1
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
2
|
Davis CR, Ichiishi N, Burke BJ, Tedrow JS. Butyl Imidates: Highly Stable and Isolable Synthetic Intermediates. J Org Chem 2025; 90:1905-1911. [PMID: 39847341 DOI: 10.1021/acs.joc.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations. Optimization of reaction conditions and anti-solvent selection resulted in a general and scalable approach to access the imidate HCl salt in high yield. A multikilogram campaign of the butyl imidate demonstrated key improvements over the ethyl congener, addressing key practical challenges such as solubility, hydrolysis, and impurity formation. The scope was extended to a series of phenyl- and benzyl-substituted n-butyl imidates.
Collapse
Affiliation(s)
- Colton R Davis
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| | - Naoko Ichiishi
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| | - Brenda J Burke
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| | - Jason S Tedrow
- U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Singh PR, Lamba M, Goswami A. Copper-Catalyzed Chemoselective O-Arylation of Oxindoles: Access to Cyclic Aryl Carboxyimidates. J Org Chem 2024; 89:2926-2938. [PMID: 38354326 DOI: 10.1021/acs.joc.3c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed a highly efficient base- and additive-free chemoselective CuO-catalyzed strategy for the O-arylation of 2-oxindoles to synthesize 2-phenoxy-3H-indole and 2-phenoxy-1H-indole derivatives in the presence of diaryl iodonium salts. This method offers a variety of O-arylated oxindoles in good to excellent yields under relatively milder reaction conditions. Furthermore, this methodology was extended for the O-arylation of 2-pyridinone and isoindoline-1-one derivatives as well.
Collapse
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Manisha Lamba
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Indian Institute of Technology, Ropar 140001, Punjab, India
| |
Collapse
|
6
|
Chen Y, Zhang S, Li T, Ma Q, Yuan Y, Jia X. Oxidants Controlled C-H Bond Functionalization of N-Aryltetrahydroisoquinolines: The Construction of the Quaternary Carbon Center and Cleavage of the C-N Bond. Chemistry 2024; 30:e202303151. [PMID: 37875461 DOI: 10.1002/chem.202303151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
7
|
Maiti D, Saha A, Guin S, Maiti D, Sen S. Unveiling catalyst-free electro-photochemical reactivity of aryl diazoesters and facile synthesis of oxazoles, imide-fused pyrroles and tetrahydro-epoxy-pyridines via carbene radical anions. Chem Sci 2023; 14:6216-6225. [PMID: 37325143 PMCID: PMC10266477 DOI: 10.1039/d3sc00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/16/2023] [Indexed: 06/17/2023] Open
Abstract
Herein, we report a reagent-less (devoid of catalyst, supporting electrolyte, oxidant and reductant) electro-photochemical (EPC) reaction [electricity (50 μA) and blue LED (5 W)] of aryl diazoesters to generate radical anions which are subsequently reacted with acetonitrile or propionitrile and maleimides to generate diversely substituted oxazoles, diastereo-selective imide-fused pyrroles and tetrahydroepoxy-pyridines in good to excellent yield. Thorough mechanistic investigation including a 'biphasic e-cell' experiment supports the reaction mechanism involving a carbene radical anion. The tetrahydroepoxy-pyridines could be fluently converted to fused pyridines resembling vitamin B6 derivatives. The source of the electric current in the EPC reaction could be a simple cell phone charger. The reaction was efficiently scaled up to the gram level. Crystal structure, 1D, 2D NMRs and HRMS data confirmed the product structures. This report demonstrates a unique generation of radical anions via electro-photochemistry and their direct applications in the synthesis of important heterocycles.
Collapse
Affiliation(s)
- Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University Chithera, Dadri, Gautam Buddha Nagar UP 201314 India
| | - Argha Saha
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Srimanta Guin
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Debabrata Maiti
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University Chithera, Dadri, Gautam Buddha Nagar UP 201314 India
| |
Collapse
|
8
|
Yang JM, Lin YK, Sheng T, Hu L, Cai XP, Yu JQ. Regio-controllable [2+2] benzannulation with two adjacent C(sp 3)-H bonds. Science 2023; 380:639-644. [PMID: 37167386 PMCID: PMC10243499 DOI: 10.1126/science.adg5282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Regiocontrol in traditional cycloaddition reactions between unsaturated carbon compounds is often challenging. The increasing focus in modern medicinal chemistry on benzocyclobutene (BCB) scaffolds indicates the need for alternative, more selective routes to diverse rigid carbocycles rich in C(sp3) character. Here, we report a palladium-catalyzed double C-H activation of two adjacent methylene units in carboxylic acids, enabled by bidentate amide-pyridone ligands, to achieve a regio-controllable synthesis of BCBs through a formal [2+2] cycloaddition involving σ bonds only (two C-H bonds and two aryl-halogen bonds). A wide range of cyclic and acyclic aliphatic acids, as well as dihaloheteroarenes, are compatible, generating diversely functionalized BCBs and hetero-BCBs present in drug molecules and bioactive natural products.
