1
|
Bolik-Coulon N, Rößler P, Kay LE. NMR-Based Measurements of Site-Specific Electrostatic Potentials of Histone Tails in Nucleosome Core Particles. J Am Chem Soc 2025; 147:14519-14529. [PMID: 40237318 DOI: 10.1021/jacs.5c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Electrostatics play a dominant role in guiding many biological processes. This is especially the case in the context of chromatin, where charge interactions modulate diverse activities such as DNA repair, transcription, replication, condensation, and phase separation. Using NMR experiments quantifying solvent paramagnetic relaxation enhancements of backbone amide and side chain methyl protons in the presence of paramagnetic cosolutes and focusing on the nucleosome core particle (NCP), we report near surface electrostatic potentials of tail residues of each of the four histone components of the NCP. These are all negative, despite sequences comprising a high density of positively charged amino acids, emphasizing the strong contribution of the negatively charged DNA with which the tails interact. Changes in electrostatic potentials of as much as 60 mV between isolated histone tails and tails in the context of the NCP are calculated. Notably, the tail potentials can vary significantly from each other, with enrichment in glycine residues correlating with less negative values, highlighting differences in the interactions with DNA.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Philip Rößler
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
2
|
Okuno Y. Quantitative Interpretation of Transverse Spin Relaxation by Translational Diffusion in Liquids. J Phys Chem B 2025; 129:2537-2545. [PMID: 39977431 DOI: 10.1021/acs.jpcb.4c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Intermolecular spin relaxation by translational diffusion of spin pairs has been widely used to study the properties of biomolecules in liquids. Notably, solvent paramagnetic relaxation enhancement (sPRE) arising from paramagnetic cosolutes has gained significant attention for various applications in structural biology, including the structural refinement of intrinsically disordered proteins, the elucidation of the molecular mechanisms driving cosolute-induced protein denaturation, and the characterization of residue-specific effective near-surface electrostatic potentials (ENS). Furthermore, sPRE has been extensively applied in magnetic resonance imaging (MRI), where paramagnetic ions, such as Gd(III)-based ions, are used as contrast agents. Among these applications, the transverse sPRE rate (Γ2) has predominantly been interpreted empirically as being proportional to the average interspin distance ⟨r-6⟩norm. In this study, we present a rigorous theoretical interpretation of Γ2 for spherically symmetric intermolecular potentials, demonstrating that it is proportional to ⟨r-4⟩norm. We provide an explicit formula for calculating ⟨r-4⟩norm without any adjustable parameters, offering valuable insights into the interaction potential independent of the type or strength of interactions. It has broad applicability, including the precise interpretation of the relaxation properties of the MRI contrast agents and calculation of the ENS.
Collapse
Affiliation(s)
- Yusuke Okuno
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Yu B, Bolik-Coulon N, Rangadurai AK, Kay LE, Iwahara J. Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules. J Am Chem Soc 2024; 146:20788-20801. [PMID: 39028837 PMCID: PMC11295196 DOI: 10.1021/jacs.4c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.
Collapse
Affiliation(s)
- Binhan Yu
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Nicolas Bolik-Coulon
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Atul K. Rangadurai
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E. Kay
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Junji Iwahara
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
4
|
Karamanos TK, Matthews S. Biomolecular NMR in the AI-assisted structural biology era: Old tricks and new opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140949. [PMID: 37572958 DOI: 10.1016/j.bbapap.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Over the last 40 years nuclear magnetic resonance (NMR) spectroscopy has established itself as one of the most versatile techniques for the characterization of biomolecules, especially proteins. Given the molecular size limitations of NMR together with recent advances in cryo-electron microscopy and artificial intelligence-assisted protein structure prediction, the bright future of NMR in structural biology has been put into question. In this mini review we argue the contrary. We discuss the unique opportunities solution NMR offers to the protein chemist that distinguish it from all other experimental or computational methods, and how it can benefit from machine learning.
