1
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
2
|
Smets B, Boschker HTS, Wetherington MT, Lelong G, Hidalgo-Martinez S, Polerecky L, Nuyts G, De Wael K, Meysman FJR. Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria. Front Microbiol 2024; 15:1208033. [PMID: 38525072 PMCID: PMC10959288 DOI: 10.3389/fmicb.2024.1208033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405-1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.
Collapse
Affiliation(s)
- Bent Smets
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Henricus T. S. Boschker
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Maxwell T. Wetherington
- Materials Characterization Laboratory, Pennsylvania State University, State College, PA, United States
| | - Gérald Lelong
- Institut de Minéralogie, de Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne Universités, France—Muséum National d’Histoire Naturelle, Paris, France
| | | | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Nuyts
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Karolien De Wael
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Theoretical Studies of Acetyl-CoA Synthase Catalytic Mechanism. Catalysts 2022. [DOI: 10.3390/catal12020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
DFT calculations were performed for the A-cluster from the enzyme Acetyl-CoA synthase (ACS). The acid constants (pKa), reduction potentials, and pH-dependent reduction potential for the A-cluster with different oxidation states and ligands were calculated. Good agreement of the reduction potentials, dependent on pH in the experiment, was obtained. On the basis of the calculations, a mechanism for the methylation reaction involving two–electron reduction and protonation on the proximal nickel atom of the reduced A-cluster is proposed.
Collapse
|
4
|
Ciaccafava A, Tombolelli D, Domnik L, Fesseler J, Jeoung JH, Dobbek H, Mroginski MA, Zebger I, Hildebrandt P. When the inhibitor tells more than the substrate: the cyanide-bound state of a carbon monoxide dehydrogenase. Chem Sci 2016; 7:3162-3171. [PMID: 29997808 PMCID: PMC6005268 DOI: 10.1039/c5sc04554a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/27/2016] [Indexed: 11/21/2022] Open
Abstract
An integral approach including experimental and theoretical analysis has been carried out with the wild-type and engineered CODHIICh variant to assess the parameters that control the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N stretching frequency.
Carbon monoxide dehydrogenase (CODH) is a key enzyme for reversible CO interconversion. To elucidate structural and mechanistic details of CO binding at the CODH active site (C-cluster), cyanide is frequently used as an iso-electronic substitute and inhibitor. However, previous studies revealed conflicting results on the structure of the cyanide-bound complex and the mechanism of cyanide-inhibition. To address this issue in this work, we have employed IR spectroscopy, crystallography, site directed mutagenesis, and theoretical methods to analyse the cyanide complex of the CODH from Carboxydothermus hydrogenoformans (CODHIICh). IR spectroscopy demonstrates that a single cyanide binds to the Ni ion. Whereas the inhibitor could be partially removed at elevated temperature, irreversible degradation of the C-cluster occurred in the presence of an excess of cyanide on the long-minute time scale, eventually leading to the formation of [Fe(CN)6]4– and [Ni(CN)4]2– complexes. Theoretical calculations based on a new high-resolution structure of the cyanide-bound CODHIICh indicated that cyanide binding to the Ni ion occurs upon dissociation of the hydroxyl ligand from the Fe1 subsite of the C-cluster. The hydroxyl group is presumably protonated by Lys563 which, unlike to His93, does not form a hydrogen bond with the cyanide ligand. A stable deprotonated ε-amino group of Lys563 in the cyanide complex is consistent with the nearly unchanged C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N stretching in the Lys563Ala variant of CODHIICh. These findings support the view that the proton channel connecting the solution phase with the active site displays a strict directionality, controlled by the oxidation state of the C-cluster.
