1
|
Xue Y, Wang LW, Gao G. Presolvation Dynamics Preceding the Hydrated Proton Transfer in the Electrical Double Layer. J Phys Chem Lett 2025; 16:4572-4578. [PMID: 40309954 DOI: 10.1021/acs.jpclett.5c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Hydrated proton transfer (PT) mechanisms in a solid-liquid electric double layer (EDL) remain challenging, as the solvation structure is influenced by the operating potential. Under constant potential framework, we combined the fixed-potential method with ab initio molecular dynamics (AIMD) to simulate the PT in the EDL. Near the interface of EDL, negative potential (vs zero-charge potential) promotes the effective diffusion of the excess proton via reducing the proportion of trapping and revisiting processes of PT, but stiffens the hydrogen bond network manifesting as the restriction of water orientation and the elongation of the O···O pairs. At high negative potentials, hydrated hydrogen ions tend to form the Eigen cation (H2O)3H3O+ during presolvation processes, but this cation exhibits a higher energy barrier for PT than the pentamer (H2O)4H3O+ with a 4-fold coordinated shell. Further simulations reveal that the stiffening effect and the Eigen cation formation suppress proton conductivity near the electrode surface.
Collapse
Affiliation(s)
- Yufei Xue
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lin-Wang Wang
- State key laboratory of superlattices and microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Guoping Gao
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
2
|
Rai PK, Kumar A, Kumar P. Spontaneous Deprotonation of HO 2• at Air-Water Interface. J Phys Chem A 2025; 129:2912-2921. [PMID: 40101751 DOI: 10.1021/acs.jpca.4c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
HO2• is a crucial radical in atmospheric chemistry, with applications ranging from HO2•/OH• interconversion to controlling the budget of various trace gases in the atmosphere. It is known that one of the potential sinks for HO2• is clouds and aerosols, though the mechanism is not clear to date. In the present study, using Born-Oppenheimer molecular dynamics simulations, we have demonstrated that the dissociation of HO2• on the surface of a water droplet, as well as in the bulk phase, is a spontaneous process. In addition, we have computed the Gibbs free energy for the deprotonation of HO2• on both the surface and in the bulk, which suggests that deprotonation of HO2• on the surface occurs faster compared to the same in the bulk.
Collapse
Affiliation(s)
- Philips Kumar Rai
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Amit Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
3
|
Yuan L, Liu Y, Lv K, Zhang M, Hu X. Effects of poly(amidoamine) as an extrafibrillar demineralization agent on dentin bonding durability of deciduous teeth. J Dent 2025; 154:105609. [PMID: 39909137 DOI: 10.1016/j.jdent.2025.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVES To investigate the effects of the sixth generation of poly(amidoamine) (G6-PAMAM)-based extrafibrillar demineralization on bonding durability of deciduous dentin and explore the possible mechanisms. METHODS The cytotoxicity and inhibitory effects on recombinant human matrix metalloproteinases-9 (rhMMP-9) of G6-PAMAM were investigated. The chelation demineralization capacity of G6-PAMAM with molecular weight > 40 kDa was quantitatively analyzed. Atomic force microscopy-infrared spectroscopy (AFM-IR) was used to verify selective extrafibrillar demineralization of dentin conditioned by G6-PAMAM. After dentin surfaces were conditioned with G6-PAMAM or phosphoric acid (H3PO4), G6-PAMAM- and H3PO4-conditioned dentin were applied with adhesive restoration using both wet- and dry-bonding technique. Microtensile bond strength (μTBS) was evaluated after 24 h storage or 10,000 thermocycling. Nanoleakage expression at the bonding interface was observed using field emission scanning electron microscopy. Gelatinolytic activity within the hybrid layer was examined using in situ zymography. RESULTS In addition to being nontoxic, 20 µg/mL G6-PAMAM showed inhibitory effects on rhMMP-9 and calcium-chelating capability. AFM-IR confirmed that G6-PAMAM conditioning can achieve selective demineralization of dentin extrafibrillar minerals. Deciduous dentin treated with 20 µg/mL G6-PAMAM for 60 s produced μTBS equivalent to H3PO4-based etch-and-rinse technique. Those bond strengths were maintained after thermocycling, irrespective of wet-bonding or dry-bonding. G6-PAMAM conditioning produced less nanoleakage and suppressed endogenous gelatinolytic activity compare with H3PO4 etching. CONCLUSION The G6-PAMAM-based extrafibrillar demineralization strategy under dry-bonding technique could enhance bonding durability of deciduous dentin by retaining intrafibrillar minerals, decreasing interfacial nanoleakage, and preventing endogenous protease-initiated collagen degradation. CLINICAL RELEVANCE The G6-PAMAM-based extrafibrillar demineralization strategy has the potential to improve the stability of the resin-dentin bonding interface and prolong the longevity of resin restorations in deciduous teeth.
Collapse
Affiliation(s)
- Lingling Yuan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Kunyu Lv
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Mengdan Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xiaoli Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
4
|
Sera M, Hossain S, Yoshikawa S, Takemae K, Ikeda A, Tanaka T, Kosaka T, Niihori Y, Kawawaki T, Negishi Y. Atomically Precise Au 24Pt(thiolate) 12(dithiolate) 3 Nanoclusters with Excellent Electrocatalytic Hydrogen Evolution Reactivity. J Am Chem Soc 2024; 146:29684-29693. [PMID: 39405364 PMCID: PMC11613320 DOI: 10.1021/jacs.4c10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
[Au24Pt(C6)18]0 (C6 = 1-hexanethiolate) is twice as active as commercial Pt nanoparticles in promoting the electrocatalytic hydrogen evolution reaction (HER), thereby attracting attention as new HER catalysts with well-controlled geometric structures. In this study, we succeeded in synthesizing two new Au-Pt alloy nanoclusters, namely, [Au24Pt(TBBT)12(TDT)3]0 (TBBT = 4-tert-butylbenzenethiolate; TDT = thiodithiolate) and [Au24Pt(TBBT)12(PDT)3]0 (PDT = 1,3-propanedithiolate), by exchanging all the ligands of [Au24Pt(PET)18]0 (PET = 2-phenylethanethiolate) with mono- or dithiolates. Although [Au24Pt(TBBT)12(TDT)3]0 was synthesized serendipitously, a similar cluster, [Au24Pt(TBBT)12(PDT)3]0, was subsequently obtained by selecting the appropriate reaction conditions and optimal combination of thiolate and dithiolate ligands. Single crystal X-ray diffraction analyses revealed that the lengths and orientations of -Au(I)-SR-Au(I)- staples in [Au24Pt(TBBT)12(TDT)3]0 and [Au24Pt(TBBT)12(PDT)3]0 were different from those in [Au24Pt(C6)18]0, [Au24Pt(PET)18]0, and [Au24Pt(TBBT)18]0, and these subtle differences were reflected in the geometric and electronic structures as well as the HER activities of [Au24Pt(TBBT)12(TDT)3]0 and [Au24Pt(TBBT)12(PDT)3]0. Accordingly, the HER activities of products [Au24Pt(TBBT)12(TDT)3]0 and [Au24Pt(TBBT)12(PDT)3]0 were, respectively, 3.5 and 4.9 times higher than those of [Au24Pt(C6)18]0 and [Au24Pt(TBBT)18]0.