Collapse
Affiliation(s)
| | - Stephen Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London.
| |
Collapse
|
5
|
Jin H, Liu D, Ni Y, Wang H, Long D. Quantitative Ensemble Interpretation of Membrane Paramagnetic Relaxation Enhancement (mPRE) for Studying Membrane-Associated Intrinsically Disordered Proteins. J Am Chem Soc 2024; 146:791-800. [PMID: 38146836 DOI: 10.1021/jacs.3c10847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
An understanding of the functional role played by a membrane-associated intrinsically disordered protein (IDP) requires characterization of its heterogeneous conformations as well as its poses relative to the membranes, which is of great interest but technically challenging. Here, we explore the membrane paramagnetic relaxation enhancement (mPRE) for constructing ensembles of IDPs that dynamically associate with membrane mimetics incorporating spin-labeled lipids. To accurately interpret the mPRE Γ2 rates, both the dynamics of IDPs and spin probe molecules are taken into account, with the latter described by a weighted three-dimensional (3D) grid model built based on all-atom simulations. The IDP internal conformations, orientations, and immersion depths in lipid bilayers are comprehensively optimized in the Γ2-based ensemble modeling. Our approach is tested and validated on the example of POPG bicelle-bound disordered cytoplasmic domain of CD3ε (CD3εCD), a component of the T-cell receptor (TCR) complex. The mPRE-derived CD3εCD ensemble provides new insights into the IDP-membrane fuzzy association, in particular for the tyrosine-based signaling motif that plays a critical role in TCR signaling. The comparative analysis of the ensembles for wild-type CD3εCD and mutants that mimic the mono- and dual-phosphorylation effects suggests a delicate membrane regulatory mechanism for activation and inhibition of the TCR activity.
Collapse
Affiliation(s)
- Hong Jin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu Ni
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Morris DL, Nyenhuis DA, Dean DN, Strub MP, Tjandra N. Observation of pH-Dependent Residual Structure in the Pmel17 Repeat Domain and the Implication for Its Amyloid Formation. Biochemistry 2023; 62:3222-3233. [PMID: 37917797 DOI: 10.1021/acs.biochem.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The varying conformational states of amyloid-forming protein monomers can determine their fibrillation outcome. In this study, we utilize solution NMR and the paramagnetic relaxation enhancement (PRE) effect to observe monomer properties of the repeat domain (RPT) from a human functional amyloid, premelanosomal protein, Pmel17. After excision from the full-length protein, RPT can self-assemble into amyloid fibrils, functioning as a scaffold for melanin deposition. Here, we report possible conformational states of the short RPT (sRPT) isoform, which has been demonstrated to be a fibrillation nucleator. NMR experiments were performed to determine conformational differences in sRPT by comparing aggregation-prone vs nonaggregating solution conditions. We observed significant chemical shift perturbations localized to residues near the C-terminus, demonstrating that the local chemical environment of the amyloid core region is highly sensitive to changes in pH. Next, we introduced cysteine point mutations for the covalent attachment of PRE ligands to sRPT to facilitate the observation of intramolecular interactions. We also utilized solvent PRE molecules with opposing charges to measure changes in the electrostatic potential of sRPT in different pH environments. These observed PRE effects offer insight into initial molecular events that might promote intermolecular interactions, which can trigger fibrillation. Taken together, our results show that sRPT monomers adopt a conformation inconsistent with a fully random coil at neutral pH and undergo conformational changes at lower pH values. These observations highlight regulatory mechanisms via organelle-associated pH conditions that can affect the fibrillation activity of proteins like RPT.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - David A Nyenhuis
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Dexter N Dean
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
7
|
Iwahara J, Pettitt BM, Yu B. Direct measurements of biomolecular electrostatics through experiments. Curr Opin Struct Biol 2023; 82:102680. [PMID: 37573815 PMCID: PMC10947535 DOI: 10.1016/j.sbi.2023.102680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Biomolecular electrostatics has been a subject of computational investigations based on 3D structures. This situation is changing because emerging experimental tools allow us to quantitatively investigate biomolecular electrostatics without any use of structure information. Now, electrostatic potentials around biomolecules can directly be measured for many residues simultaneously by nuclear magnetic resonance (NMR) spectroscopy. This NMR method can be used to study electrostatic aspects of various processes, including macromolecular association and liquid-liquid phase separation. Applications to structurally flexible biomolecules such as intrinsically disordered proteins are particularly useful. The new tools also facilitate examination of theoretical models and methods for biomolecular electrostatics.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - B Montgomery Pettitt