Collapse
Affiliation(s)
- Alexandre Ciaccafava
- Technische Universität Berlin , Institut für Chemie , Sekretariat PC 14 , D-10623 Berlin , Germany . ; ;
| | - Daria Tombolelli
- Technische Universität Berlin , Institut für Chemie , Sekretariat PC 14 , D-10623 Berlin , Germany . ; ;
| | - Lilith Domnik
- Humboldt-Universität zu Berlin , Institut für Biologie , Unter den Linden 6 , D-10099 Berlin , Germany
| | - Jochen Fesseler
- Humboldt-Universität zu Berlin , Institut für Biologie , Unter den Linden 6 , D-10099 Berlin , Germany
| | - Jae-Hun Jeoung
- Humboldt-Universität zu Berlin , Institut für Biologie , Unter den Linden 6 , D-10099 Berlin , Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin , Institut für Biologie , Unter den Linden 6 , D-10099 Berlin , Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin , Institut für Chemie , Sekretariat PC 14 , D-10623 Berlin , Germany . ; ;
| | - Ingo Zebger
- Technische Universität Berlin , Institut für Chemie , Sekretariat PC 14 , D-10623 Berlin , Germany . ; ;
| | - Peter Hildebrandt
- Technische Universität Berlin , Institut für Chemie , Sekretariat PC 14 , D-10623 Berlin , Germany . ; ;
| |
Collapse
|
5
|
Bender G, Pierce E, Hill JA, Darty JE, Ragsdale SW. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 2011; 3:797-815. [PMID: 21647480 PMCID: PMC3964926 DOI: 10.1039/c1mt00042j] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Jeffrey A. Hill
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Joseph E. Darty
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| |
Collapse
|
6
|
Mock MT, Kieber-Emmons MT, Popescu CV, Gasda P, Yap GPA, Riordan CG. A Series of Cyanide-Bridged Binuclear Complexes. Inorganica Chim Acta 2009; 362:4553-4562. [PMID: 20161111 PMCID: PMC2739667 DOI: 10.1016/j.ica.2009.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of cyanide-bridged binuclear complexes, ('S(3)')Ni-CN-M[Tp(tBu)] ('S(3)' = bis(2-mercaptophenyl)sulfide, Tp(tBu) = hydrotris(3-tert-butylpyrazolyl)borate, M = Fe (2-Fe), Co (2-Co), Ni (2-Ni), Zn (2-Zn)) was prepared by the coupling of K[('S(3)')Ni(CN)] with [Tp(tBu)]MX. The isostructural series of complexes was structurally and spectroscopically characterized. A similar coupling strategy was used to synthesize the anionic copper(I) analogue, Et4N{('S3')Ni-CN-Cu[Tp(tBu)]}, 2-Cu.An alternative synthesis was devised for the preparation of the linkages isomers of 2-Zn, i.e. of cyanide-bridged linkage isomers. X-ray diffraction, (13)C NMR and IR spectral studies established that isomerization to the more stable Ni-CN-Zn isomer occurs. DFT computational results buttressed the experimental observations indicating that the cyanide-bridged isomer is ca. 5 kcal/mol more stable than its linkage isomer.
Collapse
Affiliation(s)
- Michael T Mock
- Department of Chemistry and Biochemistry University of Delaware, Newark, Delaware 19716
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Nemykin VN, Basu P. Energy-dependent electrospray ionization mass spectrometric studies of mononuclear metal carbonyls. Inorganica Chim Acta 2005. [DOI: 10.1016/j.ica.2004.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Volbeda A, Fontecilla-Camps JC. Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans 2005:3443-50. [PMID: 16234923 DOI: 10.1039/b508403b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significant progress has been made recently in our understanding of the structure/function relationships of the catalytic C-cluster of carbon monoxide dehydrogenases. Several structures of this enzyme have been reported, some of them at very high resolution. One recurrent problem, however, is the high degree of heterogeneity within each structure, as well as between the different X-ray models. Here, we have tried to relate the structural data with the wealth of spectroscopic and biochemical information gathered over many years. As a result, we propose a catalytic cycle that is consistent with both observations and stereochemistry. We also give alternatives to one of the most difficult aspects of the cycle, namely, the location of the two electrons in the most reduced state of the C-cluster.
Collapse
Affiliation(s)
- Anne Volbeda
- Laboratoire de Cristallographie et de Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel (CEA-CNRS-UJF), 41 rue Jules Horowitz, 38027, Grenoble Cédex 1, France
| | | |
Collapse
|
10
|
Metzler DE, Metzler CM, Sauke DJ. The Organization of Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00093-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liaw WF, Horng YC, Ou DS, Ching CY, Lee GH, Peng SM. Distorted Square Planar Ni(II)−Chalcogenolate Carbonyl Complexes [Ni(CO)(SPh)n(SePh)3-n]- (n = 0, 1, 2): Relevance to the Nickel Site in CO Dehydrogenases and [NiFeSe] Hydrogenase. J Am Chem Soc 1997. [DOI: 10.1021/ja971705c] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Feng Liaw
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Instrumentation Center National Taiwan University, Taipei, Taiwan Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Instrumentation Center National Taiwan University, Taipei, Taiwan Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan
| | - Der-Shiaw Ou
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Instrumentation Center National Taiwan University, Taipei, Taiwan Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan
| | - Chao-Yi Ching
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Instrumentation Center National Taiwan University, Taipei, Taiwan Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Instrumentation Center National Taiwan University, Taipei, Taiwan Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan Instrumentation Center National Taiwan University, Taipei, Taiwan Department of Chemistry, National Taiwan University, Taipei 10764, Taiwan
| |
Collapse
|