Collapse
Affiliation(s)
- Miyu Sera
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Sakiat Hossain
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Sara Yoshikawa
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Kana Takemae
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Ayaka Ikeda
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Tomoya Tanaka
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Taiga Kosaka
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Yoshiki Niihori
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
| | - Yuichi Negishi
- Research
Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162−8601, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980−8577, Japan
| |
Collapse
|
5
|
Huang B, Zhang S, Wan C, Liang X, Zhang F, Feng L, Wen C. Combined Effect of Hydrophilic Pore and the Type of Protons on Proton Conductivity in Porous Metal-Organic Frameworks: A Feasible Approach to Achieve a Super Proton Conductor under Hydrated Conditions. Inorg Chem 2024; 63:16688-16701. [PMID: 39177243 DOI: 10.1021/acs.inorgchem.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
There has been a steady growth of interest in proton-conductive metal-organic frameworks (MOFs) due to their potential utility in proton-exchange membrane fuel cells. To attain a super proton conductivity (>1 × 10-2 S cm-1) in a MOF-based proton conductor is a key step toward practical application. Currently, most studies are focused on enhancing the proton conductivity of porous MOFs by controlling a single factor, such as the type of protons or hydrophilic pore or hydrogen bond. However, a limited contribution from a single factor cannot afford to remarkably increase the proton conductivity of the MOF and form a super proton conductor. Herein, we constructed two distinct porous MOFs, {(H3O+)4[Cu12(ci)12(OH)4(H2O)12]·3H2O·9DMF} (Cu-ci-3D, H2ci = 1H-indazole-5-carboxylic acid, DMF = N,N'-dimethylformamide) and {[Co(Hppca)2]·2HN(CH3)2·CH3OH·2H2O} (Co-ppca-2D, H2ppca = 5-(pyridin-3-yl)-1H-pyrazole-3-carboxylic acid), to tune their proton conductivities at high relative humidity (RH) using the combined effect of hydrophilic pore and the type of protons, ultimately achieving super proton conduction. Excitingly, Cu-ci-3D indeed harvests a super proton conductivity of 1.37 × 10-2 S cm-1 at 353 K and ∼97% RH, superior to some previously reported MOF-based proton conductors. The results present a unique perspective for developing high-performance MOF-based proton conductors and understanding their structure-performance relationships.
Collapse
Affiliation(s)
- Biao Huang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Shiwen Zhang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chengan Wan
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| | - Xiaoqiang Liang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Lei Feng
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| | - Chen Wen
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| |
Collapse
|
6
|
Li M, Wang P, Yu X, Su Y, Zhao J. Impact of Nuclear Quantum Effects on the Structural Properties of Protonated Water Clusters. J Phys Chem A 2024; 128:5954-5962. [PMID: 39007820 DOI: 10.1021/acs.jpca.4c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nuclear quantum effects (NQEs) play a crucial role in hydrogen-bonded systems due to quantum tunneling and proton fluctuation. Our understanding of how NQEs affect microstructures mainly focuses on bulk phases of liquids and solids but remains deficient for water clusters, including their hydrogen nuclei, hydrogen-bonded configurations, and temperature dependence. Here, we conducted ab initio molecular dynamics (MD) and path integral MD simulations to investigate the influence of NQEs on the structural properties of protonated water clusters H+(H2O)n (n = 3, 6, 9, 12). The results reveal that the NQEs become less evident as the cluster size increases due to the competition between NQEs and electrostatic interactions. Simulations of several H+(H2O)6 isomers at different temperatures indicate that the effect of elevated temperature on proton transfer is related to the initial structure. Interestingly, the process of proton transfer also involves the interconversion between Zundel-type and Eigen-type isomers. These findings significantly deepen our understanding of ion-water and water-water interactions, opening new avenues for the study of hydrated ion clusters and related systems.
Collapse
Affiliation(s)
- Mengxu Li
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | | | - Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Butin O, Pereyaslavets L, Kamath G, Illarionov A, Sakipov S, Kurnikov IV, Voronina E, Ivahnenko I, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Cherniavskyi YK, Lock C, Greenslade S, Kornberg RD, Levitt M, Fain B. The Determination of Free Energy of Hydration of Water Ions from First Principles. J Chem Theory Comput 2024; 20:5215-5224. [PMID: 38842599 PMCID: PMC11881599 DOI: 10.1021/acs.jctc.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We model the autoionization of water by determining the free energy of hydration of the major intermediate species of water ions. We represent the smallest ions─the hydroxide ion OH-, the hydronium ion H3O+, and the Zundel ion H5O2+─by bonded models and the more extended ionic structures by strong nonbonded interactions (e.g., the Eigen H9O4+ = H3O+ + 3(H2O) and the Stoyanov H13O6+ = H5O2+ + 4(H2O)). Our models are faithful to the precise QM energies and their components to within 1% or less. Using the calculated free energies and atomization energies, we compute the pKa of pure water from first principles as a consistency check and arrive at a value within 1.3 log units of the experimental one. From these calculations, we conclude that the hydronium ion, and its hydrated state, the Eigen cation, are the dominant species in the water autoionization process.
Collapse
Affiliation(s)
- Oleg Butin
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Leonid Pereyaslavets
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ganesh Kamath
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Alexey Illarionov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Serzhan Sakipov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor V Kurnikov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ekaterina Voronina
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Ivahnenko
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor Leontyev
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Grzegorz Nawrocki
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Mikhail Darkhovskiy
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Michael Olevanov
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yevhen K Cherniavskyi
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Christopher Lock
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Sean Greenslade
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Boris Fain
- InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| |
Collapse
|
8
|
Fidalgo-Marijuan A, Ruiz de Larramendi I, Barandika G. Superprotonic Conductivity in a Metalloporphyrin-Based SMOF (Supramolecular Metal-Organic Framework). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:398. [PMID: 38470729 PMCID: PMC10934030 DOI: 10.3390/nano14050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Metal-organic frameworks and supramolecular metal-organic frameworks (SMOFs) exhibit great potential for a broad range of applications taking advantage of the high surface area and pore sizes and tunable chemistry. In particular, metalloporphyrin-based MOFs and SMOFs are becoming of great importance in many fields due to the bioessential functions of these macrocycles that are being mimicked. On the other hand, during the last years, proton-conducting materials have aroused much interest, and those presenting high conductivity values are potential candidates to play a key role in some solid-state electrochemical devices such as batteries and fuel cells. In this way, using metalloporphyrins as building units we have obtained a new crystalline material with formula [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O, where bipy is 4,4'-bipyidine and TPPS4- is the meso-tetra(4-sulfonatephenyl) porphyrin. The crystal structure shows a zig-zag water chain along the [100] direction located between the sulfonate groups of the porphyrin. Taking into account those structural features, the compound was tested for proton conduction by complex electrochemical impedance spectroscopy (EIS). The as-obtained conductivity is 1 × 10-2 S·cm-1 at 40 °C and 98% relative humidity, which is a remarkably high value.
