1
|
Shan WL, Si N, Xu MT, Chen ZY, Zhao G, Tang H, Jin GX. One-Step Directed Self-Assembly of Molecular Closed Four-Link Chains and Borromean Links. Angew Chem Int Ed Engl 2025; 64:e202501965. [PMID: 39980201 DOI: 10.1002/anie.202501965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Despite substantial advancements in the synthesis of mechanically interlocked molecules (MIMs), the efficient construction of higher order links remains a formidable challenge. Herein, we report the highly efficient one-step directed construction of a series of unprecedented molecular closed four-link chains (84 1 metalla-links), achieved through the synergistic assembly of coordination-driven and aromatic stacking interactions involving binuclear rhodium/iridium precursors and bis-dentate benzothiadiazole derivative ligands. Meanwhile, modulating the substituent positions of the pyridine groups in the ligand resulted in a change in topological structure, leading to the formation of two molecular Borromean links (6 2 3 ${6_2^3 }$ metalla-links). The molecular configurations of the abovementioned metalla-links were clearly identified through mass spectrometry, NMR, and single-crystal X-ray diffraction. Furthermore, structural transformation between the molecular Borromean links and corresponding monocycles was achieved through concentration effects, as validated by solution-state NMR spectroscopy investigations.
Collapse
Affiliation(s)
- Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Nian Si
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Meng-Ting Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Zhi-Yang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Gen Zhao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Haitong Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Dang LL, Zheng J, Tian D, Chai YH, Wu TT, Yang JX, Wang P, Zhao Y, Aznarez F, Ma LF. Highly Selective Construction of Unique Cyclic [4]Catenanes Induced by Multiple Noncovalent Interactions. Angew Chem Int Ed Engl 2025; 64:e202422444. [PMID: 39714342 DOI: 10.1002/anie.202422444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The synthesis of high-ordered mechanically interlocked supramolecular structures is an extremely challenging topic. Only two linear [4]catenanes have been reported so far and there is no defined strategy to obtain cyclic [4]catenane. Herein, two unprecedented cyclic [4]catenanes, 1 and 2, were prepared in high yields. The syntheses rely on the strategic selection of naphthalenediimide (NDI) based Cp*Rh/Ir building blocks E1/E2 (Cp*=pentamethyl-cyclopentadienyl) and nonlinear diimidazole ligand precursor L1, exhibiting large conjugate plane, appropriate coordination angles, and freely rotating imidazole units, thereby enabling multiple π⋅⋅⋅π stacking interactions to maintain the supramolecular structures. The use of other Cp*Rh building blocks E3, E4 or E5 featuring slightly shorter metal-to-metal distances than E1/E2 and different chemical properties led to the formation of a complex 3 and two metallamacrocycles 4 or 5, respectively. The structures of these assemblies were confirmed by X-ray crystallographic analysis, ESI-TOF-MS and NMR spectroscopy. Complex 1, exhibiting a broad-band absorption in the UV/Vis to NIR regions and a remarkable photothermal conversion was thereafter used to build the new 1 membrane. The solar power-induced water steam generation performance of 1 membrane was investigated, reaching a value of 2.37 kg ⋅ m-2 ⋅ h-1, making it suitable for collection of fresh water via desalination and wastewater.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Tian-Tian Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jian-Xin Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Peng Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Francisco Aznarez
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China
- College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
3
|
Gupta G, Lee J, Hadiputra R, Jung J, Stang PJ, Lee CY. Pyrene-Functionalized Ru-Catenated Metallacycles: Conversion of Catenated System to Monorectangle through Aging. J Am Chem Soc 2024; 146:30222-30230. [PMID: 39440841 DOI: 10.1021/jacs.4c09282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Molecular transformation behavior within a mechanically interlocked system is often assisted by chemical manipulation, such as the inclusion of guest molecules, variation in the solution concentration, or swapping of solvents. We present in this report the synthesis of ruthenium metal and π-conjugated pyrene-based (2 + 2)2 catenated rectangles. Additionally, we discuss the structural conversion of these catenated rectangles into monorectangles through adjustments in concentration and solvent composition. In the presence of a methanol solution, a transformation into monorectangles was observed as the concentration declined. However, interestingly, in the presence of a nitromethane solution, an alteration