1
|
Zhang J, Guo J, Xu R, Zheng D, Lian K, Zhang Z, Cao S, Jiang Z. Asymmetric copper-catalyzed hydrophosphinylation of ethynylazaarenes to access P-chiral 2-azaaryl-ethylphosphine oxides. Chem Sci 2025; 16:5957-5966. [PMID: 40060098 PMCID: PMC11886619 DOI: 10.1039/d5sc00358j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
We report a cost-effective approach for the enantioselective hydrophosphinylation of ethynylazaarenes utilizing a chiral copper catalytic platform. This strategy efficiently converts racemic secondary phosphine oxides (SPOs) into P-chiral tertiary phosphine oxides (TPOs) bearing functionalized olefin substituents with azaarene moieties, achieving high yields and exceptional enantioselectivities. These adducts serve as crucial intermediates in the development of valuable chiral 1,5-hybrid P,N-ligands. The facile introduction of diverse additional carbon-centered chirality through the transformation of the olefin moiety effectively enhances the enantioselectivity of asymmetric metal catalysis compared to ligands exhibiting solely P-chirality. Mechanistic investigations reveal that the interaction between the chiral Cu(i) complex and azaarenes promotes the kinetic resolution of SPOs. The robustness of this method is further demonstrated by its ability to incorporate deuterium atoms into the olefins, highlighting its potential relevance in pharmaceutical applications.
Collapse
Affiliation(s)
- Jialiang Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jiajia Guo
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ruhui Xu
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Di Zheng
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Kai Lian
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhaoxia Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan 475004 P. R. China
| |
Collapse
|
2
|
Huang J, Ma C, Sun J, Gao W, Lv Y, Yue H, Yi D, Wei W. Oxyphosphorodithiolation of Vinyl Azides with P 4S 10 and Alcohols Leading to β-Keto Phosphorodithioates. J Org Chem 2024; 89:18384-18392. [PMID: 39654500 DOI: 10.1021/acs.joc.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A simple strategy for the synthesis of β-keto phosphorodithioates has been developed through the direct oxyphosphorodithiolation of vinyl azides with P4S10 and alcohols in the presence of water. The reaction is conducted at room temperature to provide a number of β-keto phosphorodithioates in moderate to good yields. This methodology has the advantages of simple operation, mild condition, broad substrate scope, and favorable group compatibility.
Collapse
Affiliation(s)
- Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jian Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wenhui Gao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
3
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Sedikides A, Lennox AJJ. Silver-Catalyzed ( Z)-β-Fluoro-vinyl Iodonium Salts from Alkynes: Efficient and Selective Syntheses of Z-Monofluoroalkenes. J Am Chem Soc 2024; 146:15672-15680. [PMID: 38829699 PMCID: PMC11177317 DOI: 10.1021/jacs.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Monofluoroalkenes are stable and lipophilic amide bioisosteres used in medicinal chemistry. However, efficient and stereoselective methods for synthesizing Z-monofluoroalkenes are underdeveloped. We envisage (Z)-β-fluoro-vinyl iodonium salts (Z-FVIs) as coupling partners for the diverse and stereoselective synthesis of Z-monofluoroalkenes. Disclosed herein is the development and application of a silver(I)-catalyzed process for accessing a broad scope of (Z)-FVIs with exclusive Z-stereoselectivity and regioselectivity from alkynes in a single step. Experimental and computational studies provide insight into the mechanism of the catalytic cycle and the role of the silver(I) catalyst, and the reactivity of (Z)-FVIs is explored through several stereospecific derivatizations.
