1
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
2
|
Negroni M, Guarin D, Che K, Epasto LM, Turhan E, Selimović A, Kozak F, Cousin S, Abergel D, Bodenhausen G, Kurzbach D. Inversion of Hyperpolarized 13C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J Phys Chem B 2022; 126:4599-4610. [PMID: 35675502 PMCID: PMC9234958 DOI: 10.1021/acs.jpcb.2c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (DDNP) is a versatile tool to boost signal amplitudes in solution-state nuclear magnetic resonance (NMR) spectroscopy. For DDNP, nuclei are spin-hyperpolarized "ex situ" in a dedicated DNP device and then transferred to an NMR spectrometer for detection. Dramatic signal enhancements can be achieved, enabling shorter acquisition times, real-time monitoring of fast reactions, and reduced sample concentrations. Here, we show how the sample transfer in DDNP experiments can affect NMR spectra through cross-correlated cross-relaxation (CCR), especially in the case of low-field passages. Such processes can selectively invert signals of 13C spins in proton-carrying moieties. For their investigations, we use schemes for simultaneous or "parallel" detection of hyperpolarized 1H and 13C nuclei. We find that 1H → 13C CCR can invert signals of 13C spins if the proton polarization is close to 100%. We deduce that low-field passage in a DDNP experiment, a common occurrence due to the introduction of so-called "ultra-shielded" magnets, accelerates these effects due to field-dependent paramagnetic relaxation enhancements that can influence CCR. The reported effects are demonstrated for various molecules, laboratory layouts, and DDNP systems. As coupled 13C-1H spin systems are ubiquitous, we expect similar effects to be observed in various DDNP experiments. This might be exploited for selective spectroscopic labeling of hydrocarbons.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - David Guarin
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Polarize
ApS, 1808 Frederiksberg, Denmark
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ludovica M. Epasto
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Albina Selimović
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Samuel Cousin
- Institut
de Chimie Radicalaire—UMR 7273, Saint-Jérôme
Campus, Av. Esc. Normandie Niemen, Aix-Marseille Université/CNRS, 13397 Marseille
Cedex 20, France
| | - Daniel Abergel
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| |
Collapse
|
3
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
4
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
5
|
Ciambellotti S, Turano P. Structural Biology of Iron‐Binding Proteins by NMR Spectroscopy. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Ciambellotti
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Vögeli B, Vugmeyster L. Distance-independent Cross-correlated Relaxation and Isotropic Chemical Shift Modulation in Protein Dynamics Studies. Chemphyschem 2019; 20:178-196. [PMID: 30110510 PMCID: PMC9206835 DOI: 10.1002/cphc.201800602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 01/09/2023]
Abstract
Cross-correlated relaxation (CCR) in multiple-quantum coherences differs from other relaxation phenomena in its theoretical ability to be mediated across an infinite distance. The two interfering relaxation mechanisms may be dipolar interactions, chemical shift anisotropies, chemical shift modulations or quadrupolar interactions. These properties make multiple-quantum CCR an attractive probe for structure and dynamics of biomacromolecules not accessible from other measurements. Here, we review the use of multiple-quantum CCR measurements in dynamics studies of proteins. We compile a list of all experiments proposed for CCR rate measurements, provide an overview of the theory with a focus on protein dynamics, and present applications to various protein systems.
Collapse
Affiliation(s)
- Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, 12801 East 17 Avenue, Aurora, CO 80045, United States
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Laurimer Street Denver, CO 80204, United States
| |
Collapse
|
7
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
8
|
Orton HW, Kuprov I, Loh CT, Otting G. Using Paramagnetism to Slow Down Nuclear Relaxation in Protein NMR. J Phys Chem Lett 2016; 7:4815-4818. [PMID: 27934036 DOI: 10.1021/acs.jpclett.6b02417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Paramagnetic metal ions accelerate nuclear spin relaxation; this effect is widely used for distance measurement and called paramagnetic relaxation enhancement (PRE). Theoretical predictions established that, under special circumstances, it is also possible to achieve a reduction in nuclear relaxation rates (negative PRE). This situation would occur if the mechanism of nuclear relaxation in the diamagnetic state is counterbalanced by a paramagnetic relaxation mechanism caused by the metal ion. Here we report the first experimental evidence for such a cross-correlation effect. Using a uniformly 15N-labeled mutant of calbindin D9k loaded with either Tm3+ or Tb3+, reduced R1 and R2 relaxation rates of backbone 15N spins were observed compared with the diamagnetic reference (the same protein loaded with Y3+). The effect arises from the compensation of the chemical shift anisotropy tensor by the anisotropic dipolar shielding generated by the unpaired electron spin.