in conformation to monorectangles was noted by just standing at room temperature for a few hours without any chemical manipulation. Furthermore, theoretical calculations were studied to provide insights into the formation of catenated structures over other potential ring-in-ring or Borromean-ring-type structures. The computational study with the GFN2-xTB method combined with density functional theory (DFT) calculations showed that the lower binding energy within the rectangles favors a catenated structure over other potential ring-in-ring or Borromean-ring-type structures. This work represents a new example of an intertwined structure that self-assembles into a catenated ring rather than a ring-in-ring or Borromean ring and transforms into a monorectangle in nitromethane without the use of any template, alteration in solution concentration, or exchange of solvents, but simply by standing at room temperature.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Rizky Hadiputra
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Bao SJ, Zou Y, Zhang HN, Jin GX. The codriven assembly of molecular metalla-links ([Formula: see text], [Formula: see text]) and metalla-knots ([Formula: see text], [Formula: see text]) via coordination and noncovalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2407570121. [PMID: 38941275 PMCID: PMC11228484 DOI: 10.1073/pnas.2407570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
Although mechanically interlocked molecules (MIMs) display unique properties and functions associated with their intricate connectivity, limited assembly strategies are available for their synthesis. Herein, we presented a synergistic assembly strategy based on coordination and noncovalent interactions (π-π stacking and CH⋯π interactions) to selectively synthesize molecular closed three-link chains ([Formula: see text] links), highly entangled figure-eight knots ([Formula: see text] knots), trefoil knot ([Formula: see text] knot), and Borromean ring ([Formula: see text] link). [Formula: see text] links can be created by the strategic assembly of nonlinear multicurved ligands incorporating a furan or phenyl group with the long binuclear half-sandwich organometallic Cp*RhIII (Cp* = η5-pentamethylcyclopentadienyl) clip. However, utilizing much shorter binuclear Cp*RhIII units for union with the 2,6-naphthyl-containing ligand led to a [Formula: see text] knot because of the increased π-π stacking interactions between four consecutive stacked layers and CH⋯π interactions. Weakening such π-π stacking interactions resulted in a [Formula: see text] knot. The universality of this synergistic assembly strategy for building [Formula: see text] knots was verified by utilizing a 1,5-naphthyl-containing ligand. Quantitative conversion between the [Formula: see text] knot and the simple macrocycle species was accomplished by adjusting the concentrations monitored by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Furthermore, increasing the stiff π-conjugated area of the binuclear unit afforded molecular Borromean ring, and this topology is a topological isomer of the [Formula: see text] link. These artificial metalla-links and metalla-knots were confirmed by single-crystal X-ray diffraction, NMR and ESI-MS. The results offer a potent strategy for building higher-order MIMs and emphasize the critical role that noncovalent interactions play in creating sophisticated topologies.
Collapse
Affiliation(s)
- Shu-Jin Bao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Yan Zou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| |
Collapse
|
5
|
Tang H, Zhang HN, Gao X, Zou Y, Jin GX. The Topological Transformation of Trefoil Knots to Solomon Links via Diels-Alder Click Reaction. J Am Chem Soc 2024; 146:16020-16027. [PMID: 38815259 DOI: 10.1021/jacs.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The quest for more efficient, user-friendly, and less wasteful topological transformations remains a significant challenge in the realm of postassembly modifications. In this article, high yields of two molecular trefoil knots (Rh-1, Ir-1) were obtained using ligand 3,6-bis(3-(pyridin-4-yl)phenyl)-1,2,4,5-tetrazine (L1) with reactive tetrazine units and binuclear half-sandwich organometallic units [Cp*2M2(μ-TPPHZ)(OTf)2](OTf)2 (Rh-B, M = RhIII; Ir-B, M = IrIII). 2,5-Norbornadiene was used as an inducer of the Diels-Alder click reaction to modulate rapidly and efficiently the transformation of Trefoil knots to Solomon links. However, the key to achieving this topological structural change is the subtle increase in site steric of the pyridazine fragments (L2), which allows the molecular structures to spread and bend in three-dimensional space, as confirmed by single-crystal X-ray diffraction, ESI-TOF/MS, elementary analysis and detailed solution-state NMR techniques.
Collapse
Affiliation(s)
- Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Zhao H, Huang L, Liu W, Dong Q, Bai Q, