- Department of Energy and Resources Engineering, Kangwon National University, Gangwon-do 24341, Republic of Korea
| | - Saman Alavi
- National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - John A. Ripmeester
- National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
16
|
Hatsugai T, Kiyokawa H, Takeya S, Ohmura R. Improved Operation of Continuous Ozone Hydrate Production. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomomi Hatsugai
- IHI Corporation Shin-Nakahara-Cho, Isogo-ku 235-8501 Yokohama Japan
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| | - Hitoshi Kiyokawa
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1, Higashi, Tsukuba 305-85654 Ibaraki Japan
| | - Ryo Ohmura
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| |
Collapse
|
17
|
Mok J, Lim J, Choi W, Yun S, Lee J, Ko G, Seo Y. Thermodynamic and structural features of chlorodifluoromethane (a sI-sII dual hydrate former) + external guest (N 2 or CH 4) hydrates and their significance for greenhouse gas separation. Phys Chem Chem Phys 2021; 23:15693-15701. [PMID: 34270664 DOI: 10.1039/d1cp02327f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a new sI-sII dual hydrate former [chlorodifluoromethane (CHClF2); an important greenhouse gas with a global warming potential of 1810], which forms sI hydrate by itself and forms sII hydrate in the presence of external help guests such as CH4 and N2, was introduced and closely investigated for its potential significance in gas hydrate-based gas separation. The phase equilibria of CHClF2 hydrate, binary CHClF2 (5%) + N2 (95%) hydrate, and binary CHClF2 (5%) + CH4 (95%) hydrate were measured to examine the formation conditions and thermodynamic stability regions of CHClF2 + external guest hydrates. Nuclear magnetic resonance and in situ Raman spectroscopic results confirmed the formation of sII hydrates for CHClF2 + external guest (N2 or CH4) mixtures. Powder X-ray diffraction patterns clearly demonstrated a structural transition of sI to sII hydrates and a preferential incorporation of CHClF2 molecules in the hydrate phase when external guests (N2 or CH4) were involved in CHClF2 hydrate formation. The measured dissociation enthalpy values of CHClF2 hydrate, binary CHClF2 (5%) + N2 (95%) hydrate, and binary CHClF2 (5%) + CH4 (95%) hydrate using a high-pressure micro-differential scanning calorimeter also indicated preferential CHClF2 enclathration. The experimental results provide new insights into the thermodynamic and structural features of the CHClF2 (sI-sII dual hydrate former) + external guest hydrates for understanding and designing the hydrate-based CHClF2 separation process.
Collapse
Affiliation(s)
- Junghoon Mok
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Junkyu Lim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Wonjung Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Soyeong Yun
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Joonseop Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Gyeol Ko
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Yongwon Seo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
18
|
Mok J, Choi W, Seo Y. Evaluation of kinetic salt-enrichment behavior and separation performance of HFC-152a hydrate-based desalination using an experimental measurement and a thermodynamic correlation. WATER RESEARCH 2021; 193:116882. [PMID: 33550169 DOI: 10.1016/j.watres.2021.116882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Hydrate-based desalination (HBD), a type of freezing-based desalination, can concentrate salts of saline water and produce fresh water via hydrate crystal formation. In this study, the thermodynamic stability, crystallographic information, and kinetic growth behavior of HFC-152a hydrate were investigated to estimate the desalination efficiency of HBD. The phase equilibria revealed that the HFC-152a hydrate could be formed at a higher temperature in the presence of NaCl (0 wt%, 3.5 wt%, and 8.0 wt%) than the HFC-134a hydrate at 0.3 MPa. The hydration number of the HFC-152a hydrate (sI) was found to be 7.74 through the Rietveld refinement of the powder X-ray diffraction patterns, and it was also used to determine the dissociation enthalpy of the HFC-152a hydrate. The Hu-Lee-Sum correlation was employed to predict the equilibrium shift and hydrate depression temperature of both HFC-152a and HFC-134a hydrates in the presence of NaCl. Faster hydrate growth kinetics and higher hydrate conversion were observed for the HFC-152a hydrate in saline solutions despite the smaller initial driving force at 0.3 MPa and the subcooling temperature of 3 K. Additionally, to quantify the desalination efficiency of the HFC-152a HBD, the maximum achievable salinity and maximum water yield were examined using the HLS correlation. The salt-enrichment efficiency decreased with an increase in the initial salinity and increased with increasing the subcooling. The overall results indicate that HFC-152a is, potentially, a superior candidate for HBD. The novel approach examined in this study will be useful for assessing the desalination efficiency of the HBD process.