Collapse
Affiliation(s)
- Henry W Orton
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Ilya Kuprov
- School of Chemistry, University of Southampton , Southampton, SO17 1BJ, United Kingdom
| | - Choy-Theng Loh
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Crick DJ, Wang JX, Graham B, Swarbrick JD, Mott HR, Nietlispach D. Integral membrane protein structure determination using pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2015; 61:197-207. [PMID: 25604936 PMCID: PMC4412549 DOI: 10.1007/s10858-015-9899-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/13/2015] [Indexed: 05/16/2023]
Abstract
Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.
Collapse
Affiliation(s)
- Duncan J. Crick
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jue X. Wang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Helen R. Mott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
Piccioli M, Turano P. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
12
|
Koehler J, Meiler J. Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:360-89. [PMID: 22027343 PMCID: PMC3202700 DOI: 10.1016/j.pnmrs.2011.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/06/2011] [Indexed: 05/05/2023]
Affiliation(s)
- Julia Koehler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-8725, USA.
| | | |
Collapse
|
13
|
Barthelmes K, Reynolds AM, Peisach E, Jonker HRA, DeNunzio NJ, Allen KN, Imperiali B, Schwalbe H. Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc 2011; 133:808-19. [PMID: 21182275 PMCID: PMC3043167 DOI: 10.1021/ja104983t] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lanthanide-binding tags (LBTs) are valuable tools for investigation of protein structure, function, and dynamics by NMR spectroscopy, X-ray crystallography, and luminescence studies. We have inserted LBTs into three different loop positions (denoted L, R, and S) of the model protein interleukin-1β (IL1β) and varied the length of the spacer between the LBT and the protein (denoted 1−3). Luminescence studies demonstrate that all nine constructs bind Tb3+ tightly in the low nanomolar range. No significant change in the fusion protein occurs from insertion of the LBT, as shown by two X-ray crystallographic structures of the IL1β-S1 and IL1β-L3 constructs and for the remaining constructs by comparing the 1H−15N heteronuclear single-quantum coherence NMR spectra with that of the wild-type IL1β. Additionally, binding of LBT-loop IL1β proteins to their native binding partner in vitro remains unaltered. X-ray crystallographic phasing was successful using only the signal from the bound lanthanide. Large residual dipolar couplings (RDCs) could be determined by NMR spectroscopy for all LBT-loop constructs and revealed that the LBT-2 series were rigidly incorporated into the interleukin-1β structure. The paramagnetic NMR spectra of loop-LBT mutant IL1β-R2 were assigned and the Δχ tensor components were calculated on the basis of RDCs and pseudocontact shifts. A structural model of the IL1β-R2 construct was calculated using the paramagnetic restraints. The current data provide support that encodable LBTs serve as versatile biophysical tags when inserted into loop regions of proteins of known structure or predicted via homology modeling.
Collapse
Affiliation(s)
- Katja Barthelmes
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 0200, Australia;
| |
Collapse
|
15
|
Su XC, Otting G. Paramagnetic labelling of proteins and oligonucleotides for NMR. JOURNAL OF BIOMOLECULAR NMR 2010; 46:101-112. [PMID: 19529883 DOI: 10.1007/s10858-009-9331-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 05/20/2009] [Indexed: 05/26/2023]
Abstract
Paramagnetic effects offer a rich source of long-range structural restraints. Here we review current methods for site-specific tagging of proteins and oligonucleotides with paramagnetic molecules. The paramagnetic tags include nitroxide radicals and metal chelators. Particular emphasis is placed on tags suitable for site-specific and rigid attachment of lanthanide ions to macromolecules.