Collapse
Affiliation(s)
- Arkaitz Fidalgo-Marijuan
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Ruiz de Larramendi
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain;
| | - Gotzone Barandika
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
9
|
Li M, Qiu Y, Wang Y, Zhang S, Duan L, Zhao W, Shi Y, Zhang Z, Tay FR, Fu B. A glycol chitosan derivative with extrafibrillar demineralization potential for self-etch dentin bonding. Dent Mater 2024; 40:327-339. [PMID: 38065798 DOI: 10.1016/j.dental.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Rensonnet A, Malherbe C. Experimental determination of solvation free energy of protons in non-protic ionic liquids using Raman spectroscopy. Phys Chem Chem Phys 2024; 26:2936-2944. [PMID: 38193856 DOI: 10.1039/d3cp04741e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Room temperature imidazolium-based ionic liquids (ILs) often present super-acidity, which can be characterized by the free energy of solvation of protons in ILs, ΔsolvG°(H+)IL. It can be derived from the consensus value of the free energy of solvation of protons in water if the free energy of transfer of protons from water to the ILs, ΔtG°(H+), is determined. However, the experimental determination of the free energy of transfer of protons relies on extra-thermodynamic hypotheses, as protons cannot be transferred from one solvent to another without a counterion. Here we propose to measure the Hammett acidity functions, which relies on the protonation equilibrium of specific pH-reporters, for the first time by Raman spectroscopy directly in acidic solution of 2,6-dichloro-4-nitroaniline in three 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ILs. We demonstrated that the ΔtG°(H+) obtained by Raman spectroscopy and UV-visible spectroscopy were identical in the same 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Also, when the butyl substituent is replaced by a longer alkyl chain such as an octyl chain, the acidity in the IL is lowered. The free energies of solvation are calculated in four ILs from Raman spectroscopy data recorded directly in the acidic solutions. These values confirmed that the protons are less solvated in ILs than in water, hence their acidity. Raman spectroscopy also enables determination of the solvation number of the proton in imidazolium-based bis(trifluoromethylsulfonyl)imide ILs. The benefits of implementing Raman spectroscopy to determine the Hammett acidity function in ILs using a non-colored pH-reporter and in colored media are also discussed.
Collapse
Affiliation(s)
- Aurelie Rensonnet
- University of Liege, Laboratory of Mass Spectrometry - Vibrational Spectroscopy, Allee du 6 aout 11 (Bat B6B), 4020 Liege, Belgium.
| | - Cedric Malherbe
- University of Liege, Laboratory of Mass Spectrometry - Vibrational Spectroscopy, Allee du 6 aout 11 (Bat B6B), 4020 Liege, Belgium.
| |
Collapse
|
11
|
Gao X, Wang Z, Yang H, Huang C. Rapid Intrafibrillar Mineralization Strategy Enhances Adhesive-Dentin Interface. J Dent Res 2024; 103:42-50. [PMID: 37990799 DOI: 10.1177/00220345231205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Biomimetic mineralization of dentin collagen appears to be a promising strategy to optimize dentin bonding durability. However, traditional postbonding mineralization strategies based on Ca/P ion release still have some drawbacks, such as being time-consuming, having a spatiotemporal mismatch, and having limited intrafibrillar minerals. To tackle these problems, a prebonding rapid intrafibrillar mineralization strategy was developed in the present study. Specifically, polyacrylic acid-stabilized amorphous calcium fluoride (PAA-ACF) was found to induce rapid intrafibrillar mineralization of the single-layer collagen model and dentin collagen at just 1 min and 10 min, as identified by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. This strategy has also been identified to strengthen the mechanical properties of demineralized dentin within a clinically acceptable timeframe. Significantly, the bonding strength of the PAA-ACF-treated groups outperformed the control group irrespective of aging modes. In addition, the endogenous matrix metalloproteinases as well as exogenous bacterial erosion were inhibited, thus reducing the degradation of dentin collagen. High-quality integration of the hybrid layer and the underlying dentin was also demonstrated. On the basis of the present results, the concept of "prebonding rapid intrafibrillar mineralization" was proposed. This user-friendly scheme introduced PAA-ACF-based intrafibrillar mineralization into dentin bonding for the first time. As multifunctional primers, PAA-ACF precursors have the potential to shed new light on prolonging the service life of adhesive restorations, with promising significance.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, China
| | - H Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Mouhat F, Peria M, Morresi T, Vuilleumier R, Saitta AM, Casula M. Thermal dependence of the hydrated proton and optimal proton transfer in the protonated water hexamer. Nat Commun 2023; 14:6930. [PMID: 37903819 PMCID: PMC10616126 DOI: 10.1038/s41467-023-42366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Water is a key ingredient for life and plays a central role as solvent in many biochemical reactions. However, the intrinsically quantum nature of the hydrogen nucleus, revealing itself in a large variety of physical manifestations, including proton transfer, gives rise to unexpected phenomena whose description is still elusive. Here we study, by a combination of state-of-the-art quantum Monte Carlo methods and path-integral molecular dynamics, the structure and hydrogen-bond dynamics of the protonated water hexamer, the fundamental unit for the hydrated proton. We report a remarkably low thermal expansion of the hydrogen bond from zero temperature up to 300 K, owing to the presence of short-Zundel configurations, characterised by proton delocalisation and favoured by the synergy of nuclear quantum effects and thermal activation. The hydrogen bond strength progressively weakens above 300 K, when localised Eigen-like configurations become relevant. Our analysis, supported by the instanton statistics of shuttling protons, reveals that the near-room-temperature range from 250 K to 300 K is optimal for proton transfer in the protonated water hexamer.