Collapse
Affiliation(s)
- Junghoon Mok
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Wonjung Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yongwon Seo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
19
|
Cabrera-Ramírez A, Arismendi-Arrieta DJ, Valdés Á, Prosmiti R. Exploring CO 2 @sI Clathrate Hydrates as CO 2 Storage Agents by Computational Density Functional Approaches. Chemphyschem 2021; 22:359-369. [PMID: 33368985 DOI: 10.1002/cphc.202001035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 12/21/2022]
Abstract
The formation of specific clathrate hydrates and their transformation at given thermodynamic conditions depends on the interactions between the guest molecule/s and the host water lattice. Understanding their structural stability is essential to control structure-property relations involved in different technological applications. Thus, the energetic aspects relative to CO2 @sI clathrate hydrate are investigated through the computation of the underlying interactions, dominated by hydrogen bonds and van der Waals forces, from first-principles electronic structure approaches. The stability of the CO2 @sI clathrate is evaluated by combining bottom-up and top-down approaches. Guest-free and CO2 guest-filled aperiodic cages, up to the gradually CO2 occupation of the entire sI periodic unit cells were considered. Saturation, cohesive and binding energies for the systems are determined by employing a variety of density functionals and their performance is assessed. The dispersion corrections on the non-covalent interactions are found to be important in the stabilization of the CO2 @sI energies, with the encapsulation of the CO2 into guest-free/empty cage/lattice being always an energetically favorable process for most of the functionals studied. The PW86PBE functional with XDM or D3(BJ) dispersion corrections predicts a lattice constant in accord to the experimental values available, and simultaneously provides a reliable description for the guest-host interactions in the periodic CO2 @sI crystal, as well as the energetics of its progressive single cage occupancy process. It has been found that the preferential orientation of the single CO2 in the large sI crystal cages has a stabilizing effect on the hydrate, concluding that the CO2 @sI structure is favored either by considering the individual building block cages or the complete sI unit cell crystal. Such benchmark and methodology cross-check studies benefit new data-driven model research by providing high-quality training information, with new insights that indicate the underlying factors governing their structure-driven stability, and triggering further investigations for controlling the stabilization of these promising long-term CO2 storage materials.
Collapse
Affiliation(s)
| | - Daniel J Arismendi-Arrieta
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Álvaro Valdés
- Escuela de Física, Universidad Nacional de Colombia, Sede Medellín, A. A., 3840, Medellíın, Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
20
|
Cao P, Sheng J, Wu J, Ning F. Mechanical creep instability of nanocrystalline methane hydrates. Phys Chem Chem Phys 2021; 23:3615-3626. [PMID: 33524096 DOI: 10.1039/d0cp05896c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mechanical creep behaviors of natural gas hydrates are of importance for understanding the mechanical instability of gas hydrate-bearing sediments on Earth. Limited by the experimental challenges, intrinsic creep mechanisms of nanocrystalline methane hydrates remain largely unknown yet at the molecular scale. Herein, using large-scale molecular dynamics simulations, mechanical creep behaviors of nanocrystalline methane hydrates are investigated. It is revealed that mechanical creep responses are greatly dictated by internal microstructures of crystalline grain size and external conditions of temperature and static stress. Interestingly, a long steady-state creep is observed in nanocrystalline methane hydrates, which can be described by a modified constitutive Bird-Dorn-Mukherjee model. Microstructural analysis shows that deformations of crystalline grains, grain boundary diffusion and grain boundary sliding collectively govern the mechanical creep behaviors of nanocrystalline methane hydrates. Furthermore, structural transformation also appears to be important in their mechanical creep behaviors. This study provides new insights into understanding the mechanical creep scenarios of gas hydrates.
Collapse
Affiliation(s)
- Pinqiang Cao
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| | - Jianlong Sheng
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| | - Jianyang Wu
- Department of Physics, Jiujiang Research Institute, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Fulong Ning
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China.
| |
Collapse
|
21
|
Cabrera-Ramírez A, Yanes-Rodríguez R, Prosmiti R. Computational density-functional approaches on finite-size and guest-lattice effects in CO 2@sII clathrate hydrate. J Chem Phys 2021; 154:044301. [PMID: 33514100 DOI: 10.1063/5.0039323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We performed first-principles computations to investigate guest-host/host-host effects on the encapsulation of the CO2 molecule in sII clathrate hydrates from finite-size clusters up to periodic 3D crystal lattice systems. Structural and energetic properties were first computed for the individual and first-neighbors clathrate-like sII cages, where highly accurate ab initio quantum chemical methods are available nowadays, allowing in this way the assessment of the density functional (DFT) theoretical approaches employed. The performance of exchange-correlation functionals together with recently developed dispersion-corrected schemes was evaluated in describing interactions in both short-range and long-range regions of the potential. On this basis, structural relaxations of the CO2-filled and empty sII unit cells yield lattice and compressibility parameters comparable to experimental and previous theoretical values available for sII hydrates. According to these data, the CO2 enclathration in the sII clathrate cages is a stabilizing process, either by considering both guest-host and host-host interactions in the complete unit cell or only the guest-water energies for the individual clathrate-like sII cages. CO2@sII clathrates are predicted to be stable whatever the dispersion correction applied and in the case of single cage occupancy are found to be more stable than the CO2@sI structures. Our results reveal that DFT approaches could provide a good reasonable description of the underlying interactions, enabling the investigation of formation and transformation processes as a function of temperature and pressure.