Collapse
Affiliation(s)
- Xun-Cheng Su
- The Australian National University, Canberra, Australia
| | | |
Collapse
|
16
|
Clore GM, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 2009; 109:4108-39. [PMID: 19522502 DOI: 10.1021/cr900033p] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- G Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| | | |
Collapse
|
17
|
Bertini I, Luchinat C, Parigi G, Pierattelli R. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 2008:3782-90. [PMID: 18629397 DOI: 10.1039/b719526e] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR experiments and tools for the characterization of the structure and dynamics of paramagnetic proteins are presented here. The focus is on the importance of (13)C direct-detection NMR for the assignment of paramagnetic systems in solution, on the information contained in paramagnetic effects observed both in solution and in the solid state, and on novel paramagnetism-based tools for the investigation of conformational heterogeneity in protein-protein complexes or in multi-domain proteins.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, (FI), Italy.
| | | | | | | |
Collapse
|
18
|
Iwahara J, Tang C, Marius Clore G. Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:185-95. [PMID: 17084097 PMCID: PMC1994582 DOI: 10.1016/j.jmr.2006.10.003] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/06/2006] [Accepted: 10/16/2006] [Indexed: 05/05/2023]
Abstract
The use of (1)H transverse paramagnetic relaxation enhancement (PRE) has seen a resurgence in recent years as method for providing long-range distance information for structural studies and as a probe of large amplitude motions and lowly populated transient intermediates in macromolecular association. In this paper we discuss various practical aspects pertaining to accurate measurement of PRE (1)H transverse relaxation rates (Gamma(2)). We first show that accurate Gamma(2) rates can be obtained from a two time-point measurement without requiring any fitting procedures or complicated error estimations, and no additional accuracy is achieved from multiple time-point measurements recorded in the same experiment time. Optimal setting of the two time-points that minimize experimental errors is also discussed. Next we show that the simplistic single time-point measurement that has been commonly used in the literature, can substantially underestimate the true value of Gamma(2), unless a relatively long repetition delay is employed. We then examine the field dependence of Gamma(2), and show that Gamma(2) exhibits only a very weak field dependence at high magnetic fields typically employed in macromolecular studies. The theoretical basis for this observation is discussed. Finally, we investigate the impact of contamination of the paramagnetic sample by trace amounts (5%) of the corresponding diamagnetic species on the accuracy of Gamma(2) measurements. Errors in Gamma(2) introduced by such diamagnetic contamination are potentially sizeable, but can be significantly reduced by using a relatively short time interval for the two time-point Gamma(2) measurement.
Collapse
Affiliation(s)
- Junji Iwahara
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | |
Collapse
|
19
|
Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G. Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc 2006; 128:3696-702. [PMID: 16536542 DOI: 10.1021/ja057008z] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel nuclear magnetic resonance (NMR) strategy based on labeling with lanthanides achieves rapid determinations of accurate three-dimensional (3D) structures of protein-protein complexes. The method employs pseudocontact shifts (PCS) induced by a site-specifically bound lanthanide ion to anchor the coordinate system of the magnetic susceptibility tensor in the molecular frames of the two molecules. Simple superposition of the tensors detected in the two protein molecules brings them together in a 3D model of the protein-protein complex. The method is demonstrated with the 30 kDa complex between two subunits of Escherichia coli polymerase III, comprising the N-terminal domain of the exonuclease subunit epsilon and the subunit theta. The 3D structures of the individual molecules were docked based on a limited number of PCS observed in 2D 15N-heteronuclear single quantum coherence spectra. Degeneracies in the mutual orientation of the protein structures were resolved by the use of two different lanthanide ions, Dy3+ and Er3+.