Collapse
Affiliation(s)
- Ji-Min Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yu-Kun Lin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xin-Pei Cai
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Oku N, Miura T. Cu-Catalyzed Double C(sp 3)-H Functionalization of Ethylarenes to Form Arylethanolamines. J Org Chem 2023. [PMID: 37163526 DOI: 10.1021/acs.joc.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A double C(sp3)-H functionalization of ethylarenes with alcohols and N-fluorobenzenesulfonimide is reported. The reaction proceeds in three stages. (1) Cu-catalyzed benzylic alkoxylation of ethylarenes gives 1-(1-alkoxyethyl)benzenes. (2) The resulting 1-(1-alkoxyethyl)benzenes are gradually converted into vinylarenes. (3) Cu-catalyzed aminoalkoxylation of the intermediary vinylarenes yields arylethanolamines. Overall, the C-N and C-O bonds are introduced regioselectively at the homobenzylic and benzylic positions of ethylarenes.
Collapse
Affiliation(s)
- Naoki Oku
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Ding H, Zhang S, Sun Z, Ma Q, Li Y, Yuan Y, Jia X. Tris(4-bromophenyl)aminium Hexachloroantimonate as a "Waste-Utilized"-Type Initiator-Promoted C-H Chlorination via C-H Activation Relay: Synthesis of Chlorinated Pyrroles. J Org Chem 2022; 87:15139-15151. [PMID: 36398528 DOI: 10.1021/acs.joc.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using tris(4-bromophenyl)aminium hexachloroantimonate as a "waste-utilized"-type initiator, the aerobic oxidation of the sp3 C-H bond of proline esters was realized via C-H activation relay, giving a series of halogenated pyrroles in high yields. The mechanistic study revealed that the counterion, SbCl6-, was involved in the radical chlorination process, which provides a new way to understand the role of the counterions.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yuemei Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
11
|
Yadav MS, Jaiswal MK, Kumar S, Singh SK, Ansari FJ, Tiwari VK. One-pot expeditious synthesis of glycosylated esters through activation of carboxylic acids using trichloroacetonitrile. Carbohydr Res 2022; 521:108674. [PMID: 36126412 DOI: 10.1016/j.carres.2022.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Acetimidates, a valuable intermediate has been well explored as versatile synthon in a number of organic transformations particularly as suitable donors in glycosylation reactions. Herein, we explored acetimidates to furnish high-to-excellent yield of diverse glycosylated esters under one-pot mild reaction condition. The commercially available trichloroacetonitrile is implemented for the activation of carboxylic acid via in situ generation of trichloroacetimidate, which was subsequently attacked by sugar alcohols to deliver high-to-excellent yields of desired glycosylated esters. The devised method has some notable features such as metal-free condition, one-pot mild reaction condition, easy-handling, high-to-excellent yields, and broad substrate scope.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
13
|
Li K, Li Q, Shi Q, He Y, Yu W, Chang J. Iodine‐Mediated sp3 C–H Amination Reactions Forming α‐Amino Ketones/Esters and Fused Imidazoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kailu Li
- Zhengzhou University College of Chemistry CHINA
| | - Qianmin Li
- Zhengzhou University College of Chemistry CHINA
| | - Qinhao Shi
- Zhengzhou University College of Chemistry CHINA
| | - Yanmin He
- Zhengzhou University College of Chemistry CHINA
| | - Wenquan Yu
- Zhengzhou University College of Chemistry 100 Science Avenue 450001 Zhengzhou CHINA
| | | |
Collapse
|
14
|
Mou XQ, Ren LC, Zhang M, Wang M, Jin YF, Guan QX, Cai A, Zhang SM, Ren H, Zhang Y, Chen YZ. Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of O-Homoallyl Benzimidates and N-Alkenyl Amidines with Sodium Sulfinates. Org Lett 2022; 24:1405-1411. [PMID: 35138858 DOI: 10.1021/acs.orglett.2c00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complementary copper-catalyzed and electrochemical aminosulfonylation of O-homoallyl benzimidates and N-alkenyl amidines with sodium sulfinates was developed. The terminal alkene substrate produced sulfone-containing 1,3-oxazines and tetrahydropyrimidines in the presence of Cu(OAc)2, Ag2CO3, and DPP, and under similar reaction conditions, sulfonylated tetrahydro-1,3-oxazepines were prepared from 1-aryl-substituted O-homoallyl benzimidates in moderate to good yields. For certain electron-rich 1,1-diaryl-substituted alkene substrates, the corresponding tetrahydro-1,3-oxazepines could also be obtained in similar or even higher yields via a green electrochemical technique.