Collapse
Affiliation(s)
| | | | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
22
|
Kondo Y, Alavi S, Takeya S, Ohmura R. Characterization of the Clathrate Hydrate Formed with Fluoromethane and Pinacolone: The Thermodynamic Stability and Volumetric Behavior of the Structure H Binary Hydrate. J Phys Chem B 2021; 125:328-337. [PMID: 33356275 DOI: 10.1021/acs.jpcb.0c09818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To reveal the relation of guest dynamics within the structure H clathrate hydrate and its macroscopic physical properties, experimental and computational works have been conducted on the system of fluoromethane (HFC-41) and pinacolone coexisting with water. The phase boundaries of the hydrate formed from HFC-41 and pinacolone within the pressure range of (0.25-2.48) MPa and the temperature range of (277-293) K were measured. The equilibrium hydrate formation pressure incorporating HFC-41 was lowered by adding the pinacolone as a large guest molecule compound to form a sH phase compared to the HFC-41 single hydrate. Powder X-ray diffraction measurements confirmed the formation of the structure H hydrate with the HFC-41 and pinacolone binary hydrate. The lattice constants of the sH hydrate were also measured to see the effect of the help guest molecular size, which showed a different trend from that of the previous studies of sH pinacolone hydrates. Molecular dynamics simulations of the binary sH phase indicate weak hydrogen bonding of the pinacolone molecules with the water in the cages in the phase with HFC-41. The oblate HFC-41 molecules showed strong orientational preference to the equatorial planes of the D' cages, which may explain some of the trends in the behavior of this phase.
Collapse
Affiliation(s)
- Yuri Kondo
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Saman Alavi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ryo Ohmura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
23
|
Takeya S, Hachikubo A. Dissociation kinetics of propane-methane and butane-methane hydrates below the melting point of ice. Phys Chem Chem Phys 2021; 23:15003-15009. [PMID: 34047316 DOI: 10.1039/d1cp01381e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the dissociation mechanism of gas hydrates below the melting point of ice is crucial for expanding the practical applications of solid hydrates in gas storage. The kinetic processes for gas hydrates have not been clarified, except for those of pure CH4 hydrate and CO2 hydrates. In this study, using in situ X-ray diffraction analysis, the low-temperature onset of the dissociation of C3H8 and C4H10 hydrate fine particles encapsulating CH4 as a secondary guest was investigated during temperature ramping. At ∼200 K, the C3H8 + CH4 hydrate, n-C4H10 + CH4 hydrate, and iso-C4H10 + CH4 hydrate all dissociated in a single step, similar to pure C3H8 and pure iso-C4H10 hydrate. The dissociation of C3H8 hydrate was also found to accelerate the dissociation of CH4 hydrate. Based on the experimental results, it was confirmed that the C3H8 and C4H10 molecules released from the dissociating hydrates accelerated hydrate dissociation.
Collapse
Affiliation(s)
- Satoshi Takeya
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced, Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.
| | - Akihiro Hachikubo
- Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| |
Collapse
|
24
|
Lee B, Kim J, Shin K, Park KH, Cha M, Alavi S, Ripmeester JA. Managing hydrogen bonding in the clathrate hydrate of the 1-pentanol guest molecule. CrystEngComm 2021. [DOI: 10.1039/d1ce00583a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1-pentanol, long-chain alcohol molecule, can be encaged in the clathrate hydrate by managing the destabilizing influence of guest–host hydrogen bonding.
Collapse
Affiliation(s)
- Byeonggwan Lee
- Department of Hydrogen & Renewable Energy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
- Radioactive Waste Treatment Research Team
| | - Jeongtak Kim
- Department of Applied Chemistry
- Kyungpook National University
- Daegu 41566
- Republic of Korea
- Climate Change Research Division
| | - Kyuchul Shin
- Department of Hydrogen & Renewable Energy
- Kyungpook National University
- Daegu 41566
- Republic of Korea
- Department of Applied Chemistry
| | - Ki Hun Park
- Department of Energy and Resources Engineering
- Kangwon National University
- Gangwon-do 24341
- Republic of Korea
| | - Minjun Cha
- Department of Energy and Resources Engineering
- Kangwon National University
- Gangwon-do 24341
- Republic of Korea
| | - Saman Alavi
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
- National Research Council of Canada
| | | |
Collapse
|
25
|
Cabrera-Ramírez A, Arismendi-Arrieta DJ, Valdés Á, Prosmiti R. Structural Stability of the CO 2 @sI Hydrate: a Bottom-Up Quantum Chemistry Approach on the Guest-Cage and Inter-Cage Interactions. Chemphyschem 2020; 21:2618-2628. [PMID: 33001534 DOI: 10.1002/cphc.202000753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Indexed: 12/27/2022]
Abstract
Through reliable first-principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom-up approach starting from the individual 512 and 512 62 sI cages, up to all existing combinations of two-adjacent sI crystal cages to evaluate how such clathrate-like models perform on the evaluation of the guest-host and first-neighbors inter-cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF-MP2 and different DFT/DFT-D electronic structure methodologies. The performance of selected DFT functionals, together with various semi-classical dispersion corrections schemes, were validated by comparison with reference ab initio DF-MP2 data, as well as experimental data from x-ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 512 62 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter-cage couplings in the cluster models under study. In particular, the guest-cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter-cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 512 62 sI cages. Such findings on these clathrate-like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2 @sI clathrates.