Collapse
Affiliation(s)
- Félix Mouhat
- Saint Gobain Research Paris, 39, Quai Lucien Lefranc, 93300, Aubervilliers, France
| | - Matteo Peria
- IMPMC, Sorbonne Université, CNRS, MNHN, UMR 7590, 4 Place Jussieu, 75252, Paris, France
| | - Tommaso Morresi
- ECT*-Fondazione Bruno Kessler*, 286 Strada delle Tabarelle, 38123, Trento, Italy
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, École normale supérieure, PSL Research University, Sorbonne Université, CNRS, 24 Rue Lhomond, 75005, Paris, France
| | - Antonino Marco Saitta
- IMPMC, Sorbonne Université, CNRS, MNHN, UMR 7590, 4 Place Jussieu, 75252, Paris, France
| | - Michele Casula
- IMPMC, Sorbonne Université, CNRS, MNHN, UMR 7590, 4 Place Jussieu, 75252, Paris, France.
| |
Collapse
|
13
|
Jiao Y, Zheng Y. Boosting Alkaline Hydrogen Evolution Reaction through Water Structure Manipulation. Angew Chem Int Ed Engl 2023; 62:e202307303. [PMID: 37329231 DOI: 10.1002/anie.202307303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
In the past, the design of efficient electrocatalyst materials for alkaline hydrogen evolution reaction (HER) was mostly focused on tuning the adsorption properties of reaction intermediates. A recent breakthrough shows that the performance can be improved by manipulating water structure at the electrode-electrolyte interface using atomically localized electric fields. The new approach was realized by using IrRu dizygotic single-atom sites and led to a significantly accelerated water dissociation and an overall improved alkaline HER performance. Supported by extensive data from advanced modeling, characterization, and electrochemical measurements, the work delivers an intricate examination of the interaction between water molecules and the catalyst surface, thereby enriching our understanding of water dissociation kinetics and offering new insights to boost overall alkaline HER efficiency.
Collapse
Affiliation(s)
- Yan Jiao
- School of Chemical Engineering, The University of Adelaide, North Terrace, SA-5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, North Terrace, SA-5005, Australia
| |
Collapse
|
14
|
Degradation by hydrolysis of three triphenylmethane dyes: DFT and TD-DFT study. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Hu Q, Zhao H, Ouyang S, Liang Y, Yang H, Zhu X. The water structure around chloride ion investigated from D2O ↔ H2O substitution effect. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Martínez AG, Gómez PC, de la Moya S, Siehl HU. Structural proton transfer rates in pure water according to Marcus theory and TD-DFT computations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Konermann L, Kim S. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets. J Chem Theory Comput 2022; 18:3781-3794. [PMID: 35544700 DOI: 10.1021/acs.jctc.2c00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excess protons in water exhibit unique transport properties because they can rapidly hop along H-bonded water wires. Considerable progress has been made in unraveling this Grotthuss diffusion mechanism using quantum mechanical-based computational techniques. Unfortunately, high computational cost tends to restrict those techniques to small systems and short times. Molecular dynamics (MD) simulations can be applied to much larger systems and longer time windows. However, standard MD methods do not permit the dissociation/formation of covalent bonds, such that Grotthuss diffusion cannot be captured. Here, we bridge this gap by combining atomistic MD simulations (using Gromacs and TIP4P/2005 water) with proton hopping. Excess protons are modeled as hydronium ions that undergo H3O+ + H2O → H2O + H3O+ transitions. In accordance with ab initio MD data, these Grotthuss hopping events are executed in "bursts" with quasi-instantaneous hopping across one or more waters. The bursts are separated by regular MD periods during which H3O+ ions undergo Brownian diffusion. The resulting proton diffusion coefficient agrees with the literature value. We apply this Grotthuss MD technique to highly charged water droplets that are in a size regime encountered during electrospray ionization (5 nm radius, ∼17,000 H2O). The droplets undergo rapid solvent evaporation and occasional H3O+ ejection, keeping them at ca. 81% of the Rayleigh limit. The simulated behavior is consistent with phase Doppler anemometry data. The Grotthuss MD technique developed here should be useful for modeling the behavior of various proton-containing systems that are too large for high-level computational approaches. In particular, we envision future applications related to electrospray processes, where earlier simulations used metal cations while in reality excess protons dominate.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Scott Kim
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
18
|
Gagkayeva ZV, Gorshunov BP, Kachesov AY, Motovilov KA. Infrared fingerprints of water collective dynamics indicate proton transport in biological systems. Phys Rev E 2022; 105:044409. [PMID: 35590571 DOI: 10.1103/physreve.105.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Recent publications on spectroscopy of water layers in water bridge structures revealed a significant enhancement of the proton mobility and the dielectric contribution of translational vibrations of water molecules in the interfacial layers compared to bulk water. Herewith, the results of long-term studies of proton dynamics in solid-state acids have shown that proton mobility increases significantly with the predominance of hydronium, but not Zundel, cations in the aqueous phase. In the present work, in the light of these data, we reanalyzed our previously published results on broadband dielectric spectroscopy of bovine heart cytochrome c, bovine serum albumin, and the extracellular matrix and filaments of Shewanella oneidensis MR-1. We revealed that, just as in water bridges, an increase in electrical conductivity in these systems correlates with an increase in the dielectric contribution of water molecular translational vibrations. In addition, the appearance of spectral signatures of the hydronium cations was observed only in those cases when the system revealed noticeable electrical conductivity due to delocalized charge carriers.
Collapse
Affiliation(s)
- Z V Gagkayeva
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - B P Gorshunov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - A Ye Kachesov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - K A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| |
Collapse
|
19
|
Silverstein TP. The Proton in Biochemistry: Impacts on Bioenergetics, Biophysical Chemistry, and Bioorganic Chemistry. Front Mol Biosci 2021; 8:764099. [PMID: 34901158 PMCID: PMC8661011 DOI: 10.3389/fmolb.2021.764099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The proton is the smallest atomic particle, and in aqueous solution it is the smallest hydrated ion, having only two waters in its first hydration shell. In this article we survey key aspects of the proton in chemistry and biochemistry, starting with the definitions of pH and pK a and their application inside biological cells. This includes an exploration of pH in nanoscale spaces, distinguishing between bulk and interfacial phases. We survey the Eigen and Zundel models of the structure of the hydrated proton, and how these can be used to explain: a) the behavior of protons at the water-hydrophobic interface, and b) the extraordinarily high mobility of protons in bulk water via Grotthuss hopping, and inside proteins via proton wires. Lastly, we survey key aspects of the effect of proton concentration and proton transfer on biochemical reactions including ligand binding and enzyme catalysis, as well as pH effects on biochemical thermodynamics, including the Chemiosmotic Theory. We find, for example, that the spontaneity of ATP hydrolysis at pH ≥ 7 is not due to any inherent property of ATP (or ADP or phosphate), but rather to the low concentration of H+. Additionally, we show that acidification due to fermentation does not derive from the organic acid waste products, but rather from the proton produced by ATP hydrolysis.