Collapse
Affiliation(s)
- Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Mei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Fan Jin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qing-Xin Guan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Ang Cai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Shi-Min Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
15
|
Abstract
The majority of medicines contain a nitrogen atom within a five- or six- membered ring. To rapidly access both such aza-heterocycles, we sought to develop a remote C-H desaturation of amines. Inspired by the Hofmann-Löffler-Freytag synthesis of five-membered pyrrolidines, we tackled the century-old challenge of synthesizing six-membered piperidines by H-atom transfer. We present herein a double, vicinal C-H oxidation by dual catalysis, entailing Ir photocatalytic initiation of 1,5-HAT by an N-centered radical and Cu-catalyzed interception of the C-centered radical to facilitate desaturation. By this mechanism, two C-H bonds (δ and ε to N) are regioselectively removed from unbiased, remote positions of an alkyl chain. Over 50 examples illustrate efficiency, selectivity, functional group tolerance, and medicinal utility of this synthesis of both internal and terminal δ vinylic amines and aza-heterocycles. Mechanistic experiments probe the alkylcopper intermediate, as well as kinetics and regioselectivity of the HAT and elimination steps.
Collapse
|
16
|
Zheng T, Berman JL, Michael FE. Diastereoconvergent synthesis of anti-1,2-amino alcohols with N-containing quaternary stereocenters via selenium-catalyzed intermolecular C–H amination. Chem Sci 2022; 13:9685-9692. [PMID: 36091896 PMCID: PMC9400650 DOI: 10.1039/d2sc02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn-1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction. We report a diastereoconvergent synthesis of anti-1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide.![]()
Collapse
Affiliation(s)
- Tianyi Zheng
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Janna L. Berman
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | - Forrest E. Michael
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| |
Collapse
|
17
|
Liu HC, Kong X, Gong XP, Li Y, Niu ZJ, Gou XY, Li XS, Wang YZ, Shi WY, Huang YC, Liu XY, Liang YM. Site-Selective Coupling of Remote C(sp3)−H/meta-C(sp2)−H Bonds Enabled by Ru/Photoredox Dual Catalysis and Mechanistic Studies. Chem Sci 2022; 13:5382-5389. [PMID: 35655562 PMCID: PMC9093131 DOI: 10.1039/d2sc00764a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Construction of C(sp2)−C(sp3) bonds via regioselective coupling of C(sp2)−H/C(sp3)−H bonds is challenging due to the low reactivity and regioselectivity of C−H bonds. Here, a novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling...
Collapse
Affiliation(s)
- Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
18
|
Abstract
Desaturation of inert aliphatic C-H bonds in alkanes to form the corresponding alkenes is challenging. In this communication, a new and practical strategy for remote site-selective desaturation of amides via radical chemistry is reported. The readily installed N-allylsulfonylamide moiety serves as an N radical precursor. Intramolecular 1,5-hydrogen atom transfer from an inert C-H bond to the N-radical generates a translocated C-radical which is subsequently oxidized and deprotonated to give the corresponding alkene. The commercially available methanesulfonyl chloride is used as reagent and a Cu/Ag-couple as oxidant. The remote desaturation is realized on different types of unactivated sp3 -C-H bonds. The potential synthetic utility of this method is further demonstrated by the dehydrogenation of natural product derivatives and drugs.