Collapse
Affiliation(s)
| | - Daniel J Arismendi-Arrieta
- Donostia International Physics Center (DIPC), Paseo, Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Álvaro Valdés
- Escuela de Física, Universidad Nacional de Colombia, Sede, A. A., 3840, Medellín, Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), Serrano 123, Madrid, Spain
| |
Collapse
|
26
|
Hatsugai T, Nakayama R, Tomura S, Akiyoshi R, Nishitsuka S, Nakamura R, Takeya S, Ohmura R. Development and Continuous Operation of a Bench‐Scale System for the Production of O
3
+ O
2
+ CO
2
Hydrates. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomomi Hatsugai
- IHI Corporation, 1 Shin-Nakahara-Cho, Isogo-ku 235-8501 Yokohama Japan
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| | - Ryutaro Nakayama
- IHI Corporation, 1 Shin-Nakahara-Cho, Isogo-ku 235-8501 Yokohama Japan
| | - Shigeo Tomura
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Ryo Akiyoshi
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Shirou Nishitsuka
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Ryo Nakamura
- IHI Plant Services Corporation Toyosu IHI Bldg., 1-1, Toyosu 3-chome, Koto-ku 135-0061 Tokyo Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1, Higashi 305-85654 Tsukuba Japan
| | - Ryo Ohmura
- Keio University Department of Mechanical Engineering 223-8522 Yokohama Japan
| |
Collapse
|
27
|
Fuseya G, Takeya S, Hachikubo A. Temperature effects on the C-H symmetric stretching vibrational frequencies of guest hydrocarbon molecules in 5 12, 5 126 2 and 5 126 4 cages of sI and sII clathrate hydrates. RSC Adv 2020; 10:37582-37587. [PMID: 35521261 PMCID: PMC9057130 DOI: 10.1039/d0ra06668k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
C–H symmetric stretching vibrational frequencies of CH4, C2H4 and C2H6 molecules encapsulated in 512, 51262 and 51264 cages of structures I (sI) and II (sII) clathrate hydrates measured by Raman spectroscopy in the temperature range of 93–183 K was analysed. The slopes of the symmetric stretch vibrational frequencies under changing temperatures (Δv/ΔT) for CH4, C2H4 and C2H6 molecules encapsulated in sII 51264 cages were smaller than those for molecules in sI 51262 cages, although sI 51262 cages are smaller than sII 51264 cages. We compared the results of Δv/ΔT in this study with the geometrical properties of each host water cage, and these comparisons suggest that the geometry of host water cages affects Δv/ΔT. Temperature effects on the C–H symmetric stretch of hydrocarbons in various cages of sI and sII clathrate hydrates were observed.![]()
Collapse
Affiliation(s)
- Go Fuseya
- Kitami Institute of Technology 165, Koen-cho Kitami 090-8507 Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1, Higashi Tsukuba 305-8565 Japan
| | | |
Collapse
|
28
|
Sun MT, Zhang GD, Wang F. Graphene-Based Kinetic Promotion of Gas Hydrate Formation. Front Chem 2020; 8:481. [PMID: 32637394 PMCID: PMC7317304 DOI: 10.3389/fchem.2020.00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 12/03/2022] Open
Abstract
Gas hydrate technology holds great potential in energy and environmental fields, and achieving efficient gas hydrate formation is critical for its industrial application. Graphene is a novel carbon-based nanostructured material with excellent thermal conductivity and a large specific surface area. Therefore, the use of graphene-based materials for the promotion of gas hydrate formation might be feasible and has aroused a lot of interests. Accordingly, to evaluate the current research on graphene-based promotion of gas hydrate formation, this work presents a review of existing studies involving graphene-based promoters of gas hydrate formation. Here, the studies applying various types of graphene-based promoters for gas hydrate formation are listed and detailed, the peculiar properties of graphene-based promoters are discussed, and the promotion mechanisms are analyzed. Through this review, comprehensive insight into graphene-based promotion of gas hydrate formation can be obtained, which can guide the design and applications of novel graphene-based promoters and might contribute to achieving efficient gas hydrate formation.
Collapse
Affiliation(s)
- Meng-Ting Sun
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guo-Dong Zhang
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fei Wang
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Fuseya G, Takeya S, Hachikubo A. Effect of temperature and large guest molecules on the C-H symmetric stretching vibrational frequencies of methane in structure H and I clathrate hydrates. RSC Adv 2020; 10:17473-17478. [PMID: 35515622 PMCID: PMC9053386 DOI: 10.1039/d0ra02748k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
Large molecules such as 2-methylbutane (C5H12) or 2,2-dimethylbutane (C6H14) form structure H (sH) hydrates with methane (CH4) as a help gas. In this study, the Raman spectra of the C–H symmetric stretch region of CH4 enclathrated within various sH hydrates and structure I CH4 hydrates were analyzed in the temperature range 137.7–205.4 K. Thermal expansions of these sH hydrate samples were also measured using powder X-ray diffraction. Symmetric stretch vibrational frequencies of CH4 in host–water cages increased because of varying temperature, and the sizes of the host–water cages also increased; variation of CH4 in small cages was less than in larger cages. Comparing the variations of the C–H symmetric stretching frequencies of CH4 in gas hydrates with varying pressure and temperature, we suggest that the observed trend is caused by thermal vibrations of the CH4 molecule in water cages. Temperature effect on C–H symmetric stretching frequencies of CH4 in water cages of sI and sH clathrate hydrates were clarified.![]()
Collapse
Affiliation(s)
- Go Fuseya
- Kitami Institute of Technology 165, Koen-cho Kitami 090-8507 Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1, Higashi Tsukuba 305-8565 Japan
| | | |
Collapse
|
30
|
Wang Z, Yang L, Yang K, Deng R, Lin S. Effects of cage occupancy in hydrate by first-principles calculation and modification of the van der Waals-Platteeuw hypothesis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:095402. [PMID: 31689692 DOI: 10.1088/1361-648x/ab5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The changes of methane hydrate lattice with the decrease of cage occupancy were calculated by first-principles methods. The calculation results show that the decrease of the cages occupancy in sII and sH hydrate does not lead to large deformation in the lattice. Even if all the methane molecules are removed so that the hydrates have become new types of ice, the sII and sH lattices remain stable. The same conclusion is also true when the occupancy of the small cages in sI hydrate is reduced. However, the sI hydrate lattice will deform and almost collapse as the large cage occupancy decreases. These calculation results suggest that sI hydrate cannot exist with empty cages. Since the van der Waals-Platteeuw theory is based on the assumption that the stability of host lattice is independent of the occupancy of guest molecule, it would be applicable to sII and sH lattices, but not to sI hydrates. We propose a modification to the van der Waals-Platteeuw hypothesis so that the theory seems more reasonable.