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Okuno Y, Clore GM. Extending the Experimentally Accessible Range of Spin Dipole-Dipole Spectral Densities for Protein-Cosolute Interactions by Temperature-Dependent Solvent Paramagnetic Relaxation Enhancement Measurements. J Phys Chem B 2023; 127:7887-7898. [PMID: 37681752 PMCID: PMC11345855 DOI: 10.1021/acs.jpcb.3c05301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Longitudinal (Γ1) and transverse (Γ2) solvent paramagnetic relaxation enhancement (sPRE) yields field-dependent information in the form of spectral densities that provides unique information related to cosolute-protein interactions and electrostatics. A typical protein sPRE data set can only sample a few points on the spectral density curve, J(ω), within a narrow frequency window (500 MHz to ∼1 GHz). However, complex interactions and dynamics of paramagnetic cosolutes around a protein make it difficult to directly interpret the few experimentally accessible points of J(ω). In this paper, we show that it is possible to significantly extend the experimentally accessible frequency range (corresponding to a range from ∼270 MHz to 1.8 GHz) by acquiring a series of sPRE experiments at different temperatures. This approach is based on the scaling property of J(ω) originally proposed by Melchior and Fries for small molecules. Here, we demonstrate that the same scaling property also holds for geometrically far more complex systems such as proteins. Using the extended spectral densities derived from the scaling property as the reference dataset, we demonstrate that our previous approach that makes use of a non-Lorentzian Ansatz spectral density function to fit only J(0) and one to two J(ω) points allows one to obtain accurate values for the concentration-normalized equilibrium average of the electron-proton interspin separation ⟨r-6⟩norm and the correlation time τC, which provide quantitative information on the energetics and timescale, respectively, of local cosolute-protein interactions. We also show that effective near-surface potentials, ϕENS, obtained from ⟨r-6⟩norm provide a reliable and quantitative measure of intermolecular interactions including electrostatics, while ϕENS values obtained from only Γ1 or Γ2 sPRE rates can have significant artifacts as a consequence of potential variations and changes in the diffusive properties of the cosolute around the protein surface. Finally, we discuss the experimental feasibility and limitations of extracting the high-frequency limit of J(ω) that is related to ⟨r-8⟩norm and report on the extremely local intermolecular potential.
Collapse
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
9
|
Gu X, Liu D, Yu Y, Wang H, Long D. Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions. J Am Chem Soc 2023; 145:10295-10303. [PMID: 37116086 DOI: 10.1021/jacs.3c01597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Peripheral membrane proteins can adopt distinct orientations on the surfaces of lipid bilayers that are often short-lived and challenging to characterize by conventional experimental methods. Here we describe a robust approach for mapping protein orientational landscapes through quantitative interpretation of paramagnetic relaxation enhancement (PRE) data arising from membrane mimetics with spin-labeled lipids. Theoretical analysis, followed by experimental verification, reveals insights into the distinct properties of the PRE observables that are generally distorted in the case of stably membrane-anchored proteins. To suppress the artifacts, we demonstrate that undistorted Γ2 values can be obtained via transient membrane anchoring, based on which a computational framework is established for deriving accurate orientational ensembles obeying Boltzmann statistics. Application of the approach to KRas4B, a classical peripheral membrane protein whose orientations are critical for its functions and drug design, reveals four distinct orientational states that are close but not identical to those reported previously. Similar orientations are also found for a truncated KRas4B without the hypervariable region (HVR) that can sample a broader range of orientations, suggesting a confinement role of the HVR geometrically prohibiting severe tilting. Comparison of the KRas4B Γ2 rates measured using nanodiscs containing different types of anionic lipids reveals identical Γ2 patterns for the G-domain but different ones for the HVR, indicating only the latter is able to selectively interact with anionic lipids.