Collapse
Affiliation(s)
- Yong Xia
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
- School of Chemistry and Chemical EngineeringChongqing UniversityNo.55 University Town South Road, Shapingba DistrictChongqing400044P. R. China
| | - Kalipada Jana
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
19
|
Hui C, Brieger L, Strohmann C, Antonchick AP. Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. J Am Chem Soc 2021; 143:18864-18870. [PMID: 34748319 PMCID: PMC8603356 DOI: 10.1021/jacs.1c10175] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a contractive synthesis of multisubstituted cyclobutanes containing multiple stereocenters from readily accessible pyrrolidines using iodonitrene chemistry. Mediated by a nitrogen extrusion process, the stereospecific synthesis of cyclobutanes involves a radical pathway. Unprecedented unsymmetrical spirocyclobutanes were prepared successfully, and a concise, formal synthesis of the cytotoxic natural product piperarborenine B is reported.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Lukas Brieger
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.,Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| |
Collapse
|
20
|
Bera M, Lee DS, Cho EJ. Advances in N-centered intermediates by energy transfer photocatalysis. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tiwari VK, Yadav MS, Jaiswal MK, Kumar S. Trichloroacetimidate-Triggered Expeditious and Novel Synthesis of N-Acylbenzotriazoles. SYNOPEN 2021. [DOI: 10.1055/a-1656-7293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractA facile route for the synthesis of a diverse range of N-acylbenzotriazole derivatives from the corresponding carboxylic acids has been established through a carbonyl activation pathway. In this method, trichloroacetonitrile is performed as an effective reagent for an easy access of N-acylbenzotriazoles which was simply proceeded through the activation of carboxylic acids via in situ imidate formation in anhydrous 1,2-dichloroethane followed by addition of 1H-benzotriazole at 80 °C for 3–4 h. Easy handling, one-pot, and metal-free conditions demonstrate the notable merits of the devised protocol.
Collapse
|
22
|
Wu Z, Pratt DA. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. Angew Chem Int Ed Engl 2021; 60:15598-15605. [PMID: 33929774 DOI: 10.1002/anie.202104595] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of carboxylic acids into disulfides is described. The approach employs oxidative photocatalysis for base-promoted decarboxylation of the substrate, which yields an alkyl radical that reacts with a trisulfide dioxide through homolytic substitution. The trisulfide dioxides are easily prepared by a newly described approach. 1°, 2°, and 3° carboxylic acids with varied substitution are good substrates, including amino acids and substrates with highly activated C-H bonds. Trisulfide dioxides are also used to achieve the γ-C(sp3 )-H disulfuration of amides through a radical relay sequence. In both reactions, the sulfonyl radical that results from substitution propagates the reaction. Factors governing the selectivity of substitution at S2 versus S3 of the trisulfide dioxides have been explored.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
23
|
Wu Z, Pratt DA. A Divergent Strategy for Site‐Selective Radical Disulfuration of Carboxylic Acids with Trisulfide‐1,1‐Dioxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
24
|
Sujatha C, Nallagangula M, Namitharan K. Harnessing In Situ Radical Oxygenation: Copper-Catalyzed Interrupted Azirine-Alkyne Ring-Expansion Reaction for the Synthesis of Pyrrolones. Org Lett 2021; 23:4219-4223. [PMID: 34010563 DOI: 10.1021/acs.orglett.1c01162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report a novel interrupted azirine-alkyne ring-expansion reaction with molecular oxygen for the direct synthesis of highly functionalized pyrrolones enabled by copper catalysis. Mechanistic investigations indicate that the present three-component reaction proceeds via two copper-catalyzed sequential reactions, an azirine-ring-opening alkynylation and an amine-directed radical oxygenation, leading to the formation of interesting pyrrolone structures under mild conditions.