Collapse
Affiliation(s)
- Todd P Silverstein
- Chemistry Department (emeritus), Willamette University, Salem, OR, United States
| |
Collapse
|
20
|
Lin Y, Hsieh C, Chen C. Association‐based activity coefficient model for electrolyte solutions. AIChE J 2021. [DOI: 10.1002/aic.17422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yu‐Jeng Lin
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Cheng‐Ju Hsieh
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Chau‐Chyun Chen
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| |
Collapse
|
21
|
|
22
|
The Hydrated Proton [H(H2O)n]+ as the Basis of Unified Complex Acidity Function Scale $$H_{{\text{o}}}^{{\text{w}}}$$ in Aqueous Solutions of Strong Acids With a Predominant Water Concentration. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Martínez AG, Gómez PC, de la Moya S, Siehl HU. Revealing the mechanism of the water autoprotolysis on the basis of Marcus theory and TD-DFT methodology. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Summers KL, Sarbisheh EK, Zimmerling A, Cotelesage JJH, Pickering IJ, George GN, Price EW. Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine: A Coordination Sphere Completed by Hydroxides. Inorg Chem 2020; 59:17443-17452. [PMID: 33183002 DOI: 10.1021/acs.inorgchem.0c02725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Positron emission tomography (PET) using radiolabeled, monoclonal antibodies has become an effective, noninvasive method for tumor detection and is a critical component of targeted radionuclide therapy. Metal ion chelator and bacterial siderophore desferrioxamine (DFO) is the gold standard compound for incorporation of zirconium-89 in radiotracers for PET imaging because it is thought to form a stable chelate with [89Zr]Zr4+. However, DFO may not bind zirconium-89 tightly in vivo, with free zirconium-89 reportedly liberated into the bones of experimental mouse models. Although high bone uptake has not been observed to date in humans, this potential instability has been proposed to be related to the unsaturated coordination sphere of [89Zr]Zr-DFO, which is thought to consist of the 3 hydroxamate groups of DFO and 1 or 2 water molecules. In this study, we have used a combination of X-ray absorption spectroscopy and density functional theory (DFT) geometry optimization calculations to further probe the coordination chemistry of this complex in solution. We find the extended X-ray absorption fine structure (EXAFS) curve fitting of an aqueous solution of Zr(IV)-DFO to be consistent with an 8-coordinate Zr with oxygen ligands. DFT calculations suggest that the most energetically favorable Zr(IV) coordination environment in DFO likely consists of the 3 hydroxamate ligands from DFO, each with bidentate coordination, and 2 hydroxide ligands. Further EXAFS curve fitting provides additional support for this model. Therefore, we propose that the coordination sphere of Zr(IV)-DFO is most likely completed by 2 hydroxide ligands rather than 2 water molecules, forming Zr(DFO)(OH)2.
Collapse
Affiliation(s)
- Kelly L Summers
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Elaheh Khozeimeh Sarbisheh
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9
| | - Amanda Zimmerling
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9
| | - Julien J H Cotelesage
- Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Ingrid J Pickering
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Graham N George
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9.,Molecular and Environmental Science Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | - Eric W Price
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK Canada S7N 5C9
| |
Collapse
|
25
|
Carpenter WB, Yu Q, Hack JH, Dereka B, Bowman JM, Tokmakoff A. Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations. J Chem Phys 2020; 153:124506. [PMID: 33003749 DOI: 10.1063/5.0020279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2 + and Eigen H9O4 + ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure-spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm-1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Qi Yu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bogdan Dereka
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
26
|
Bates JS, Bukowski BC, Greeley J, Gounder R. Structure and solvation of confined water and water-ethanol clusters within microporous Brønsted acids and their effects on ethanol dehydration catalysis. Chem Sci 2020; 11:7102-7122. [PMID: 33250979 PMCID: PMC7690318 DOI: 10.1039/d0sc02589e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Water networks confined within zeolites solvate clustered reactive intermediates and must rearrange to accommodate transition states that differ in size and polarity, with thermodynamic penalties that depend on the shape of the confining environment.
Aqueous-phase reactions within microporous Brønsted acids occur at active centers comprised of water-reactant-clustered hydronium ions, solvated within extended hydrogen-bonded water networks that tend to stabilize reactive intermediates and transition states differently. The effects of these diverse clustered and networked structures were disentangled here by measuring turnover rates of gas-phase ethanol dehydration to diethyl ether (DEE) on H-form zeolites as water pressure was increased to the point of intrapore condensation, causing protons to become solvated in larger clusters that subsequently become solvated by extended hydrogen-bonded water networks, according to in situ IR spectra. Measured first-order rate constants in ethanol quantify the stability of SN2 transition states that eliminate DEE relative to (C2H5OH)(H+)(H2O)n clusters of increasing molecularity, whose structures were respectively determined using metadynamics and ab initio molecular dynamics simulations. At low water pressures (2–10 kPa H2O), rate inhibition by water (–1 reaction order) reflects the need to displace one water by ethanol in the cluster en route to the DEE-formation transition state, which resides at the periphery of water–ethanol clusters. At higher water pressures (10–75 kPa H2O), water–ethanol clusters reach their maximum stable size ((C2H5OH)(H+)(H2O)4–5), and water begins to form extended hydrogen-bonded networks; concomitantly, rate inhibition by water (up to –3 reaction order) becomes stronger than expected from the molecularity of the reaction, reflecting the more extensive disruption of hydrogen bonds at DEE-formation transition states that contain an additional solvated non-polar ethyl group compared to the relevant reactant cluster, as described by non-ideal thermodynamic formalisms of reaction rates. Microporous voids of different hydrophilic binding site density (Beta; varying H+ and Si–OH density) and different size and shape (Beta, MFI, TON, CHA, AEI, FAU), influence the relative extents to which intermediates and transition states disrupt their confined water networks, which manifest as different kinetic orders of inhibition at high water pressures. The confinement of water within sub-nanometer spaces influences the structures and dynamics of the complexes and extended networks formed, and in turn their ability to accommodate the evolution in polarity and hydrogen-bonding capacity as reactive intermediates become transition states in Brønsted acid-catalyzed reactions.