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Kaushik Rangadurai A, Toyama Y, Kay LE. Practical considerations for the measurement of near-surface electrostatics based on solvent paramagnetic relaxation enhancements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107400. [PMID: 36796143 DOI: 10.1016/j.jmr.2023.107400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Electrostatic interactions can play important roles in regulating various biological processes. Quantifying surface electrostatics of biomolecules is, therefore, of significant interest. Recent advances in solution NMR spectroscopy have enabled site-specific measurements of de novo near-surface electrostatic potentials (ϕENS) based on a comparison of solvent paramagnetic relaxation enhancements generated from differently charged paramagnetic co-solutes with similar structures. Although the NMR-derived near-surface electrostatic potentials have been shown to agree with theoretical calculations in the context of folded proteins and nucleic acids, such benchmark comparisons may not always be possible, particularly in cases where high-resolution structural models are lacking, such as in the study of intrinsically disordered proteins. Cross-validation of ϕENS potentials can be achieved by comparing values obtained using three pairs of paramagnetic co-solutes, each with a different net charge. Notably we have found cases where agreement of ϕENS potentials between the three pairs is poor and herein we investigate the source of this discrepancy in some detail. We show that for the systems considered here ϕENS potentials obtained from cationic and anionic co-solutes are accurate and that the use of paramagnetic co-solutes with different structures can be a viable option for validation, although the optimal choice of paramagnetic compounds depends on the system of interest.
Collapse
Affiliation(s)
- Atul Kaushik Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
11
|
Wohl S, Zheng W. Interpreting Transient Interactions of Intrinsically Disordered Proteins. J Phys Chem B 2023; 127:2395-2406. [PMID: 36917561 PMCID: PMC10038935 DOI: 10.1021/acs.jpcb.3c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The flexible nature of intrinsically disordered proteins (IDPs) gives rise to a conformational ensemble with a diverse set of conformations. The simplest way to describe this ensemble is through a homopolymer model without any specific interactions. However, there has been growing evidence that the conformational properties of IDPs and their relevant functions can be affected by transient interactions between specific and even nonlocal pairs of amino acids. Interpreting these interactions from experimental methods, each of which is most sensitive to a different distance regime referred to as probing length, remains a challenging and unsolved problem. Here, we first show that transient interactions can be realized between short fragments of charged amino acids by generating conformational ensembles using model disordered peptides and coarse-grained simulations. Using these ensembles, we investigate how sensitive different types of experimental measurements are to the presence of transient interactions. We find methods with shorter probing lengths to be more appropriate for detecting these transient interactions, but one experimental method is not sufficient due to the existence of other weak interactions typically seen in IDPs. Finally, we develop an adjusted polymer model with an additional short-distance peak which can robustly reproduce the distance distribution function from two experimental measurements with complementary short and long probing lengths. This new model can suggest whether a homopolymer model is insufficient for describing a specific IDP and meets the challenge of quantitatively identifying specific, transient interactions from a background of nonspecific, weak interactions.
Collapse
Affiliation(s)
- Samuel Wohl
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
| |
Collapse
|
12
|
Toyama Y, Rangadurai AK, Forman-Kay JD, Kay LE. Surface electrostatics dictate RNA-binding protein CAPRIN1 condensate concentration and hydrodynamic properties. J Biol Chem 2023; 299:102776. [PMID: 36496075 PMCID: PMC9823214 DOI: 10.1016/j.jbc.2022.102776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates concentrate proteins, nucleic acids, and small molecules and play an essential role in many biological processes. Their formation is tuned by a balance between energetically favorable and unfavorable contacts, with charge-charge interactions playing a central role in some systems. The positively charged intrinsically disordered carboxy-terminal region of the RNA-binding protein CAPRIN1 is one such example, phase separating upon addition of negatively charged ATP or high concentrations of sodium chloride (NaCl). Using solution NMR spectroscopy, we measured residue-specific near-surface electrostatic potentials (ϕENS) of CAPRIN1 along its NaCl-induced phase separation trajectory to compare with those obtained using ATP. In both cases, electrostatic shielding decreases ϕENS values, yet surface potentials of CAPRIN1 in the two condensates can be different, depending on the amount of NaCl or ATP added. Our results establish that even small differences in ϕENS can significantly affect the level of protein enrichment and the mechanical properties of the condensed phase, leading, potentially, to the regulation of biological processes.