Collapse
Affiliation(s)
- Chandragiri Sujatha
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRMIST, Kattankulathur 603 203, Tamil Nadu, India
| | - Madhu Nallagangula
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRMIST, Kattankulathur 603 203, Tamil Nadu, India
| | - Kayambu Namitharan
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRMIST, Kattankulathur 603 203, Tamil Nadu, India.,Amity Institute of Click Chemistry Research and Studies, Amity University, Noida 201 301, Uttar Pradesh, India
| |
Collapse
|
25
|
Moriyama K. Recent Advances in Retained and Dehydrogenative Dual Functionalization Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry Graduate School of Science and Soft Molecular Activation Research Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
26
|
Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Oxidation of the inert sp 3 C-H bonds of tetrahydroisoquinolines through C-H activation relay (CHAR): construction of functionalized isoquinolin-1-ones. Chem Commun (Camb) 2021; 57:3347-3350. [PMID: 33659968 DOI: 10.1039/d1cc00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A TBN/O2-initiated oxidation of the relatively inert 3,4-C-H bonds of THIQs was accomplished, in which the existence of an α-phosphoric ester group is crucial to enable dioxygen trapping and intramolecular HAT (C-H activation relay, CHAR), realizing the synthesis of a series of isoquinolin-1-ones in high yields. The mechanistic study confirmed that the formation of the 3,4-double bond is mediated by the CHAR process. This work provides a new strategy to achieve remote C-H bond activation.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Ngo DT, Nagib DA. Regioselective Radical Amino-Functionalizations of Allyl Alcohols via Dual Catalytic Cross-Coupling. ACS Catal 2021; 11:3473-3477. [PMID: 34745713 DOI: 10.1021/acscatal.1c00404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regioselective amination and cross-coupling of a range of nucleophiles with allyl alcohols has been enabled by a dual catalytic strategy. This approach entails the combined action of an Ir photocatalyst that enables mild access to N-radicals via an energy transfer mechanism, as well as a Cu complex that intercepts the ensuing alkyl radical upon cyclization. Merger of this Cu-catalyzed cross-coupling enables a broad range of nucleophiles (e.g. CN, SCN, N3, vinyl, allyl) to engage in radical amino-functionalizations of olefins. Notably, stereo, regio, and kinetic probes provide insights into the nature of this Cu-based radical interception.
Collapse
Affiliation(s)
- Zuxiao Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Duong T. Ngo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Shen T, Lambert TH. Electrophotocatalytic diamination of vicinal C-H bonds. Science 2021; 371:620-626. [PMID: 33542135 DOI: 10.1126/science.abf2798] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/06/2021] [Indexed: 01/07/2023]
Abstract
The conversion of unactivated carbon-hydrogen (C-H) bonds to carbon-nitrogen (C-N) bonds is a highly valued transformation. Existing strategies typically accomplish such reactions at only a single C-H site because the first derivatization diminishes the reactivity of surrounding C-H bonds. Here, we show that alkylated arenes can undergo vicinal C-H diamination reactions to form 1,2-diamine derivatives through an electrophotocatalytic strategy, using acetonitrile as both solvent and nitrogen source. The reaction is catalyzed by a trisaminocyclopropenium (TAC) ion, which undergoes anodic oxidation to furnish a stable radical dication while the cathodic reaction reduces protons to molecular hydrogen. Irradiation of the TAC radical dication (wavelength of maximum absorption of 450 to 550 nanometers) with a white-light compact fluorescent light generates a strongly oxidizing photoexcited intermediate. Depending on the electrolyte used, either 3,4-dihydroimidazole or aziridine products are obtained.
Collapse
Affiliation(s)
- Tao Shen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
29
|
Lee W, Jeon HJ, Jung H, Kim D, Seo S, Chang S. Controlled Relay Process to Access N-Centered Radicals for Catalyst-free Amidation of Aldehydes under Visible Light. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Wood JM, de Carvalho RL, da Silva Júnior EN. The Different Facets of Metal-Catalyzed C-H Functionalization Involving Quinone Compounds. CHEM REC 2021; 21:2604-2637. [PMID: 33415843 DOI: 10.1002/tcr.202000163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Metal-catalysed C-H functionalization has emerged as a powerful platform for the derivatization of quinones, a class of compounds with wide-ranging applications. This review organises and discusses the evolution of this chemistry from early Fujiwara-Moritani reactions, through to modern directing-group assisted C-H functionalization processes, including C-H functionalization reactions directed by the quinone ring itself. Mechanistic details of these reactions are provided to afford insight into how the unique reactivity of quinoidal compounds has been leveraged in each example.
Collapse
Affiliation(s)
- James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
31
|
Guo W, Wang Q, Zhu J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem Soc Rev 2021; 50:7359-7377. [DOI: 10.1039/d0cs00774a] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of heteroatom-centred radicals followed by intramolecular 1,5-HAT and functionalisation of the translocated carbon-centred radical is an efficient way to functionalize chemo- and regio-selectively the remote unactivated C(sp3)–H bond.