Collapse
Affiliation(s)
- Zhao Wang
- School of Science, Hainan University, Haikou 570228, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Double occupancy of large cavity of diethylamin+methane sH hydrate at low pressures. Struct Chem 2020. [DOI: 10.1007/s11224-020-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Gas hydrate formation by allyl alcohol and CH4: Spectroscopic and thermodynamic analysis. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0429-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Zheng J, Yang L, Ma S, Zhao Y, Yang M. Quantitative analysis of CO
2
hydrate formation in porous media by proton NMR. AIChE J 2019. [DOI: 10.1002/aic.16820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jia‐nan Zheng
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education Dalian University of Technology Dalian China
| | - Lei Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education Dalian University of Technology Dalian China
| | - Shihui Ma
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education Dalian University of Technology Dalian China
| | - Yuechao Zhao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education Dalian University of Technology Dalian China
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education Dalian University of Technology Dalian China
| |
Collapse
|
34
|
Takeya S, Hachikubo A. Structure and Density Comparison of Noble Gas Hydrates Encapsulating Xenon, Krypton and Argon. Chemphyschem 2019; 20:2518-2524. [PMID: 31411367 DOI: 10.1002/cphc.201900591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding the effect of guest species on the host framework is important for the development of structure-based properties of inclusion compounds. Herein, the crystal structures of the noble gas hydrates encapsulating Xe, Kr, and Ar were studied by powder X-ray diffraction measurements. The crystal structures and hydration numbers of these noble gas hydrates were solved by Rietveld refinements using optimized models with the direct-space technique. It was revealed that host cage size of these hydrates changed depending on the type of guest species even though their unit-cell parameters were the same. Based on the structure models obtained, the densities of Xe, Kr, and Ar gas hydrates were also determined to be 1.837, 1.445 and 1.097 g/cm3 at 93 K, respectively. Our findings, from a crystallographic point of view, may give insight into further understanding the thermodynamic stability and physical properties of gas hydrates encapsulating small guests.
Collapse
Affiliation(s)
- Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Ibaraki, Japan
| | - Akihiro Hachikubo
- Kitami Institute of Technology, 165 Koen-cho, Kitami, 090-8507, Hokkaido, Japan
| |
Collapse
|
35
|
Experimental characterization of guest molecular occupancy in clathrate hydrate cages: A review. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Arismendi-Arrieta DJ, Valdés Á, Prosmiti R. A Systematic Protocol for Benchmarking Guest-Host Interactions by First-Principles Computations: Capturing CO 2 in Clathrate Hydrates. Chemistry 2018; 24:9353-9363. [PMID: 29600599 DOI: 10.1002/chem.201800497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 01/19/2023]
Abstract
Clathrate hydrates of CO2 have been proposed as potential molecular materials in tackling important environmental problems related to greenhouse gases capture and storage. Despite the increasing interest in such hydrates and their technological applications, a molecular-level understanding of their formation and properties is still far from complete. Modeling interactions is a challenging and computationally demanding task, essential to reliably determine molecular properties. First-principles calculations for the CO2 guest in all sI, sII, and sH clathrate cages were performed, and the nature of the guest-host interactions, dominated by both hydrogen-bond and van der Waals forces, was systematically investigated. Different families of density functionals, as well as pairwise CO2 @H2 O model potentials versus wavefunction-based quantum approaches were studied for CO2 clathrate-like systems. Benchmark energies for new distance-dependent datasets, consisting of potential energy curves sampling representative configurations of the systems at the repulsive, near-equilibrium, and asymptotic/long-range regions of the full-dimensional surface, were generated, and a general protocol was proposed to assess the accuracy of such conventional and modern approaches at minimum and non-minimum orientations. Our results show that dispersion interactions are important in the guest-host stabilization energies of such clathrate cages, and the encapsulation of the CO2 into guest-free clathrate cages is always energetically favorable. In addition, the orientation of CO2 inside each cage was explored, and the ability of current promising approaches to accurately describe non-covalent CO2 @H2 O guest-host interactions in sI, sII, and sH clathrates was discussed, providing information for their applicability to future multiscale computer simulations.