Collapse
Affiliation(s)
- Alexi
T. Sedikides
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Fan ZW, Li ZQ, Zhao BY, Wang MY, Zhang HX, Wang YQ. Acid Promoted Tetrafunctionalization of Terminal Alkynes: Geminal Diazidation and Dibromination. Org Lett 2024; 26:3878-3882. [PMID: 38678578 DOI: 10.1021/acs.orglett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The synthesis of complex alkanes by the tetrafunctionalization of alkynes is limited and challenging. Herein, an unprecedented efficient geminal diazidation and dibromination of terminal alkynes is developed, which provides novel access to structurally diverse organic azides. The approach has exclusive chemo- and regioselectivity and features mild reaction conditions, good tolerance of various functional groups, and more crucially, no metal involved in the reaction, thereby benefiting the late-stage decoration of medicinal molecules. A mechanistic study showed that the current geminal diazidation and dibromination proceeds via a radical pathway.
Collapse
Affiliation(s)
- Zhi-Wu Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Hong-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
6
|
Zheng L, Xu L, Gu P, Chen Y. Lattice engineering of noble metal-based nanomaterials via metal-nonmetal interactions for catalytic applications. NANOSCALE 2024; 16:7841-7861. [PMID: 38563756 DOI: 10.1039/d4nr00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Noble metal-based nanomaterials possess outstanding catalytic properties in various chemical reactions. However, the increasing cost of noble metals severely hinders their large-scale applications. A cost-effective strategy is incorporating noble metals with light nonmetal elements (e.g., H, B, C, N, P and S) to form noble metal-based nanocompounds, which can not only reduce the noble metal content, but also promote their catalytic performances by tuning their crystal lattices and introducing additional active sites. In this review, we present a concise overview of the recent advancements in the preparation and application of various kinds of noble metal-light nonmetal binary nanocompounds. Besides introducing synthetic strategies, we focus on the effects of introducing light nonmetal elements on the lattice structures of noble metals and highlight notable progress in the lattice strain engineering of representative core-shell nanostructures derived from these nanocompounds. In the meantime, the catalytic applications of the light element-incorporated noble metal-based nanomaterials are discussed. Finally, we discuss current challenges and future perspectives in the development of noble metal-nonmetal based nanomaterials.
Collapse
Affiliation(s)
- Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lei Xu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ping Gu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Wang T, Zong YY, Yang B, Huang T, Jin XL, Liu Q. Visible-Light-Driven Unsymmetric gem-Difunctionalization of Vinyl Azides with Thiosulfonates or Selenosulfonates. Org Lett 2024; 26:1683-1687. [PMID: 38363953 DOI: 10.1021/acs.orglett.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Thiosulfonylation and selenosulfonylation of vinyl azides with thiosulfonates and selenosulfonates were achieved using Cu(dap)2Cl as a photosensitizer under visible-light irradiation. This reaction is the application of a vinyl azide substrate in a group transfer radical addition (GTRA) reaction, through β-difunctionalization, to obtain a variety of unsymmetric difunctionalized N-unprotected enamines.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuan-Yuan Zong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Biao Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Geng ZQ, Zhao C, Qian HD, Li SJ, Peng H, Xu H. Cu/Ag-Mediated One-Pot Enantioselective Synthesis of Fully Decorated 1,2,3-Triazolo[1,5- a]pyrazines. Org Lett 2023. [PMID: 37294825 DOI: 10.1021/acs.orglett.3c01524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The synthesis of chiral triazole-fused pyrazine scaffolds from readily available substrates in a step-economical asymmetric catalytic way is highly appealing. We herein report that an efficient Cu/Ag relay catalyzed protocol employing cascade asymmetric propargylic amination, hydroazidation, and [3 + 2] cycloaddition reaction with high efficiency to access the target enantioenriched 1,2,3-triazolo[1,5-a]pyrazine has been accomplished by applying a novel N,N,P-ligand. The one-pot reaction of three components exhibits high functional group tolerance, excellent enantioselectivities, and a broad substrate scope with readily available starting materials.