Collapse
Affiliation(s)
- Guido Pintacuda
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
20
|
Abstract
This article deals with the solution structure determination of paramagnetic metalloproteins by NMR spectroscopy. These proteins were believed not to be suitable for NMR investigations for structure determination until a decade ago, but eventually novel experiments and software protocols were developed, with the aim of making the approach suitable for the goal and as user-friendly and safe as possible. In the article, we also give hints for the optimization of experiments with respect to each particular metal ion, with the aim of also providing a handy tool for nonspecialists. Finally, a section is dedicated to the significant progress made on 13C direct detection, which reduces the negative effects of paramagnetism and may constitute a new chapter in the whole field of NMR spectroscopy.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
21
|
Machonkin TE, Westler WM, Markley JL. Paramagnetic NMR spectroscopy and density functional calculations in the analysis of the geometric and electronic structures of iron-sulfur proteins. Inorg Chem 2005; 44:779-97. [PMID: 15859246 DOI: 10.1021/ic048624j] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paramagnetic NMR spectroscopy has been underutilized in the study of metalloproteins. One difficulty of the technique is that paramagnetic relaxation broadens signals from nuclei near paramagnetic centers. In systems with low electronic relaxation rates, this makes such signals difficult to observe or impossible to assign by traditional methods. We show how the challenges of detecting and assigning signals from nuclei near the metal center can be overcome through the combination of uniform and selective 2H, 13C, and 15N isotopic labeling with NMR experiments that utilize direct one-dimensional (2H, 13C, and 15N) and two-dimensional (13C-X) detection. We have developed methods for calculating NMR chemical shifts and relaxation rates by density functional theory (DFT) approaches. We use the correspondence between experimental NMR parameters and those calculated from structural models of iron-sulfur clusters derived from X-ray crystallography to validate the computational approach and to investigate how structural differences are manifested in these values. We have applied this strategy to three iron-sulfur proteins: Clostridium pasteurianum rubredoxin, Anabaena [2Fe-2S] ferredoxin, and human [2Fe-2S] ferredoxin. Provided that an accurate structural model of the iron-sulfur cluster and surrounding residues is available from diffraction data, our results show that DFT calculations can return NMR observables with excellent accuracy. This suggests that it might be possible to use calculations to refine structures or to generate structural models of active sites when crystal structures are unavailable. The approach has yielded insights into the electronic structures of these iron-sulfur proteins. In rubredoxin, the results show that substantial unpaired electron spin is delocalized across NH...S hydrogen bonds and that the reduction potential can be changed by 77 mV simply by altering the strength of one of these hydrogen bonds. In reduced [2Fe-2S] ferredoxins, hyperfine shift data have provided quantitative information on the degree of valence trapping. The approach described here for iron-sulfur proteins offers new avenues for detailed studies of these and other metalloprotein systems.
Collapse
Affiliation(s)
- Timothy E Machonkin
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
22
|
Bryce DL, Grishaev A, Bax A. Measurement of Ribose Carbon Chemical Shift Tensors for A-form RNA by Liquid Crystal NMR Spectroscopy. J Am Chem Soc 2005; 127:7387-96. [PMID: 15898787 DOI: 10.1021/ja051039c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incomplete motional averaging of chemical shift anisotropy upon weak alignment of nucleic acids and proteins in a magnetic field results in small changes in chemical shift. Knowledge of nucleus-specific chemical shift (CS) tensor magnitudes and orientations is necessary to take full advantage of these measurements in biomolecular structure determination. We report the determination by liquid crystal NMR of the CS tensors for all ribose carbons in A-form helical RNA, using a series of novel 3D NMR pulse sequences for accurate and resolved measurement of the ribose (13)C chemical shifts. The orientation of the riboses relative to the rhombic alignment tensor of the molecule studied, a stem-loop sequence corresponding to helix-35 of 23S rRNA, is known from an extensive set of residual dipolar couplings (RDC), previously used to refine its structure. Singular-value-decomposition fits of the chemical shift changes to this structure, or alternatively to a database of helical RNA X-ray structures, provide the CS tensor for each type of carbon. Quantum chemical calculations complement the experimental results and confirm that the most shielded tensor component lies approximately along the local carbon-oxygen bond axis in all cases and that shielding anisotropy for C3' and C4' is much larger than for C1' and C2', with C5' being intermediate.
Collapse
Affiliation(s)
- David L Bryce
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
García-Mayoral MF, Pantoja-Uceda D, Santoro J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M. Refined NMR structure of α-sarcin by 15N–1H residual dipolar couplings. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:1057-65. [PMID: 15812638 DOI: 10.1007/s00249-005-0473-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
(15)N-(1)H residual dipolar couplings (RDC) have been used as additional restraints to refine the solution structure of the ribotoxin alpha-sarcin. The RDC values were obtained by partial alignment of alpha-sarcin in the binary mixture of n-dodecyl hexa(ethylene glycol)/hexanol. A total of 131 RDCs were measured and 106 were introduced in the final steps of the calculation protocol following the main calculation based on nuclear Overhauser enhancements and torsion angle restraints. A homogeneous family of 81 conformers was obtained. The resulting average pairwise root-mean-square deviation corresponding to the superposition of the 20 best structures is 0.69+/-0.12 A for the backbone and 1.29+/-0.14 A for all heavy atoms. The new structural features derived from the refined structure, compared with the non-refined structure of alpha-sarcin, consist of new hydrogen bonds and a better definition of the backbone conformation. In particular, the loop segment spanning Gly 60 to Lys 70 shows a single conformation, corresponding to the most populated family of conformers observed in the unrefined structure. The information derived from the analysis of the refined structure and the comparison with the homologous protein restrictocin could help in establishing further structure-function relationships concerning alpha-sarcin which can be reasonably extrapolated to other members of the ribotoxin family.