Collapse
Affiliation(s)
- Weisi Guo
- College of Chemistry & Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao
- P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| |
Collapse
|
32
|
Hu Y, Ma X, Hou H, Sun W, Tu S, Wu M, Lin R, Xu X, Ke F. Electrochemical oxidative synthesis of 2-benzoylquinazolin-4(3 H)-one via C(sp 3)–H amination under metal-free conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01230d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemically induced C(sp3)–H amination of 2-aminobenzamides with ketones using TBAI as a catalyst was developed, and provided 2-benzoylquinazolin-4(3H)-ones under metal-free conditions.
Collapse
Affiliation(s)
- Yongzhi Hu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Shuqing Tu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Mei Wu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Rongkun Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Xiuzhi Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
33
|
Liu J, Lu L, Wood D, Lin S. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS CENTRAL SCIENCE 2020; 6:1317-1340. [PMID: 32875074 PMCID: PMC7453421 DOI: 10.1021/acscentsci.0c00549] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 05/04/2023]
Abstract
As the breadth of radical chemistry grows, new means to promote and regulate single-electron redox activities play increasingly important roles in driving modern synthetic innovation. In this regard, photochemistry and electrochemistry-both considered as niche fields for decades-have seen an explosive renewal of interest in recent years and gradually have become a cornerstone of organic chemistry. In this Outlook article, we examine the current state-of-the-art in the areas of electrochemistry and photochemistry, as well as the nascent area of electrophotochemistry. These techniques employ external stimuli to activate organic molecules and imbue privileged control of reaction progress and selectivity that is challenging to traditional chemical methods. Thus, they provide alternative entries to known and new reactive intermediates and enable distinct synthetic strategies that were previously unimaginable. Of the many hallmarks, electro- and photochemistry are often classified as "green" technologies, promoting organic reactions under mild conditions without the necessity for potent and wasteful oxidants and reductants. This Outlook reviews the most recent growth of these fields with special emphasis on conceptual advances that have given rise to enhanced accessibility to the tools of the modern chemical trade.
Collapse
Affiliation(s)
| | | | | | - Song Lin
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New
York 14853, United States
| |
Collapse
|
34
|
Lux MC, Jurczyk J, Lam YH, Song ZJ, Ma C, Roque JB, Ham JS, Sciammetta N, Adpressa D, Sarpong R, Yeung CS. Synthesis of Bridged Bicyclic Amines by Intramolecular Amination of Remote C–H Bonds: Synergistic Activation by Light and Heat. Org Lett 2020; 22:6578-6583. [DOI: 10.1021/acs.orglett.0c02345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michaelyn C. Lux
- MRL Postdoctoral Fellow, Discovery Chemistry, Merck & Co., Inc. 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yu-hong Lam
- Computational and Structural Chemistry, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhiguo J. Song
- External Discovery Process Chemistry, Department of Process Research & Development, Merck & Co., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Chao Ma
- WuXi Apptec Co., Ltd., 168 Nanhai Road, Tianjin Economic-Technological Development
Area, Tianjin 330457, China
| | - Jose B. Roque
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jin Su Ham
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nunzio Sciammetta
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Donovon Adpressa
- Analytical Research & Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Charles S. Yeung
- Disruptive Chemistry Fellow, Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Du D, Zhang K, Ma R, Chen L, Gao J, Lu T, Shi Z, Feng J. Bio- and Medicinally Compatible α-Amino-Acid Modification via Merging Photoredox and N-Heterocyclic Carbene Catalysis. Org Lett 2020; 22:6370-6375. [DOI: 10.1021/acs.orglett.0c02202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ding Du
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Kuili Zhang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Ma
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lei Chen
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhihao Shi
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
36
|
Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Tris(4-bromophenyl)aminium Hexachloroantimonate-Initiated Oxidative Povarov-Type Reaction between Glycine Esters and (Cyclopropylidenemethyl)benzenes Using the Counterion as a Chlorine Donor. Org Lett 2020; 22:6294-6298. [DOI: 10.1021/acs.orglett.0c02054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yichun Su
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
37
|
Saito A, Togo H. Photochemical Transformation of O
-(β-Arylethyl) Arylimidates into 2,4-Diaryl-5-iodoxazoles with 1,3-Diiodo-5,5-dimethylhydantoin. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Aya Saito
- Graduate School of Science; Chiba University; Yayoi-cho 1-33 263-8522 Chiba Inage-ku Japan
| | - Hideo Togo
- Graduate School of Science; Chiba University; Yayoi-cho 1-33 263-8522 Chiba Inage-ku Japan
| |
Collapse
|