Collapse
Affiliation(s)
- Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Atul Kaushik Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Hospital for Sick Children, Program in Molecular Medicine, Toronto, Ontario, Canada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Hospital for Sick Children, Program in Molecular Medicine, Toronto, Ontario, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Hospital for Sick Children, Program in Molecular Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Okuno Y, Schwieters CD, Yang Z, Clore GM. Theory and Applications of Nitroxide-based Paramagnetic Cosolutes for Probing Intermolecular and Electrostatic Interactions on Protein Surfaces. J Am Chem Soc 2022; 144:21371-21388. [DOI: 10.1021/jacs.2c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Charles D. Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Zhilin Yang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
14
|
Zhang H, Modenutti C, Nekkanti YPK, Denis M, Bermejo IA, Lefèbre J, Che K, Kim D, Kagelmacher M, Kurzbach D, Nazaré M, Rademacher C. Identification of the Allosteric Binding Site for Thiazolopyrimidine on the C-Type Lectin Langerin. ACS Chem Biol 2022; 17:2728-2733. [PMID: 36153965 PMCID: PMC9594047 DOI: 10.1021/acschembio.2c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands. Prompted by the observation that its human homologue exhibits different binding specificities for these small molecules, we report here our investigations to define their exact binding site. By using structural comparison and molecular dynamics simulations, we showed that the nonconserved short loops have a high degree of conformational flexibility between the human and murine homologues. Sequence analysis and mutational studies indicated that a pair of residues are essential for the recognition of the thiazolopyrimidines. Taking solvent paramagnetic relaxation enhancement NMR studies together with a series of peptides occupying the same site, we could define the cleft between the short and long loops as the allosteric binding site for these aromatic heterocycles.
Collapse
Affiliation(s)
- Hengxi Zhang
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Biology, Chemistry, and Pharmacy, Freie
Universität Berlin, Takustrasse 3, 14195 Berlin, Germany,Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria,Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Carlos Modenutti
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Departamento
de Química Biológica, Facultad
de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina,Instituto
de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EHA Buenos
Aires, Argentina
| | - Yelha Phani Kumar Nekkanti
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany,Berlin
Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Maxime Denis
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Iris A. Bermejo
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jonathan Lefèbre
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria,Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria,Doctoral
School in Chemistry (DoSChem), University
of Vienna, Währingerstr. 42, 1090 Vienna, Austria
| | - Dongyoon Kim
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marten Kagelmacher
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Biology, Chemistry, and Pharmacy, Freie
Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Marc Nazaré
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany,Berlin
Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Christoph Rademacher
- Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg
1 14424 Potsdam, Germany,Department
of Biology, Chemistry, and Pharmacy, Freie
Universität Berlin, Takustrasse 3, 14195 Berlin, Germany,Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria,Department
of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria,
| |
Collapse
|
15
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
16
|
Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory. Proc Natl Acad Sci U S A 2022; 119:e2210492119. [PMID: 36040869 PMCID: PMC9457416 DOI: 10.1073/pnas.2210492119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.