Collapse
Affiliation(s)
| | - Álvaro Valdés
- Departamento de Física, Universidad Nacional de Colombia, Calle 26, Cra 39, Edificio, 404, Bogotá, Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
37
|
Fuseya G, Takeya S, Hachikubo A. Retracted Article: Effect of temperature and large guest molecules on the C–H symmetric stretching vibrational frequencies of methane in structure H and I clathrate hydrates. RSC Adv 2018; 8:3237-3242. [PMID: 35541176 PMCID: PMC9077694 DOI: 10.1039/c7ra12334e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
Large molecules such as 2-methylbutane (C5H12) or 2,2-dimethylbutane (C6H14) form structure H (sH) hydrates with methane (CH4) as a help gas. In this study, the Raman spectra of the C–H symmetric stretch region of CH4 enclathrated within various sH hydrates and structure I CH4 hydrates were analyzed in the temperature range 83–183 K. Thermal expansions of these sH hydrate samples were also measured using powder X-ray diffraction. Symmetric stretch vibrational frequencies of CH4 in host water cages increased because of varying temperature, and the sizes of the host water cages also increased; variation of CH4 in small cages was less than in larger cages. Comparing the variations of the C–H symmetric stretching frequencies of CH4 in gas hydrates with varying pressure and temperature, we suggest that the observed trend is caused by thermal vibrations of the CH4 molecule in water cages. Temperature effects on C–H symmetric stretching frequencies of CH4 in water cages of sI and sH clathrate hydrates were clarified.![]()
Collapse
Affiliation(s)
- Go Fuseya
- Kitami Institute of Technology
- Kitami 090-8507
- Japan
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8565
- Japan
| | | |
Collapse
|
38
|
Elasticity and Stability of Clathrate Hydrate: Role of Guest Molecule Motions. Sci Rep 2017; 7:1290. [PMID: 28465527 PMCID: PMC5431056 DOI: 10.1038/s41598-017-01369-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/29/2017] [Indexed: 12/02/2022] Open
Abstract
Molecular dynamic simulations were performed to determine the elastic constants of carbon dioxide (CO2) and methane (CH4) hydrates at one hundred pressure–temperature data points, respectively. The conditions represent marine sediments and permafrost zones where gas hydrates occur. The shear modulus and Young’s modulus of the CO2 hydrate increase anomalously with increasing temperature, whereas those of the CH4 hydrate decrease regularly with increase in temperature. We ascribe this anomaly to the kinetic behavior of the linear CO2 molecule, especially those in the small cages. The cavity space of the cage limits free rotational motion of the CO2 molecule at low temperature. With increase in temperature, the CO2 molecule can rotate easily, and enhance the stability and rigidity of the CO2 hydrate. Our work provides a key database for the elastic properties of gas hydrates, and molecular insights into stability changes of CO2 hydrate from high temperature of ~5 °C to low decomposition temperature of ~−150 °C.
Collapse
|
39
|
Liu L, Mao S, Li Q, Wang X, Yang M, Li L. Confinement of hydrogen and hydroxyl radicals in water cages: a density functional theory study. RSC Adv 2017. [DOI: 10.1039/c6ra28804a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radicals can be confined in water cages and exhibit similar structures and properties to their corresponding free forms.
Collapse
Affiliation(s)
- Liuxie Liu
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Shuang Mao
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Quan Li
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Xiaolan Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics
- Sichuan University
- Chengdu 610065
- China
| | - Laicai Li
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| |
Collapse
|
40
|
Costandy J, Michalis VK, Tsimpanogiannis IN, Stubos AK, Economou IG. Molecular dynamics simulations of pure methane and carbon dioxide hydrates: lattice constants and derivative properties. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1241442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Joseph Costandy
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | | | - Ioannis N. Tsimpanogiannis
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
- Environmental Research Laboratory, National Center for Scientific Research (NCSR) “Demokritos”, Athens, Greece
| | - Athanassios K. Stubos
- Environmental Research Laboratory, National Center for Scientific Research (NCSR) “Demokritos”, Athens, Greece
| | | |
Collapse
|
41
|
Izquierdo-Ruiz F, Otero-de-la-Roza A, Contreras-García J, Prieto-Ballesteros O, Recio JM. Effects of the CO₂ Guest Molecule on the sI Clathrate Hydrate Structure. MATERIALS 2016; 9:ma9090777. [PMID: 28773898 PMCID: PMC5457105 DOI: 10.3390/ma9090777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022]
Abstract
This paper analyzes the structural, energetic and mechanical properties of carbon dioxide hydrate clathrates calculated using finite cluster and periodic ab initio density-functional theory methodologies. Intermolecular interactions are described by the exchange-hole dipole moment method. The stability, gas saturation energetics, guest–host interactions, cage deformations, vibrational frequencies, and equation of state parameters for the low-pressure sI cubic phase of the CO2@H2O clathrate hydrate are presented. Our results reveal that: (i) the gas saturation process energetically favors complete filling; (ii) carbon dioxide molecules prefer to occupy the larger of the two cages in the sI structure; (iii) blue shifts occur in both the symmetric and antisymmetric stretching frequencies of CO2 upon encapsulation; and (iv) free rotation of guest molecules is restricted to a plane parallel to the hexagonal faces of the large cages. In addition, we calculate the librational frequency of the hindered rotation of the guest molecule in the plane perpendicular to the hexagonal faces. Our calculated spectroscopic data can be used as signatures for the detection of clathrate hydrates in planetary environments.
Collapse
Affiliation(s)
- Fernando Izquierdo-Ruiz
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo 33006, Spain.
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz 28850, Spain.