Collapse
Affiliation(s)
- Mâria Flor García-Mayoral
- Departamento de Espectroscopía y Estructura Molecular, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Pervushin K, Vögeli B, Heinz TN, Hünenberger PH. Measuring 1H-1H and 1H-13C RDCs in methyl groups: example of pulse sequences with numerically optimized coherence transfer schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 172:36-47. [PMID: 15589406 DOI: 10.1016/j.jmr.2004.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 08/27/2004] [Indexed: 05/24/2023]
Abstract
The optimization of coherence-transfer pulse-sequence elements (CTEs) is the most challenging step in the construction of heteronuclear correlation NMR experiments achieving sensitivity close to its theoretical maximum (in the absence of relaxation) in the shortest possible experimental time and featuring active suppression of undesired signals. As reported in the present article, this complex optimization problem in a space of high dimensionality turns out to be numerically tractable. Based on the application of molecular dynamics in the space of pulse-sequence variables, a general method is proposed for constructing optimized CTEs capable of transferring an arbitrary (generally non-Hermitian) spin operator encoding the chemical shift of heteronuclear spins to an arbitrary spin operator suitable for signal detection. The CTEs constructed in this way are evaluated against benchmarks provided by the theoretical unitary bound for coherence transfer and the minimal required transfer time (when available). This approach is used to design a set of NMR experiments enabling direct and selective observation of individual (1)H-transitions in (13)C-labeled methyl spin systems close to optimal sensitivity and using a minimal number of spectra. As an illustrative application of the method, optimized CTEs are used to quantitatively measure (1)H-(1)H and (1)H-(13)C residual dipolar couplings (RDCs) in a 17 kDa protein weakly aligned by means of Pf1 phages.
Collapse
Affiliation(s)
- Konstantin Pervushin
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
25
|
Pintacuda G, Kaikkonen A, Otting G. Modulation of the distance dependence of paramagnetic relaxation enhancements by CSA x DSA cross-correlation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 171:233-43. [PMID: 15546749 DOI: 10.1016/j.jmr.2004.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/25/2004] [Indexed: 05/22/2023]
Abstract
Paramagnetic metal ions with fast-relaxing electronic spin and anisotropic susceptibility tensor provide a rich source of structural information that can be derived from pseudo-contact shifts, residual dipolar couplings, dipole-dipole Curie spin cross-correlation, and paramagnetic relaxation enhancements. The present study draws attention to a cross-correlation effect between nuclear relaxation due to anisotropic chemical shielding (CSA) and due to the anisotropic dipolar shielding (DSA) caused by the electronic Curie spin. This CSA x DSA cross-correlation contribution seems to have been overlooked in previous interpretations of paramagnetic relaxation enhancements. It is shown to be sufficiently large to compromise the 1/r6 distance dependence usually assumed. The effect cannot experimentally be separated from auto-correlated DSA relaxation. It can increase or decrease the observed paramagnetic relaxation enhancement. Under certain conditions, the effect can dominate the entire paramagnetic relaxation, resulting in nuclear resonances narrower than in the absence of the paramagnetic center. CSAxDSA cross-correlation becomes important when paramagnetic relaxation is predominantly due to the Curie rather than the Solomon mechanism. Therefore the effect is most pronounced for relaxation by metal ions with large magnetic susceptibility and fast-relaxing electron spin. It most strongly affects paramagnetic enhancements of transverse relaxation in macromolecules and of longitudinal relaxation in small molecules.
Collapse
Affiliation(s)
- Guido Pintacuda
- Research School of Chemistry, Australian National University, Canberra, ACT 2605, Australia
| | | | | |
Collapse
|
26
|
Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE, Otting G. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 2004; 126:2963-70. [PMID: 14995214 DOI: 10.1021/ja039339m] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.