Collapse
Affiliation(s)
- Zi-Qi Geng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chunhui Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao-Dong Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Si-Jia Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao Peng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
Wang W, Zhai XY, Zhao L. Mechanistic Insights into Multisilver-Mediated Synergistic Activation of Terminal Alkynes. Inorg Chem 2023; 62:1414-1422. [PMID: 36638060 DOI: 10.1021/acs.inorgchem.2c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Synergistic effect extensively exists in multimetal-involved catalytic or mediated processes of group 11 metals due to their remarkable metallophilic interactions. Herein, we present a multiple synergism model for alkynyl substrates and conduct theoretical investigations on various multimetallic bonding modes and the corresponding synergistic activations. We computationally screen nine alkynyl multisilver coordination modes and sequence their reactivity shown in an intramolecular nucleophilic addition reaction by the trend of active μ4-η1η1η2η2 and μ3-η1η1η2 to the relatively inert μ2-η1η2. The transition-state (TS) stabilization of the high-nuclearity mode mainly comes from the significant negative interaction energies between Agn and the substrate based on the distortion/interaction analysis. Energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis further reveals the charge-accepting reservoir effect of the polysilver moiety and the orbital match between the alkynyl group and specific spatial arrangement of silver atoms to account for this efficient activation. In addition, tests on different ligands coordinated to silver atoms show a correlation of the ligand conformation adjustability with the reactivity of the alkynyl unit, and the accommodable η2 activation unit embodies a lower deformation energy than the other homonuclear synergistic modes. Privileged multiple synergistic models have been further evidenced based on on-bench experiments by isolating trisilver and tetrasilver alkynyl complexes. This study not only systematically evaluates the multimetallic synergism of different coordination modes in alkyne activation but also provides a guidance for the future design of multimetallic catalysts.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Yi Zhai
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Wu Y, Frank N, Song Q, Liu M, Anderson EA, Bi X. Silver catalysis in organic synthesis: A computational view. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Light alloying element-regulated noble metal catalysts for energy-related applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63899-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Abstract
The first iron-catalyzed asymmetric azidation of benzylic peresters has been reported with trimethylsilyl azide (TMSN3) as the azido source. Hydrocarbon radicals that lack of strong interactions were capable to be enantioselectively azidated. The reaction features good functional group tolerance, high yields, and mild conditions. The chiral benzylic azides can further be used in click reaction, phosphoramidation, and reductive amination, which demonstrate the synthetic values of this reaction.
Collapse
Affiliation(s)
- Kaikai Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaoyan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Design, DFT studies, antimicrobial and antioxidant potential of Binuclear N-heterocyclic Carbene (NHCs) complexes, Probing the aspect of DNA interaction through In-vitro and In-silico approach. Comput Biol Chem 2021; 95:107591. [PMID: 34702631 DOI: 10.1016/j.compbiolchem.2021.107591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
N-heterocyclic carbene (NHC) adducts have shown remarkable biological potential for numerous medical applications. With an aim to improve biological potential of benzimidazolium salts, newer analogues of benzimidazole and their silver complexes were synthesized and characterized. Synthesized salts (L1-L2) and silver complexes (C1-C2) were confirmed through elemental analysis, UV-visible spectroscopy, FTIR, 1H NMR & 13C NMR spectroscopy. The compounds C1 & C2 were found stable in solution form for studied time period when examined spectroscopically and showed optimum lipophilicity when measured for their partition coefficient through flask shake method. Synthesized compounds showed good antimicrobial potential against gram positive bacterial strain S. Aureus with IC50 2.02±0.12 and 2.11±0.13 µM respectively while 2.11±0.1 and 2.28±0.17 µM against gram negative bacterial strain E. Coli for C1 and C2 respectively. The interaction study of the related compounds with DNA was predicted by molecular docking study, which confirmed that the studied compound C1 (-8.04 kcal/mol) has a higher binding energy than compound C2 (-4.23 kcal/mol); Also, the compound C1 exhibits a better affinity against to DNA than Ethidium bromide (-7.68 kcal/mol) and cisplatin (-6.21 kcal/mol).The claim was practically assured through spectroscopic and viscometeric method which confirmed that compounds have good affinity for DNA with binding constant kb, 5.78×104 M-1 and 6.84×104 M-1 for C1 and C2 respectively.