Collapse
|
17
|
Toyama Y, Rangadurai AK, Kay LE. Measurement of 1H α transverse relaxation rates in proteins: application to solvent PREs. JOURNAL OF BIOMOLECULAR NMR 2022; 76:137-152. [PMID: 36018482 DOI: 10.1007/s10858-022-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
It has recently been demonstrated that accurate near surface electrostatic potentials can be calculated for proteins from solvent paramagnetic relaxation enhancements (PREs) of amide protons measured using spin labels of similar structures but different charges (Yu et al. in Proc Natl Acad Sci 118(25):e2104020118, 2021). Here we develop methodology for extending such measurements to intrinsically disordered proteins at neutral pH where amide spectra are of very poor quality. Under these conditions it is shown that accurate PRE values can be measured using the haCONHA experiment that has been modified for recording 1Hα transverse relaxation rates. The optimal pulse scheme includes a spin-lock relaxation element for suppression of homonuclear scalar coupled evolution for all 1Hα protons, except those derived from Ser and Thr residues, and minimizes the radiation damping field from water magnetization that would otherwise increase measured relaxation rates. The robustness of the experiment is verified by developing a second approach using a band selective adiabatic decoupling scheme for suppression of scalar coupling modulations during 1Hα relaxation and showing that the measured PRE values from the two methods are in excellent agreement. The near surface electrostatic potential of a 103-residue construct comprising the C-terminal intrinsically disordered region of the RNA-binding protein CAPRIN1 is obtained at pH 5.5 using both 1HN and 1Hα-based relaxation rates, and at pH 7.4 where only 1Hα rates can be quantified, with very good agreement between potentials obtained under all experimental conditions.
Collapse
Affiliation(s)
- Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Atul Kaushik Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
18
|
Chen C, Yu B, Yousefi R, Iwahara J, Pettitt BM. Assessment of the Components of the Electrostatic Potential of Proteins in Solution: Comparing Experiment and Theory. J Phys Chem B 2022; 126:4543-4554. [PMID: 35696448 PMCID: PMC9832648 DOI: 10.1021/acs.jpcb.2c01611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, the components of the protein electrostatic potentials in solution are analyzed with NMR paramagnetic relaxation enhancement experiments and compared with continuum solution theory, and multiscale simulations. To determine the contributions of the solution components, we analyze them at different ionic strengths from 0 to 745 mM. A theoretical approximation allows the determination of the electrostatic potential at a given proton without reference to the protein structure given the ratio of paramagnetic relaxation enhancements rates between a cationic and an anionic probe. The results derived from simulations show good agreement with experiment and simple continuum solvent theory for many of the residues. A discrepancy including a switch of sign of the electrostatic potential was observed for particular residues. By considering the components of the potential, we found the discrepancy is mainly caused by angular correlations of the probe molecules with these residues. The correction for the correlations allows a more accurate analysis of the experiments determining the electrostatic potential of proteins in solution.
Collapse
Affiliation(s)
| | | | - Razie Yousefi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - B. Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
19
|
Negroni M, Guarin D, Che K, Epasto LM, Turhan E, Selimović A, Kozak F, Cousin S, Abergel D, Bodenhausen G, Kurzbach D. Inversion of Hyperpolarized 13C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J Phys Chem B 2022; 126:4599-4610. [PMID: 35675502 PMCID: PMC9234958 DOI: 10.1021/acs.jpcb.2c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (DDNP) is a versatile tool to boost signal amplitudes in solution-state nuclear magnetic resonance (NMR) spectroscopy. For DDNP, nuclei are spin-hyperpolarized "ex situ" in a dedicated DNP device and then transferred to an NMR spectrometer for detection. Dramatic signal enhancements can be achieved, enabling shorter acquisition times, real-time monitoring of fast reactions, and reduced sample concentrations. Here, we show how the sample transfer in DDNP experiments can affect NMR spectra through cross-correlated cross-relaxation (CCR), especially in the case of low-field passages. Such processes can selectively invert