Collapse
Affiliation(s)
- Jason S Bates
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| | - Brandon C Bukowski
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| |
Collapse
|
27
|
Palese LL. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim Biophys Acta Gen Subj 2020; 1864:129480. [DOI: 10.1016/j.bbagen.2019.129480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
28
|
Zong W, Lian R, He G, Guo H, Ouyang Y, Wang J, Lai F, Miao YE, Rao D, Brett D, Liu T. Vacancy engineering of group VI anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Tyrode E, Sengupta S, Sthoer A. Identifying Eigen-like hydrated protons at negatively charged interfaces. Nat Commun 2020; 11:493. [PMID: 31980619 PMCID: PMC6981112 DOI: 10.1038/s41467-020-14370-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022] Open
Abstract
Despite the importance of the hydrogen ion in a wide range of biological, chemical, and physical processes, its molecular structure in solution remains lively debated. Progress has been primarily hampered by the extreme diffuse nature of the vibrational signatures of hydrated protons in bulk solution. Using the inherently surface-specific vibrational sum frequency spectroscopy technique, we show that at selected negatively charged interfaces, a resolved spectral feature directly linked to the H3O+ core in an Eigen-like species can be readily identified in a biologically compatible pH range. Centered at ~2540 cm−1, the band is seen to shift to ~1875 cm−1 when forming D3O+ upon isotopic substitution. The results offer the possibility of tracking and understanding from a molecular perspective the behavior of hydrated protons at charged interfaces. Hydrated protons are always present in aqueous solution, but their molecular structure remains under debate. Here the authors use vibrational sum frequency spectroscopy to show that at negatively charged liquid–vapor interfaces, protons adopt a specific configuration characteristic of Eigen-like species.
Collapse
Affiliation(s)
- Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden.
| | - Sanghamitra Sengupta
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Adrien Sthoer
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| |
Collapse
|
30
|
Wang R, Carnevale V, Klein ML, Borguet E. First-Principles Calculation of Water p Ka Using the Newly Developed SCAN Functional. J Phys Chem Lett 2020; 11:54-59. [PMID: 31834803 DOI: 10.1021/acs.jpclett.9b02913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acid/base chemistry is an intriguing topic that still constitutes a challenge for computational chemistry. While estimating the acid dissociation constant (or pKa) could shed light on many chemistry processes, especially in the fields of biochemistry and geochemistry, evaluating the relative stability between protonated and nonprotonated species is often very difficult. Indeed, a prerequisite for calculating the pKa of any molecule is an accurate description of the energetics of water dissociation. Here, we applied constrained molecular dynamics simulations, a noncanonical sampling technique, to investigate the water deprotonation process by selecting the OH distance as the reaction coordinate. The calculation is based on density functional theory and the newly developed SCAN functional, which has shown excellent performance in describing water structure. This first benchmark of SCAN on a chemical reaction shows that this functional accurately models the energetics of proton transfer reactions in an aqueous environment. After taking Coulomb long-range corrections and nuclear quantum effects into account, the estimated water pKa is only 1.0 pKa unit different from the target experimental value. Our results show that the combination of SCAN and constrained MD successfully reproduces the chemistry of water and constitutes a good framework for calculating the free energy of chemical reactions of interest.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Center for Complex Materials from First-Principles (CCM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Department of Biology , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Michael L Klein
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Center for Complex Materials from First-Principles (CCM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
- Institute for Computational Molecular Science , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Eric Borguet
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
- Center for Complex Materials from First-Principles (CCM) , Temple University , 1925 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
31
|
Busca G, Gervasini A. Solid acids, surface acidity and heterogeneous acid catalysis. ADVANCES IN CATALYSIS 2020. [DOI: 10.1016/bs.acat.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem Rev 2019; 120:851-918. [DOI: 10.1021/acs.chemrev.9b00248] [Citation(s) in RCA: 946] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Zhu
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P. R. China
| | - Liangsheng Hu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Pengxiang Zhao
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P. R. China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
33
|
Chen H, Handoko AD, Xiao J, Feng X, Fan Y, Wang T, Legut D, Seh ZW, Zhang Q. Catalytic Effect on CO 2 Electroreduction by Hydroxyl-Terminated Two-Dimensional MXenes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36571-36579. [PMID: 31532180 DOI: 10.1021/acsami.9b09941] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalysis represents a promising method to generate renewable fuels and chemical feedstock from the carbon dioxide reduction reaction (CO2RR). However, traditional electrocatalysts based on transition metals are not efficient enough because of the high overpotential and slow turnover. MXenes, a family of two-dimensional metal carbides and nitrides, have been predicted to be effective in catalyzing CO2RR, but a systematic investigation into their catalytic performance is lacking, especially on hydroxyl (-OH)-terminated MXenes relevant in aqueous reaction conditions. In this work, we utilized first-principles simulations to systematically screen and explore the properties of MXenes in catalyzing CO2RR to CH4 from both aspects of thermodynamics and kinetics. Sc2C(OH)2 was found to be the most promising catalyst with the least negative limiting potential of -0.53 V vs RHE. This was achieved through an alternative reaction pathway, where the adsorbed species are stabilized by capturing H atoms from the MXene's OH termination group. New scaling relations, based on the shared H interaction between intermediates and MXenes, were established. Bader charge analyses reveal that catalysts with less electron migration in the *(H)COOH → *CO elementary step exhibit better CO2RR performance. This study provides new insights regarding the effect of surface functionalization on the catalytic performance of MXenes to guide future materials design.
