1
|
Chatkon A, Haller KJ, Haller JP. Substitutional/positional disorder of biguanide and guanylurea in the structure of a decavanadate complex [(Bg)(HV 10O 285-)] 0.4[(HGU +)(V 10O 286-)] 0.6(H 2Met 2+) 2(H 3O +)·8H 2O. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:456-466. [PMID: 39221976 DOI: 10.1107/s2052520624006929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
A hydrated salt of decavanadate containing diprotonated metforminium(2+) (H2Met2+), hydronium (H3O+) and either neutral biguanide (Bg) or monoprotonated guanylurea (HGU+) exhibits a previously seen complex charge-stabilized hydrogen-bonded network [Chatkon et al. (2022). Acta Cryst. B78, 798-808]. Charge balance is achieved in two ways through substitutional disorder: a 0.6 occupied HGU+ cation is paired with a V10O286- anion, and a 0.4 occupied neutral Bg molecule is paired with a HV10O285- anion, with the remaining charge in both cases balanced by two H2Met2+ dications and one H3O+ monocation. Bg/HGU+ moieties exhibit bifurcated N-H...O hydrogen bonding to the H3O+ cation and are substitutionally/positionally disordered along with the H3O+ cation about an inversion center. The HGU+ V10O286- synthon seen in the previous study occurs again. Bg exhibits bifurcated hydrogen bonding from two amino groups to two rows of cluster O atoms running diagonally across the equatorial plane of the HV10O285- anion with a return hydrogen bond from the cluster H atom to the imino N atom of the Bg. Thus, a Bg...cluster synthon similar to the HGU+...cluster synthon previously reported is found. The disordered moieties occupy spaces with excess volume in the 3-D network structure. Interestingly, when the crystallographic unit cell of the current compound, whose X-ray data was collected at 100 K, is compared with that of a previous compound exhibiting the same supramolecular framework, unit-cell parameter c does not shorten as a and b expectantly do because of the lower data collection temperature. The lack of contraction on unit-cell parameter c is possibly due to the supramolecular structure.
Collapse
Affiliation(s)
- Aungkana Chatkon
- Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, 30000, Thailand
| | - Kenneth J Haller
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Joseph P Haller
- Home School, PO Box 43, Chom Surong, Nakhon Ratchasima, 30001, Thailand
| |
Collapse
|
2
|
Palese LL. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim Biophys Acta Gen Subj 2020; 1864:129480. [DOI: 10.1016/j.bbagen.2019.129480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
3
|
Vener MV, Chernyshov IY, Rykounov AA, Filarowski A. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1380860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. V. Vener
- Quantum Chemistry Department, Mendeleev University of Chemical Technology, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I. Yu. Chernyshov
- Quantum Chemistry Department, Mendeleev University of Chemical Technology, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rykounov
- Theoretical Department, Russian Federal Nuclear Center – All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Snezhinsk, Russia
| | - A. Filarowski
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
- Department of Physics, Industrial University of Tyumen, Tyumen, Russia
| |
Collapse
|
4
|
Theoretical investigations on Zundel cation present inside boron-nitride nanotubes: Effect of confinement and hydrogen bonding. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2014.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Effect of confinement on the structure and energetics of Zundel cation present inside the hydrophobic carbon nanotubes: an ab initio study. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1576-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Douvris C, Michl J. Update 1 of:Chemistry of the Carba-closo-dodecaborate(−) Anion, CB11H12–. Chem Rev 2014; 113:PR179-233. [PMID: 23944158 DOI: 10.1021/cr400059k] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christos Douvris
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, 16610 Prague, Czech Republic
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, 16610 Prague, Czech Republic