signals of 13C spins in proton-carrying moieties. For their investigations, we use schemes for simultaneous or "parallel" detection of hyperpolarized 1H and 13C nuclei. We find that 1H → 13C CCR can invert signals of 13C spins if the proton polarization is close to 100%. We deduce that low-field passage in a DDNP experiment, a common occurrence due to the introduction of so-called "ultra-shielded" magnets, accelerates these effects due to field-dependent paramagnetic relaxation enhancements that can influence CCR. The reported effects are demonstrated for various molecules, laboratory layouts, and DDNP systems. As coupled 13C-1H spin systems are ubiquitous, we expect similar effects to be observed in various DDNP experiments. This might be exploited for selective spectroscopic labeling of hydrocarbons.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - David Guarin
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Polarize
ApS, 1808 Frederiksberg, Denmark
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ludovica M. Epasto
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Albina Selimović
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Samuel Cousin
- Institut
de Chimie Radicalaire—UMR 7273, Saint-Jérôme
Campus, Av. Esc. Normandie Niemen, Aix-Marseille Université/CNRS, 13397 Marseille
Cedex 20, France
| | - Daniel Abergel
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| |
Collapse
|
20
|
Parigi G, Ravera E, Luchinat C. Paramagnetic effects in NMR for protein structures and ensembles: Studies of metalloproteins. Curr Opin Struct Biol 2022; 74:102386. [DOI: 10.1016/j.sbi.2022.102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
21
|
Yu B, Pletka CC, Iwahara J. Protein Electrostatics Investigated through Paramagnetic NMR for Nonpolar Groups. J Phys Chem B 2022; 126:2196-2202. [PMID: 35266708 PMCID: PMC8973454 DOI: 10.1021/acs.jpcb.1c10930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental validation of theoretical models for protein electrostatics remains rare. Recently, we have developed a paramagnetic NMR-based method for de novo determination of effective near-surface electrostatic potentials, which allows for straightforward examination of electrostatic models for biomolecules. In the current work, we expand this method and demonstrate that effective near-surface electrostatic potentials can readily be determined from 1H paramagnetic relaxation enhancement (PRE) data for protein CαH and CH3 groups. The experimental data were compared with those predicted from the Poisson-Boltzmann theory. The impact of structural dynamics on the effective near-surface electrostatic potentials was also assessed. The agreement between the experimental and theoretical data was particularly good for methyl 1H nuclei. Compared to the conventional pKa-based validation, our paramagnetic NMR-based approach can provide a far larger number of experimental data that can directly be used to examine the validity of theoretical electrostatic models for proteins.
Collapse
|
22
|
Amani R, Schwieters CD, Borcik CG, Eason IR, Han R, Harding BD, Wylie BJ. Water Accessibility Refinement of the Extended Structure of KirBac1.1 in the Closed State. Front Mol Biosci 2021; 8:772855. [PMID: 34917650 PMCID: PMC8669819 DOI: 10.3389/fmolb.2021.772855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
NMR structures of membrane proteins are often hampered by poor chemical shift dispersion and internal dynamics which limit resolved distance restraints. However, the ordering and topology of these systems can be defined with site-specific water or lipid proximity. Membrane protein water accessibility surface area is often investigated as a topological function via solid-state NMR. Here we leverage water-edited solid-state NMR measurements in simulated annealing calculations to refine a membrane protein structure. This is demonstrated on the inward rectifier K+ channel KirBac1.1 found in Burkholderia pseudomallei. KirBac1.1 is homologous to human Kir channels, sharing a nearly identical fold. Like many existing Kir channel crystal structures, the 1p7b crystal structure is incomplete, missing 85 out of 333 residues, including the N-terminus and C-terminus. We measure solid-state NMR water proximity information and use this for refinement of KirBac1.1 using the Xplor-NIH structure determination program. Along with predicted dihedral angles and sparse intra- and inter-subunit distances, we refined the residues 1-300 to atomic resolution. All structural quality metrics indicate these restraints are a powerful way forward to solve high quality structures of membrane proteins using NMR.