Collapse
Affiliation(s)
- Guido Pintacuda
- Australian National University, Research School of Chemistry, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Mandal PK, Majumdar A. A comprehensive discussion of HSQC and HMQC pulse sequences. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/cmr.a.10095] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Kateb F, Piccioli M. New Routes to the Detection of Relaxation Allowed Coherence Transfer in Paramagnetic Molecules. J Am Chem Soc 2003; 125:14978-9. [PMID: 14653719 DOI: 10.1021/ja038101v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new pulse sequence is proposed to measure cross correlation rates between 1H Curie spin relaxation and 1H-15N or 1H-13C dipole-dipole coupling (%@mt;sys@%Gamma%@sx@%H,HX%@be@%CS,DD%@sxx@%%@mx@% ) in paramagnetic systems. The new sequence has been conceived to obtain quantitative measurements of cross correlation rates in the close proximity to the paramagnetic center, preventing the loss of information due to fast transverse relaxation. The approach was tested on the dicalcium protein calbindin D9k in which Ca2+ has been substituted at site II with Ce3+. At variance with previously reported experiments, all peaks observed in HSQC experiments tailored to paramagnetic signals give quantitative estimates of %@mt;sys@%Gamma%@sx@%H%@ital@%,%@rsf@%HX%@be@%CS%@ital@%,%@rsf@%DD%@sxx@%%@mx@% . This is crucial to refine the immediate proximity of the metal ion.
Collapse
Affiliation(s)
- Fathia Kateb
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 4, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
29
|
Pervushin K, Vögeli B. Observation of individual transitions in magnetically equivalent spin systems. J Am Chem Soc 2003; 125:9566-7. [PMID: 12904004 DOI: 10.1021/ja035288h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Individual transitions of magnetically equivalent spin systems such as methyl groups residing on isotropically tumbling molecules in solution usually cannot be observed as multiplet-split NMR lines. We propose a pair of NMR experiments, 2D [13C,1Halphaalpha]Methyl and [13C,1Hbetabeta]Methyl HSQC, to overcome this limitation and enable direct and selective observation of individual 1H transitions in 13C-labeled methyl spin systems. Immediate applications include quantitative measurements of 1H-1H residual dipolar couplings (RDC) and cross-correlated relaxation between 1H chemical shift anisotropy and 1H-1H dipole-dipole interactions. The use of the experiments for the measurement of RDCs is demonstrated with two proteins, one weakly aligned by means of Pf1 phages and the other using a naturally present paramagnetic heme group.
Collapse
Affiliation(s)
- Konstantin Pervushin
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
30
|
Turano P, Battaini G, Casella L. Validation of paramagnetic cross correlation rates for solution structure determination of high spin iron(III) heme proteins. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00623-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Gelis I, Katsaros N, Luchinat C, Piccioli M, Poggi L. A simple protocol to study blue copper proteins by NMR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:600-9. [PMID: 12581200 DOI: 10.1046/j.1432-1033.2003.03400.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the case of oxidized plastocyanin from Synechocystis sp. PCC6803, an NMR approach based on classical two and three dimensional experiments for sequential assignment leaves unobserved 14 out of 98 amino acids. A protocol which simply makes use of tailored versions of 2D HSQC and 3D CBCA(CO)NH and CBCANH leads to the identification of nine of the above 14 residues. The proposed protocol differs from previous approaches in that it does not involve the use of unconventional experiments designed specifically for paramagnetic systems, and does not exploit the occurrence of a corresponding diamagnetic species in chemical exchange with the blue copper form. This protocol is expected to extend the popularity of NMR in the structural studies of copper (II) proteins, allowing researchers to increase the amount of information available via NMR on the neighborhood of a paramagnetic center without requiring a specific expertise in the field. The resulting 3D spectra are standard spectra that can be handled by any standard software for protein NMR data analysis.
Collapse
Affiliation(s)
- Ioannis Gelis
- NCSR Demokritos, Institute of Physical Chemistry, Agia Paraskevi Attikis, Greece
| | | | | | | | | |
Collapse
|
32
|
Boisbouvier J, Bax A. Long-range magnetization transfer between uncoupled nuclei by dipole-dipole cross-correlated relaxation: a precise probe of beta-sheet geometry in proteins. J Am Chem Soc 2002; 124:11038-45. [PMID: 12224951 DOI: 10.1021/ja020511g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interference between dipolar interactions in covalently linked (13)C-(1)H and nonlinked (1)H-(1)H pairs can be used to generate antiphase magnetization between noncoupled spins. The buildup rate of such antiphase terms is highly sensitive to local geometry, in particular the interproton distance and the (13)C-(1)H-(1)H internuclear angle. These rates have been measured for opposing C(alpha)H(alpha) pairs in antiparallel beta-sheets in the third Igg-binding domain of protein G (GB3) and in HIV protease, complexed with the inhibitor DMP323. For GB3, good agreement with the 1.1-A crystal structure is found. However, this agreement rapidly deteriorates with decreasing resolution of the corresponding X-ray structure. For HIV protease, two separate crystal structures that differ by less than 0.2 A from one another exhibit lower agreement in their predicted cross-correlated relaxation rates relative to one another than is found between experimental rates and the average of the rates predicted for the two structures. These data indicate that quantitative measurement of these cross-correlated relaxation rates can provide highly accurate structural information in macromolecules.