Collapse
Affiliation(s)
- Hetian Chen
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Albertus D Handoko
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis , Singapore 138634
| | - Jiewen Xiao
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Xiang Feng
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Yanchen Fan
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Tianshuai Wang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Dominik Legut
- IT4Innovations Center , VSB-Technical University of Ostrava , 17. listopadu 15 , CZ-708 33 Ostrava , Czech Republic
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis , Singapore 138634
| | - Qianfan Zhang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| |
Collapse
|
34
|
Guo X, Lin S, Gu J, Zhang S, Chen Z, Huang S. Simultaneously Achieving High Activity and Selectivity toward Two-Electron O2 Electroreduction: The Power of Single-Atom Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02778] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiangyu Guo
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shiru Lin
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Jinxing Gu
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Shiping Huang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
35
|
Yu Q, Carpenter WB, Lewis NHC, Tokmakoff A, Bowman JM. High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton. J Phys Chem B 2019; 123:7214-7224. [PMID: 31361141 DOI: 10.1021/acs.jpcb.9b05723] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hydrated excess proton is a common species in aqueous chemistry, which complexes with water in a variety of structures. The infrared spectrum of the aqueous proton is particularly sensitive to this array of structures, which manifests as continuous IR absorption from 1000 to 3000 cm-1 known as the "proton continuum". Because of the extreme breadth of the continuum and strong anharmonicity of the involved vibrational modes, this spectrum has eluded straightforward interpretation and simulation. Using protonated water hexamer clusters from reactive molecular dynamics trajectories, and focusing on their central H+(H2O)2 structures' spectral contribution, we reproduce the linear IR spectrum of the aqueous proton with a high-level local monomer quantum method and highly accurate many-body potential energy surface. The accuracy of this approach is first verified in the vibrational spectra of the two isomers of the protonated water hexamer in the gas phase. We then apply this approach to 800 H+(H2O)6 clusters, also written as [H+(H2O)2](H2O)4, drawn from multistate empirical valence bond simulations of the bulk liquid to calculate the infrared spectrum of the aqueous proton complex. Incorporation of anharmonic effects to the vibrational potential and quantum mechanical treatment of the proton produces a better agreement to the infrared spectrum compared to that of the double-harmonic approximation. We assess the correlation of the proton stretching mode with different atomistic coordinates, finding the best correlation with ⟨ROH⟩, the expectation value of the proton-oxygen distance ROH. We also decompose the IR spectrum based on normal mode vibrations and ⟨ROH⟩ to provide insight on how different frequency regions in the continuum report on different configurations, vibrational modes, and mode couplings.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - William B Carpenter
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
36
|
Yuan R, Napoli JA, Yan C, Marsalek O, Markland TE, Fayer MD. Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations. ACS CENTRAL SCIENCE 2019; 5:1269-1277. [PMID: 31403075 PMCID: PMC6661862 DOI: 10.1021/acscentsci.9b00447] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 05/26/2023]
Abstract
Proton transfer in water is ubiquitous and a critical elementary event that, via proton hopping between water molecules, enables protons to diffuse much faster than other ions. The problem of the anomalous nature of proton transport in water was first identified by Grotthuss over 200 years ago. In spite of a vast amount of modern research effort, there are still many unanswered questions about proton transport in water. An experimental determination of the proton hopping time has remained elusive due to its ultrafast nature and the lack of direct experimental observables. Here, we use two-dimensional infrared spectroscopy to extract the chemical exchange rates between hydronium and water in acid solutions using a vibrational probe, methyl thiocyanate. Ab initio molecular dynamics (AIMD) simulations demonstrate that the chemical exchange is dominated by proton hopping. The observed experimental and simulated acid concentration dependence then allow us to extrapolate the measured single step proton hopping time to the dilute limit, which, within error, gives the same value as inferred from measurements of the proton mobility and NMR line width analysis. In addition to obtaining the proton hopping time in the dilute limit from direct measurements and AIMD simulations, the results indicate that proton hopping in dilute acid solutions is induced by the concerted multi-water molecule hydrogen bond rearrangement that occurs in pure water. This proposition on the dynamics that drive proton hopping is confirmed by a combination of experimental results from the literature.
Collapse
Affiliation(s)
- Rongfeng Yuan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Joseph A. Napoli
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ondrej Marsalek
- Charles
University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Chang K, Zhang H, Chen JG, Lu Q, Cheng MJ. Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01318] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuan Chang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Fischer SA, Gunlycke D. Analysis of Correlated Dynamics in the Grotthuss Mechanism of Proton Diffusion. J Phys Chem B 2019; 123:5536-5544. [DOI: 10.1021/acs.jpcb.9b02610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sean A. Fischer
- Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Daniel Gunlycke
- Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
39
|
Bodenschatz CJ, Xie T, Zhang X, Getman RB. Insights into how the aqueous environment influences the kinetics and mechanisms of heterogeneously-catalyzed COH* and CH 3OH* dehydrogenation reactions on Pt(111). Phys Chem Chem Phys 2019; 21:9895-9904. [PMID: 31038522 DOI: 10.1039/c9cp00824a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Water influences catalytic reactions in multiple ways, including energetic and mechanistic effects. While simulations have provided significant insight into the roles that H2O molecules play in aqueous-phase heterogeneous catalysis, questions still remain as to the extent to which H2O structures influence catalytic mechanisms. Specifically, influences of the configurational variability in the water structures at the catalyst interface are yet to be understood. Configurational variability is challenging to capture, as it requires multiscale approaches. Herein, we apply a multiscale sampling approach to calculate reaction thermodynamics and kinetics for COH* dehydrogenation to CO* and CH3OH* dehydrogenation to CH2OH* on Pt(111) catalysts under liquid H2O. We explore various pathways for these dehydrogenation reactions that could influence the overall mechanism of methanol decomposition by including participation of H2O structures both energetically and mechanistically. We find that the liquid H2O environment significantly influences the mechanism of COH* dehydrogenation to CO* but leaves the mechanism of CH3OH* dehydrogenation to CH2OH* largely unaltered.
Collapse
Affiliation(s)
- Cameron J Bodenschatz
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | | | |
Collapse
|
40
|
Guo JM, Makvandi P, Wei CC, Chen JH, Xu HK, Breschi L, Pashley DH, Huang C, Niu LN, Tay FR. Polymer conjugation optimizes EDTA as a calcium-chelating agent that exclusively removes extrafibrillar minerals from mineralized collagen. Acta Biomater 2019; 90:424-440. [PMID: 30953801 DOI: 10.1016/j.actbio.2019.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
Abstract
During development of mineralized collagenous tissues, intrafibrillar mineralization is achieved by preventing mineralization precursor inhibitors that are larger than 40 kDa from entering the collagen fibrils. Such a property is incorporated in the design of a calcium chelator for dentin bonding in the etch-and-rinse technique that selectively demineralizes extrafibrillar apatite while leaving the intrafibrillar minerals intact. This strategy prevents complete demineralization of collagen fibrils, avoids collapse of collagen that blocks resin infiltration after air-drying, and protects the completely demineralized fibrils from bacteria colonization and degradation by endogenous proteases after resin bonding. In the present study, a water-soluble glycol chitosan-EDTA (GCE) conditioner was synthesized by conjugation of EDTA, an effective calcium chelator, to high molecular weight glycol chitosan, which exhibits weak chelation property. The GCE conjugate was purified, characterized by FTIR, 1H NMR, isothermal titration calorimetry and ICP-AES, and subjected to size exclusion dialysis to recover molecules that are >40 kDa. The optimal concentration and application time for etching dentin were determined by bond strength testing to ensure that the dentin bonding results were comparable to phosphoric acid etching, and maintained equivalent bond strength after air-drying of the conditioned collagen matrix. Extrafibrillar demineralization was validated with transmission electron microscopy. Inhibition of endogenous dentin proteases was confirmed using in-situ zymography. The water-soluble GCE dentin conditioner was non-cytotoxic and possessed antibacterial activities against planktonic and single-species biofilms, supporting its ongoing development as a dentin conditioner with air-drying, anti-proteolytic and antibacterial properties to enhance the durability of bonds created using the etch-and-rinse bonding technique. STATEMENT OF SIGNIFICANCE: The current state-of-the-art techniques for filling decayed teeth with plastic tooth-colored materials require conditioning the mineralized, biofilm-covered, decayed dentin with acids or acid resin monomers to create a surface layer of completely- or partially-demineralized collagen matrix for the infiltration of adhesive resin monomers. Nevertheless, fillings prepared using these strategies are not as durable as consumers have anticipated. Conjugation of polymeric glycol chitosan with EDTA produces a new conditioner for dentin bonding that demineralizes only extrafibrillar dentin, reduces endogenous protease activities and kills biofilm bacteria. The high molecular weight glycol chitosan-EDTA is non-cytotoxic to the key regenerative players within the dentin-pulp complex. This advance permits dry bonding and the use of hydrophobic resins.