- Laboratoire de Chimie Théorique, CNRS & Université Pierre et Marie Curie, Sorbonne Universités, Paris 75005, France.
| | | | - Julia Contreras-García
- Laboratoire de Chimie Théorique, CNRS & Université Pierre et Marie Curie, Sorbonne Universités, Paris 75005, France.
| | | | - Jose Manuel Recio
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo 33006, Spain.
| |
Collapse
|
42
|
Takeya S, Nakano K, Thammawong M, Umeda H, Yoneyama A, Takeda T, Hyodo K, Matsuo S. CO₂ processing and hydration of fruit and vegetable tissues by clathrate hydrate formation. Food Chem 2016; 205:122-8. [PMID: 27006222 DOI: 10.1016/j.foodchem.2016.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 11/15/2022]
Abstract
CO2 hydrate can be used to preserve fresh fruits and vegetables, and its application could contribute to the processing of carbonated frozen food. We investigated water transformation in the frozen tissue of fresh grape samples upon CO2 treatment at 2-3 MPa and 3°C for up to 46 h. Frozen fresh bean, radish, eggplant and cucumber samples were also investigated for comparison. X-ray diffraction indicated that after undergoing CO2 treatment for several hours, structure I CO2 hydrate formed within the grape tissue. Phase-contrast X-ray imaging using the diffraction-enhanced imaging technique revealed the presence of CO2 hydrate within the intercellular spaces of these tissues. The carbonated produce became effervescent because of the dissociation of CO2 hydrate through the intercellular space, especially above the melting point of ice. In addition, suppressed metabolic activity resulting from CO2 hydrate formation, which inhibits water and nutrient transport through intercellular space, can be expected.
Collapse
Affiliation(s)
- Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kohei Nakano
- Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | | | - Hiroki Umeda
- Institute of Vegetable and Tea Science (NIVTS), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Akio Yoneyama
- Hitachi Ltd., 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Tohoru Takeda
- Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Kazuyuki Hyodo
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Seiji Matsuo
- The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Takeya S, Fujihisa H, Yamawaki H, Gotoh Y, Ohmura R, Alavi S, Ripmeester JA. Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form. Angew Chem Int Ed Engl 2016; 55:9287-91. [DOI: 10.1002/anie.201602733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Hiroshi Fujihisa
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Hiroshi Yamawaki
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Yoshito Gotoh
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Ryo Ohmura
- Keio University 3-14-1 Hiyoshi Kohoku-Ku Yokohama 223-8522 Japan
| | - Saman Alavi
- National Research Council of Canada 100 Sussex Dr. Ottawa ON K1A0R6 Canada
| | - John A. Ripmeester
- National Research Council of Canada 100 Sussex Dr. Ottawa ON K1A0R6 Canada
| |
Collapse
|
44
|
Takeya S, Fujihisa H, Yamawaki H, Gotoh Y, Ohmura R, Alavi S, Ripmeester JA. Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Hiroshi Fujihisa
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Hiroshi Yamawaki
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Yoshito Gotoh
- National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba 305-8565 Ibaraki Japan
| | - Ryo Ohmura
- Keio University 3-14-1 Hiyoshi Kohoku-Ku Yokohama 223-8522 Japan
| | - Saman Alavi
- National Research Council of Canada 100 Sussex Dr. Ottawa ON K1A0R6 Canada
| | - John A. Ripmeester
- National Research Council of Canada 100 Sussex Dr. Ottawa ON K1A0R6 Canada
| |
Collapse
|
45
|
Takeya S, Udachin KA, Moudrakovski IL, Ohmura R, Ripmeester JA. Disorder of Hydrofluorocarbon Molecules Entrapped in the Water Cages of Structure I Clathrate Hydrate. Chemistry 2016; 22:7567-73. [PMID: 27105807 DOI: 10.1002/chem.201600122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/09/2022]
Abstract
Water versus fluorine: Clathrate hydrates encaging hydrofluorocarbons as guests show both isotropic and anisotropic distributions within host water cages, depending on the number of fluorine atoms in the guest molecule; this is caused by changes in intermolecular interactions to host water molecules in the hydrates.
Collapse
Affiliation(s)
- Satoshi Takeya
- National Institute of Advanced Industrial, Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| | - Konstantin A Udachin
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Igor L Moudrakovski
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
| | - Ryo Ohmura
- Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-0061, Japan
| | - John A Ripmeester
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
46
|
Shin K, Cha M, Lee W, Lee H. Structural identification of DClO4 clathrate hydrates: Neutron powder diffraction analysis. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0010-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Hansen TC, Falenty A, Kuhs WF. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit. J Chem Phys 2016; 144:054301. [DOI: 10.1063/1.4940729] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. C. Hansen
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - A. Falenty
- GZG, Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077 Göttingen, Germany
| | - W. F. Kuhs
- GZG, Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077 Göttingen, Germany
| |
Collapse
|
48
|
Moudrakovski IL, Ratcliffe CI, Ripmeester JA. Introducing new half-integer quadrupolar nuclei for solid state NMR of inclusion compounds. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Broad developments in experimental NMR techniques have opened new and exciting opportunities for application of solid state nuclear magnetic resonance (SS NMR) in studies of gas hydrates and inclusion compounds in general. Perhaps the most important advance of the last 10 years was the extension into very high magnetic fields beyond 20 T. This progress is especially significant in studies concerned with low-γ, low natural abundance, and quadrupolar nuclei. This work reports our recent exploration of clathrate hydrates and other inclusion compounds (β-quinol, tert-Bu-Calix[4], and dodecasil-3C) with SS NMR of nuclei that were not so long ago completely out of reach for NMR, namely 131Xe, 83Kr, and 33S. Although 129Xe is a widely used NMR probe, applications of the low-γ isotope 131Xe were very scarce. Being a quadrupolar spin 3/2 nucleus, 131Xe provides an additional probe for sampling the electric field gradients in inclusion compounds. Another nucleus that has been seriously under-explored is 83Kr, with its very low γ being the main obstacle, and along with quadrupolar coupling we report the first detection of the chemical shift anisotropy in krypton. The relative values of the Sternheimer antishielding factors for 131Xe and 83Kr, obtained by comparison of the spectra of the two in identical cage environments, are also discussed. Though 33S NMR of solids is notoriously difficult due to its low γ, low natural abundance, and relatively large quadrupolar moment, working at the field of 21.1 T it was possible to acquire, in a reasonable time, natural abundance 33S SS NMR spectra of various H2S and SO2 gas hydrates and inclusion compounds. In most cases the spectra are dominated by the quadrupolar interactions, providing information on the symmetry of the cages encapsulating the guest molecules, and also show the effects of very rapid reorientation of the encaged H2S and SO2. The impact of the introduction of new NMR nuclei on hydrate research is discussed.