Collapse
Affiliation(s)
- Jerome Boisbouvier
- Contribution from the Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | |
Collapse
|
33
|
Longinetti M, Parigi G, Sgheri L. Uniqueness and degeneracy in the localization of rigid structural elements in paramagnetic proteins. ACTA ACUST UNITED AC 2002. [DOI: 10.1088/0305-4470/35/39/302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Ubbink M, Worrall JAR, Canters GW, Groenen EJJ, Huber M. Paramagnetic resonance of biological metal centers. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:393-422. [PMID: 11988476 DOI: 10.1146/annurev.biophys.31.091701.171000] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The review deals with recent advances in magnetic resonance spectroscopy (hf EPR and NMR) of paramagnetic metal centers in biological macromolecules. In the first half of our chapter, we present an overview of recent technical developments in the NMR of paramagnetic bio-macromolecules. These are illustrated by a variety of examples deriving mainly from the spectroscopy of metalloproteins and their complexes. The second half focuses on recent developments in high-frequency EPR spectroscopy and the application of the technique to copper, iron, and manganese proteins. Special attention is given to the work on single crystals of copper proteins.
Collapse
Affiliation(s)
- M Ubbink
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Bertini I, Luchinat C, Parigi G. Paramagnetic constraints: An aid for quick solution structure determination of paramagnetic metalloproteins. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/cmr.10027] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Piccioli M, Poggi L. Tailored HCCH-TOCSY experiment for resonance assignment in the proximity of a paramagnetic center. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:236-243. [PMID: 12036334 DOI: 10.1006/jmre.2002.2522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The presence of a paramagnetic center may disturb both coherent and incoherent communication between nuclear spins that are affected, to some extent, by the hyperfine interaction. This is a limiting factor to an extensive use of paramagnetic probes in NMR spectroscopy to enhance partial alignment and to exploit cross correlation effects and pseudocontact shifts. We propose here an HCCH-TOCSY experiment tailored to identify spin systems involving resonances that are partly or completely affected by hyperfine interaction. The efficiency of polarization transfer steps when fast relaxing nuclei are involved is discussed. The sequence is tested for the protein Calbindin D(9k), in which one of the two native Ca2+ ions is replaced by the paramagnetic Ce3+ ion as well as for the oxidized form of cytochrome b(562).
Collapse
Affiliation(s)
- Mario Piccioli
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | |
Collapse
|
37
|
Madhu PK, Mandal PK, Müller N. Cross-correlation effects involving curie spin relaxation in methyl groups. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:29-38. [PMID: 11945030 DOI: 10.1006/jmre.2001.2496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cross-correlation effects arising in methyl protons due to the simultaneous presence of dipole-dipole, chemical shift anisotropy, and Curie spin relaxation mechanisms in paramagnetic systems are analyzed. We assess the potential of obtaining structural constraints from the cross-correlation of Curie spin relaxation with dipolar relaxation mechanisms among methyl proton spins. By theoretical analysis and numerical simulations we characterize the transfer functions describing the interconversion processes of different ranks of multispin order. The time dependence of these processes contains a new type of structural information, the orientation of the methyl C(3)-axis with respect to the electron center. Experimental confirmation is found for selected methyl groups in low spin Fe(3+) sperm whale myoglobin.