Collapse
|
41
|
Srivastava AK. O H2+1+ clusters: A new series of non-metallic superalkali cations by trapping H3O+ into water. J Mol Graph Model 2019; 88:292-298. [DOI: 10.1016/j.jmgm.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/09/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022]
|
42
|
Eckstein S, Hintermeier PH, Zhao R, Baráth E, Shi H, Liu Y, Lercher JA. Influence of Hydronium Ions in Zeolites on Sorption. Angew Chem Int Ed Engl 2019; 58:3450-3455. [DOI: 10.1002/anie.201812184] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Eckstein
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Peter H. Hintermeier
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| |
Collapse
|
43
|
Eckstein S, Hintermeier PH, Zhao R, Baráth E, Shi H, Liu Y, Lercher JA. Influence of Hydronium Ions in Zeolites on Sorption. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sebastian Eckstein
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Peter H. Hintermeier
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Hui Shi
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| |
Collapse
|
44
|
Du H, Kong RM, Guo X, Qu F, Li J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. NANOSCALE 2018; 10:21617-21624. [PMID: 30457152 DOI: 10.1039/c8nr07891b] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing demand for hydrogen energy has boosted the exploration of inexpensive and effective catalysts. Transition metal phosphides (TMPs) have been proven as excellent catalysts for the hydrogen evolution reaction (HER). Very recently, the search for TMP-based catalysts has being mainly directed at enhanced electrocatalytic performance. Hence, a concluded guideline for enhancing HER activity is highly desired. In this mini review, we briefly summarize the most recent and instructive developments in the design of TMP-based catalysts with enhanced electrocatalysis for hydrogen evolution from composition and structure engineering strategies. These strategies and perspectives are also meaningful for designing other inexpensive and high-performance catalysts.
Collapse
Affiliation(s)
- Huitong Du
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoxi Guo
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jinghong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
46
|
Biswas R, Carpenter W, Fournier JA, Voth GA, Tokmakoff A. IR spectral assignments for the hydrated excess proton in liquid water. J Chem Phys 2018; 146:154507. [PMID: 28433032 DOI: 10.1063/1.4980121] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The local environmental sensitivity of infrared (IR) spectroscopy to a hydrogen-bonding structure makes it a powerful tool for investigating the structure and dynamics of excess protons in water. Although of significant interest, the line broadening that results from the ultrafast evolution of different solvated proton-water structures makes the assignment of liquid-phase IR spectra a challenging task. In this work, we apply a normal mode analysis using density functional theory of thousands of proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multistate empirical valence bond proton model (MS-EVB 3.2). These calculations are used to obtain a vibrational density of states and IR spectral density, which are decomposed on the basis of solvated proton structure and the frequency dependent mode character. Decompositions are presented on the basis of the proton sharing parameter δ, often used to distinguish Eigen and Zundel species, the stretch and bend character of the modes, the mode delocalization, and the vibrational mode symmetry. We find there is a wide distribution of vibrational frequencies spanning 1200-3000 cm-1 for every local proton configuration, with the region 2000-2600 cm-1 being mostly governed by the distorted Eigen-like configuration. We find a continuous red shift of the special-pair O⋯H+⋯O stretching frequency, and an increase in the flanking water bending intensity with decreasing δ. Also, we find that the flanking water stretch mode of the Zundel-like species is strongly mixed with the flanking water bend, and the special pair proton oscillation band is strongly coupled with the bend modes of the central H5O2+moiety.
Collapse
Affiliation(s)
- Rajib Biswas
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - William Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
47
|
Fraenkel D. A new theoretical development of the limiting electric conductivity of ions in solution. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1473896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dan Fraenkel
- Eltron Research & Development LLC, Boulder, CO, USA
| |
Collapse
|
48
|
Feng JX, Tong SY, Tong YX, Li GR. Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts. J Am Chem Soc 2018; 140:5118-5126. [DOI: 10.1021/jacs.7b12968] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jin-Xian Feng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Ye-Xiang Tong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gao-Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
49
|
Carpenter WB, Fournier JA, Lewis NHC, Tokmakoff A. Picosecond Proton Transfer Kinetics in Water Revealed with Ultrafast IR Spectroscopy. J Phys Chem B 2018; 122:2792-2802. [PMID: 29452488 DOI: 10.1021/acs.jpcb.8b00118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aqueous proton transport involves the ultrafast interconversion of hydrated proton species that are closely linked to the hydrogen bond dynamics of water, which has been a long-standing challenge to experiments. In this study, we use ultrafast IR spectroscopy to investigate the distinct vibrational transition centered at 1750 cm-1 in strong acid solutions, which arises from bending vibrations of the hydrated proton complex. Broadband ultrafast two-dimensional IR spectroscopy and transient absorption are used to measure vibrational relaxation, spectral diffusion, and orientational relaxation dynamics. The hydrated proton bend displays fast vibrational relaxation and spectral diffusion timescales of 200-300 fs; however, the transient absorption anisotropy decays on a remarkably long 2.5 ps timescale, which matches the timescale for hydrogen bond reorganization in liquid water. These observations are indications that the bending vibration of the aqueous proton complex is relatively localized, with an orientation that is insensitive to fast hydrogen bonding fluctuations and dependent on collective structural relaxation of the liquid to reorient. We conclude that the orientational relaxation is a result of proton transfer between configurations that are well described by a Zundel-like proton shared between two flanking water molecules.
Collapse
Affiliation(s)
- William B Carpenter
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Joseph A Fournier
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
50
|
Gu L, Mazzoni A, Gou Y, Pucci C, Breschi L, Pashley D, Niu L, Tay F. Zymography of Hybrid Layers Created Using Extrafibrillar Demineralization. J Dent Res 2018; 97:409-415. [PMID: 29294298 DOI: 10.1177/0022034517747264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- L. Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - A. Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna–Alma Mater Studiorum, Bologna, Italy
| | - Y. Gou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C. Pucci
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University UNESP São Jose dos Campos, São Paulo, Brazil
| | - L. Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna–Alma Mater Studiorum, Bologna, Italy
| | - D.H. Pashley
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L. Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, PR China
| | - F.R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|