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
7
|
Abstract
Recent research has taught us that most protonated species are decidedly not well represented by a simple proton addition. What is the actual nature of the hydrogen ion (the "proton") when H(+), HA, H2A(+), and so forth are written in formulas, chemical equations, and acid catalyzed reactions? In condensed media, H(+) must be solvated and is nearly always dicoordinate, as illustrated by isolable bisdiethyletherate salts having H(OEt2)2(+) cations and weakly coordinating anions. Even carbocations such as protonated alkenes have significant C-H···anion hydrogen bonding that gives the active protons two-coordinate character. Hydrogen bonding is everywhere, particularly when acids are involved. In contrast to the normal, asymmetric O-H···O hydrogen bonding found in water, ice, and proteins, short, strong, low-barrier (SSLB) H-bonding commonly appears when strong acids are present. Unusually low frequency IR νOHO bands are a good indicator of SSLB H-bonds, and curiously, bands associated with group vibrations near H(+) in low-barrier H-bonding often disappear from the IR spectrum. Writing H3O(+) (the Eigen ion), as often appears in textbooks, might seem more realistic than H(+) for an ionized acid in water. However, this, too, is an unrealistic description of H(aq)(+). The dihydrated H(+) in the H5O2(+) cation (the Zundel ion) gets somewhat closer but still fails to rationalize all the experimental and computational data on H(aq)(+). Researchers do not understand the broad swath of IR absorption from H(aq)(+), known as the "continuous broad absorption" (cba). Theory has not reproduced the cba, but it appears to be the signature of delocalized protons whose motion is faster than the IR time scale. What does this mean for reaction mechanisms involving H(aq)(+)? For the past decade, the carborane acid H(CHB11Cl11) has been the strongest known Brønsted acid. (It is now surpassed by the fluorinated analogue H(CHB11F11).) Carborane acids are strong enough to protonate alkanes at room temperature, giving H2 and carbocations. They protonate chloroalkanes to give dialkylchloronium ions, which decay to carbocations. By partially protonating an oxonium cation, they get as close to the fabled H4O(2+) ion as can be achieved outside of a computer.
Collapse
Affiliation(s)
- Christopher A. Reed
- Department of Chemistry, University of California, Riverside, California 92521, USA
| |
Collapse
|
8
|
Wright JH, Kefalidis CE, Tham FS, Maron L, Lavallo V. Click-Like Reactions with the Inert HCB11Cl11– Anion Lead to Carborane-Fused Heterocycles with Unusual Aromatic Character. Inorg Chem 2013; 52:6223-9. [DOI: 10.1021/ic400786a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- James H. Wright
- Department of Chemistry, University of California Riverside, Riverside, California 92521,
United States
| | - Christos E. Kefalidis
- Department of Chemistry, CNRS & INSA, UPS, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse France
| | - Fook S. Tham
- Department of Chemistry, University of California Riverside, Riverside, California 92521,
United States
| | - Laurent Maron
- Department of Chemistry, CNRS & INSA, UPS, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse France
| | - Vincent Lavallo
- Department of Chemistry, University of California Riverside, Riverside, California 92521,
United States
| |
Collapse
|
9
|
Chen J, Li XZ, Zhang Q, Michaelides A, Wang E. Nature of proton transport in a water-filled carbon nanotube and in liquid water. Phys Chem Chem Phys 2013; 15:6344-9. [DOI: 10.1039/c3cp50218j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Proton transfer reactions in carbon nanotubes endohedrally functionalized with selected polar amino acid sidechains. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Cárdenas DJ, Cuerva JM, Alías M, Buñuel E, Campaña AG. Water-based hydrogen-atom wires as mediators in long-range proton-coupled electron transfer in enzymes: a new twist on water reactivity. Chemistry 2011; 17:8318-23. [PMID: 21671300 DOI: 10.1002/chem.201100964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/27/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Diego J Cárdenas
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain.