Collapse
Affiliation(s)
- P K Madhu
- Institut für Chemie, Johannes Kepler Universität, Linz, Austria
| | | | | |
Collapse
|
38
|
Schwalbe H, Carlomagno T, Hennig M, Junker J, Reif B, Richter C, Griesinger C. Cross-correlated relaxation for measurement of angles between tensorial interactions. Methods Enzymol 2002; 338:35-81. [PMID: 11460558 DOI: 10.1016/s0076-6879(02)38215-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- H Schwalbe
- Center for Magnetic Resonance, Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- D S Wishart
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | | |
Collapse
|
40
|
Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc 2001; 123:9843-7. [PMID: 11583547 DOI: 10.1021/ja011241p] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of a short, three-residue Cu(2+)-binding sequence, the ATCUN motif, is presented as an approach for extracting long-range distance restraints from relaxation enhancement NMR spectroscopy. The ATCUN motif is prepended to the N-termini of proteins and binds Cu(2+) with a very high affinity. Relaxation rates of amide protons in ATCUN-tagged protein in the presence and absence of Cu(2+) can be converted into distance restraints and used for structure refinement by using a new routine, PMAG, that has been written for the structure calculation program CNS. The utility of the approach is demonstrated with an application to ATCUN-tagged ubiquitin. Excellent agreement between measured relaxation rates and those calculated on the basis of the X-ray structure of the protein have been obtained.
Collapse
Affiliation(s)
- L W Donaldson
- Department of Medical Genetics, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | | | | | |
Collapse
|
41
|
Bertini I, Kowalewski J, Luchinat C, Parigi G. Cross correlation between the dipole-dipole interaction and the Curie spin relaxation: the effect of anisotropic magnetic susceptibility. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 152:103-108. [PMID: 11531369 DOI: 10.1006/jmre.2001.2378] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cross-correlated relaxation caused by the interference of nuclear dipole-dipole interaction and the Curie spin relaxation (DD-CSR cross relaxation) is generalized to treat the case of anisotropic magnetic susceptibility, including the important case where the latter originates from zero-field splitting. It is shown that the phenomenon of DD-CSR cross relaxation is absolutely general and to be expected under any electronic configuration. The results of the generalization are presented for a model system, and the consequences for paramagnetic metalloproteins are illustrated with an example of cerium(III)-substituted calbindin. The effects of the magnetic anisotropy are found to be substantial.
Collapse
Affiliation(s)
- I Bertini
- CERM and Department of Chemistry, University of Florence, Via L. Sacconi, 6, I-50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- A Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
43
|
Affiliation(s)
- I Bertini
- Magnetic Resonance Center (CERM), University of Florence, Florence 50019, Italy
| | | | | |
Collapse
|
44
|
|
45
|
Hus JC, Marion D, Blackledge M. De novo determination of protein structure by NMR using orientational and long-range order restraints. J Mol Biol 2000; 298:927-36. [PMID: 10801359 DOI: 10.1006/jmbi.2000.3714] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orientational and novel long-range order restraints available from paramagnetic systems have been used to determine the backbone solution structure of the cytochrome c' protein to atomic resolution in the complete absence of restraints derived from the nuclear Overhauser effect. By exploiting the complementary geometric dependence of paramagnetic pseudocontact shifts and the recently proposed Curie-dipolar cross correlated relaxation effect, in combination with orientational constraints derived from residual dipolar coupling, autorelaxation rate ratios and secondary structure constraints, it is possible to define uniquely the fold and refine the tertiary structure of the protein (0.73 A backbone rmsd for 82/129 amino acid residues) starting from random atomic Cartesian coordinates. The structure calculation protocol, developed using specific models to describe the novel constraint interactions, is robust, requiring no precise a priori estimation of the various interaction strengths, and provides unambiguous convergence based only on the value of the target function. Tensor eigenvalues and their component orientations are allowed to float freely, and are thus simultaneously determined, and found to converge, during the structure calculation.
Collapse
Affiliation(s)
- J C Hus
- Jean-Pierre Ebel C.N.R.S. C.E.A., Institut de Biologie Structurale, 41, rue Jules Horowitz, Grenoble Cedex, 38027, France
| | | | | |
Collapse
|
46
|
Mandal PK, Madhu P, Müller N. Nuclear magnetic relaxation of methyl protons in a paramagnetic protein: cross-correlation effects. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Abstract
Recent developments in NMR spectroscopy, along with advances in computational techniques, have produced new approaches to the interpretation of chemical shifts and spin-spin coupling constants in biomolecules. Quantum chemical studies of useful accuracy are now becoming more routine and are increasingly being used in conjunction with experimental studies to map out expected structural patterns for peptides and oligonucleotides. Topics of recent special interest include spin couplings across hydrogen bonds and patterns of chemical shift anisotropies, in both diamagnetic and paramagnetic proteins.
Collapse
Affiliation(s)
- D A Case
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|