Collapse
Affiliation(s)
- Reza Amani
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institutes of Digestive Diseases and Kidneys, NIH, Bethesda, MD, United States
| | - Collin G. Borcik
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Isaac R. Eason
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| | - Ruixian Han
- University of Wisconsin-Madison, Department of Biochemistry and Chemistry, Madison, WI, United States
| | - Benjamin D. Harding
- University of Wisconsin-Madison, Department of Biochemistry and Chemistry, Madison, WI, United States
- Biophysics Program, University of Wisconsin at Madison, Madison, WI, United States
| | - Benjamin J. Wylie
- Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, United States
| |
Collapse
|
23
|
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement. Proc Natl Acad Sci U S A 2021; 118:2112021118. [PMID: 34404723 DOI: 10.1073/pnas.2112021118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cosolvent effect arises from the interaction of cosolute molecules with a protein and alters the equilibrium between native and unfolded states. Denaturants shift the equilibrium toward the latter, while osmolytes stabilize the former. The molecular mechanism whereby cosolutes perturb protein stability is still the subject of considerable debate. Probing the molecular details of the cosolvent effect is experimentally challenging as the interactions are very weak and transient, rendering them invisible to most conventional biophysical techniques. Here, we probe cosolute-protein interactions by means of NMR solvent paramagnetic relaxation enhancement together with a formalism we recently developed to quantitatively describe, at atomic resolution, the energetics and dynamics of cosolute-protein interactions in terms of a concentration normalized equilibrium average of the interspin distance, [Formula: see text], and an effective correlation time, τc The system studied is the metastable drkN SH3 domain, which exists in dynamic equilibrium between native and unfolded states, thereby permitting us to probe the interactions of cosolutes with both states simultaneously under the same conditions. Two paramagnetic cosolute denaturants were investigated, one neutral and the other negatively charged, differing in the presence of a carboxyamide group versus a carboxylate. Our results demonstrate that attractive cosolute-protein backbone interactions occur largely in the unfolded state and some loop regions in the native state, electrostatic interactions reduce the [Formula: see text] values, and temperature predominantly impacts interactions with the unfolded state. Thus, destabilization of the native state in this instance arises predominantly as a consequence of interactions of the cosolutes with the unfolded state.
Collapse
|
24
|
Abstract
Electrostatic potentials computed from three-dimensional structures of biomolecules by solving the Poisson-Boltzmann equation are widely used in molecular biophysics, structural biology, and medicinal chemistry. Despite the approximate nature of the Poisson-Boltzmann theory, validation of the computed electrostatic potentials around biological macromolecules is rare and methodologically limited. Here, we present a unique and powerful NMR method that allows for straightforward and extensive comparison with electrostatic models for biomolecules and their complexes. This method utilizes paramagnetic relaxation enhancement arising from analogous cationic and anionic cosolutes whose spatial distributions around biological macromolecules reflect electrostatic potentials. We demonstrate that this NMR method enables de novo determination of near-surface electrostatic potentials for individual protein residues without using any structural information. We applied the method to ubiquitin and the Antp homeodomain-DNA complex. The experimental data agreed well with predictions from the Poisson-Boltzmann theory. Thus, our experimental results clearly support the validity of the theory for these systems. However, our experimental study also illuminates certain weaknesses of the Poisson-Boltzmann theory. For example, we found that the theory predicts stronger dependence of near-surface electrostatic potentials on ionic strength than observed in the experiments. Our data also suggest that conformational flexibility or structural uncertainties may cause large errors in theoretical predictions of electrostatic potentials, particularly for highly charged systems. This NMR-based method permits extensive assessment of near-surface electrostatic potentials for various regions around biological macromolecules and thereby may facilitate improvement of the computational approaches for electrostatic potentials.
Collapse
|
25
|
Abstract
The molecular properties of proteins are influenced by various ions present in the same solution. While site-specific strong interactions between multivalent metal ions and proteins are well characterized, the behavior of other ions that are only weakly interacting with proteins remains elusive. In the current study, using NMR spectroscopy, we have investigated anion-protein interactions for three proteins that are similar in size but differ in overall charge. Using a unique NMR-based approach, we quantified anions accumulated around the proteins. The determined numbers of anions that are electrostatically attracted to the charged proteins were notably smaller than the overall charge valences and were consistent with predictions from the Poisson-Boltzmann theory. This NMR-based approach also allowed us to measure ionic diffusion and characterize the anions interacting with the positively charged proteins. Our data show that these anions rapidly diffuse while bound to the proteins. Using the same experimental approach, we observed the release of the anions from the protein surface upon the formation of the Antp homeodomain-DNA complex. Using paramagnetic relaxation enhancement (PRE), we visualized the spatial distribution of anions around the free proteins and the Antp homeodomain-DNA complex. The obtained PRE data revealed the localization of anions in the vicinity of the highly positively charged regions of the free Antp homeodomain and provided further evidence of the release of anions from the protein surface upon the protein-DNA association. This study sheds light on the dynamic behavior of anions that electrostatically interact with proteins.
Collapse
|