Collapse
Affiliation(s)
- Igor L. Moudrakovski
- National Research Council, Ottawa, ON K1A 0R6, Canada
- National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Christopher I. Ratcliffe
- National Research Council, Ottawa, ON K1A 0R6, Canada
- National Research Council, Ottawa, ON K1A 0R6, Canada
| | - John A. Ripmeester
- National Research Council, Ottawa, ON K1A 0R6, Canada
- National Research Council, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
49
|
Shin K, Moudrakovski IL, Udachin KA, Ratcliffe CI, Ripmeester JA. Crystal engineering and characterization of a structure-H ionic clathrate hydrate. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ionic hydrates are known to form numerous clathrate structures in which either the cations or anions sit in cages and the counterions are incorporated into the water framework. Due to the inclusion of the ionic species, such ionic clathrate hydrates not only show many peculiar features such as metal ion encagement and superoxide ion generation, but also exhibit notable physicochemical properties such as outstanding ionic conductivity and thermal stability. Thus, the ionic clathrate hydrates are considered for their potential applicability in various fields, including those that involve solid electrolytes, gas sensors, and energy storage. In this study, we report the design, synthesis, and characterization of the first ionic clathrate hydrate of the hexagonal structure-H (Str.H) crystal type. Diethyl-dimethyl-ammonium hydroxide hydrate was synthesized with CH4 and Xe as help gases, and the crystal structure was identified by powder X-ray diffraction analysis. Further confirmation of the formation of Str.H was obtained from Raman spectroscopy and 13C, 129Xe, and 2H solid-state NMR spectroscopy. From 13C NMR and ab initio calculations, it was shown that the quaternary ion occupies the large cage of Str.H with a conformation different from that in solution, due to constraints imposed by the dimensions of the cage. The H deficiency introduced by substitution of OH– for a water molecule appears, from 129Xe NMR, to be disordered over the framework, and, from 2H NMR, to substantially increase the rate of reorientational mobility of the D atoms in the framework, over that observed for a Str.I hydrate and for ice. The Str.H hydrates are commonly more stable than other structures, thus the present findings on the ionic Str.H clathrate hydrate may offer a new approach for improving the stability of ionic clathrate hydrates for their practical application.
Collapse
Affiliation(s)
- Kyuchul Shin
- National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Dept. of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - Igor L. Moudrakovski
- National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | | | | | | |
Collapse
|
50
|
Hiratsuka M, Ohmura R, Sum AK, Alavi S, Yasuoka K. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates. Phys Chem Chem Phys 2015; 17:12639-47. [PMID: 25905113 DOI: 10.1039/c4cp05732e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clathrate hydrates are typically stabilized by suitably sized hydrophobic guest molecules. However, it has been experimentally reported that isomers of amyl-alcohol C5H11OH can be enclosed into the 5(12)6(4) cages in structure II (sII) clathrate hydrates, even though the effective radii of the molecules are larger than the van der Waals radii of the cages. To reveal the mechanism of the anomalous enclathration of hydrophilic molecules, we performed ab initio and classical molecular dynamics simulations (MD) and analyzed the structure and dynamics of a guest-host hydrogen bond for sII 3-methyl-1-butanol and structure H (sH) 2-methyl-2-butanol clathrate hydrates. The simulations clearly showed the formation of guest-host hydrogen bonds and the incorporation of the O-H group of 3-methyl-1-butanol guest molecules into the framework of the sII 5(12)6(4) cages, with the remaining hydrophobic part of the amyl-alcohol molecule well accommodated into the cages. The calculated vibrational spectra of alcohol O-H bonds showed large frequency shifts due to the strong guest-host hydrogen bonding. The 2-methyl-2-butanol guests form strong hydrogen bonds with the cage water molecules in the sH clathrate, but are not incorporated into the water framework. By comparing the structures of the alcohols in the hydrate phases, the effect of the location of O-H groups in the butyl chain of the guest molecules on the crystalline structure of the clathrate hydrates is indicated.
Collapse
Affiliation(s)
- Masaki Hiratsuka
- Department of Mechanical Engineering, Keio University, 3-4-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | |
Collapse
|