Collapse
|
14
|
Guo R, Zhang K, Ji S, Zheng Y, Jin M. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wang Y, Zhou Y, Ma X, Song Q. Solvent-Dependent Cyclization of 2-Alkynylanilines and ClCF 2COONa for the Divergent Assembly of N-(Quinolin-2-yl)amides and Quinolin-2(1 H)-ones. Org Lett 2021; 23:5599-5604. [PMID: 34259006 DOI: 10.1021/acs.orglett.1c01484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we present an expedient Cu-catalyzed [5 + 1] cyclization of 2-alkynylanilines and ClCF2COONa to divergent construction of N-(quinolin-2-yl)amides and quinolin-2(1H)-ones by regulating the reaction solvents. Notably, nitrile acts as a solvent and performs the Ritter reactions. ClCF2COONa is used as a C1 synthon in this transformation, which also represents the first example for utilization of ClCF2COONa as an efficient desiliconization reagent. The current protocol involves in situ generation of isocyanide, copper-activated alkyne, Ritter reaction and protonation.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China.,Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
16
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Computational study of silver-catalyzed stereoselective hydroalkylation of alkynes: Pauli repulsion controlled Z/ E selectivity. Chem Commun (Camb) 2021; 57:6412-6415. [PMID: 34086023 DOI: 10.1039/d1cc01917a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism and origin of stereoselectivity of silver-catalyzed hydroalkylation of alkynes were computationally investigated at the B3LYP-D3BJ/6-311+G(d,p)-SDD//B3LYP/6-31G(d)-LANL2DZ level. The complex of alkynyl trialkylboronate with cationic silver is a key intermediate, which triggers the rate- and stereoselectivity-determining 1,2-migration step. Energy decomposition analysis indicates that the difference of Pauli repulsion dominates the stereoselectivity.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
17
|
A practical and efficient method for late-stage deuteration of terminal alkynes with silver salt as catalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
19
|
Li S, Lu H, Xu Z, Wei F. Ni-Catalyzed asymmetric hetero-Diels–Alder reactions of conjugated vinyl azides: synthesis of chiral azido polycycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01597k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein an efficient Ni(ii)/Feng ligand-catalyzed asymmetric hetero-Diels–Alder reaction between conjugated vinyl azides with carbonyl groups, providing a synthesis of complicated chiral azido polycycles in high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Shunian Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Haifeng Lu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Zhenghu Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
- State Key Laboratory of Organometallic Chemistry
| | - Fang Wei
- Key Laboratory of Organic Chemistry in Jiangxi Province
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Nanchang 330013
- People's Republic of China
| |
Collapse
|
20
|
Ge L, Chiou MF, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
21
|
Nie B, Wu W, Ren Q, Wang Z, Zhang J, Zhang Y, Jiang H. Access to Cycloalkeno[ c]-Fused Pyridines via Pd-Catalyzed C(sp 2)-H Activation and Cyclization of N-Acetyl Hydrazones of Acylcycloalkenes with Vinyl Azides. Org Lett 2020; 22:7786-7790. [PMID: 32990446 DOI: 10.1021/acs.orglett.0c02466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel Pd(II)-catalyzed vinylic C-H activation and cyclization has been developed, reacting a series of small, medium, and large N-acetyl hydrazones of acylcycloalkenes with vinyl azides to access diverse cycloalkeno[c]-fused pyridine scaffolds. This protocol provides progress in C(sp2)-H bond activation of medium to large cycloalkenes, and the target products can be obtained in a specific regioselectivity with good functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Biao Nie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingyun Ren
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Zhongqing Wang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Ji Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Yingjun Zhang
- State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357), Sunshine Lake Pharma Company, Ltd., Dongguan 523871, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|