| | | | | | | | | |
Collapse
|
12
|
Churakov AV, Prikhodchenko PV, Lev O, Medvedev AG, Tripol'skaya TA, Vener MV. A model proton-transfer system in the condensed phase: NH4(+)OOH(-), a crystal with short intermolecular H-bonds. J Chem Phys 2011; 133:164506. [PMID: 21033804 DOI: 10.1063/1.3493688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The crystal structure of NH(4)(+)OOH(-) is determined from single-crystal x-ray data obtained at 150 K. The crystal belongs to the space group P2(1)/c and has four molecules in a unit cell. The structure consists of discrete NH(4)(+) and OOH(-) ions. The OOH(-) ions are linked by short hydrogen bonds (2.533 Å) to form parallel infinite chains. The ammonium ions form links between these chains (the N⋯O distances vary from 2.714 to 2.855 Å) giving a three-dimensional network. The harmonic IR spectrum and H-bond energies are computed at the Perdew-Burke-Ernzerhof (PBE)/6-31G(∗∗) level with periodic boundary conditions. A detailed analysis of the shared (bridging) protons' dynamics is obtained from the CPMD simulations at different temperatures. PBE functional with plane-wave basis set (110 Ry) is used. At 10 K the shared proton sits near the oxygen atom, only a few proton jumps along the chain are detected at 70 K while at 270 K numerous proton jumps exist in the trajectory. The local-minimum structure of the space group Cc is localized. It appears as a result of proton transfer along a chain. This process is endothermic (∼2 kJ/mol) and is described as P2(1)/c↔2Cc. The computed IR spectrum at 10 K is close to the harmonic one, the numerous bands appear at 70 K while at 270 K it shows a very broad absorption band that covers frequencies from about 1000 to 3000 cm(-1). The advantages of the NH(4)(+)OOH(-) crystal as a promising model for the experimental and DFT based molecular dynamics simulation studies of proton transfer along the chain are discussed.
Collapse
Affiliation(s)
- Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Cao Z, Peng Y, Yan T, Li S, Li A, Voth GA. Mechanism of Fast Proton Transport along One-Dimensional Water Chains Confined in Carbon Nanotubes. J Am Chem Soc 2010; 132:11395-7. [DOI: 10.1021/ja1046704] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Cao
- Institute of New Energy Material Chemistry, Department of Material Chemistry, Nankai University, Tianjin 300071, China and Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Yuxing Peng
- Institute of New Energy Material Chemistry, Department of Material Chemistry, Nankai University, Tianjin 300071, China and Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Tianying Yan
- Institute of New Energy Material Chemistry, Department of Material Chemistry, Nankai University, Tianjin 300071, China and Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Shu Li
- Institute of New Energy Material Chemistry, Department of Material Chemistry, Nankai University, Tianjin 300071, China and Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Ailin Li
- Institute of New Energy Material Chemistry, Department of Material Chemistry, Nankai University, Tianjin 300071, China and Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Gregory A. Voth
- Institute of New Energy Material Chemistry, Department of Material Chemistry, Nankai University, Tianjin 300071, China and Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| |
Collapse
|
15
|
Stoyanov ES, Stoyanova IV, Reed CA. The structure of the hydrogen ion (H(aq)+) in water. J Am Chem Soc 2010; 132:1484-5. [PMID: 20078058 DOI: 10.1021/ja9101826] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hydrogen ion in water, H(aq)(+), is a unique H(13)O(6)(+) entity that defines the boundary of positive-charge delocalization. Its central unit is neither a C(3v) H(3)O(+) Eigen-type ion nor a typical H(5)O(2)(+) Zundel-type ion. IR spectroscopy indicates that the H(13)O(6)(+) ion has an unexpectedly long central O...O separation (>>2.43 A), showing that in comparison with the gas and solid phases, the environment of liquid water is uniquely proficient in delocalizing positive charge. These results will change the description of H(aq)(+) in textbooks of chemistry, and a more extensive delocalization of positive charge may need to be incorporated into descriptions of mechanisms of aqueous proton transport.
Collapse
Affiliation(s)
- Evgenii S Stoyanov
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | |
Collapse
|
16
|
Our choice from the recent literature. Nat Chem 2010. [DOI: 10.1038/nchem.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Raghavender US, Kantharaju, Aravinda S, Shamala N, Balaram P. Hydrophobic Peptide Channels and Encapsulated Water Wires. J Am Chem Soc 2009; 132:1075-86. [DOI: 10.1021/ja9083978] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Upadhyayula S. Raghavender
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kantharaju
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Subrayashastry Aravinda
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Narayanaswamy Shamala
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Padmanabhan Balaram
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Down to the wire. Nat Chem 2009. [DOI: 10.1038/nchem.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|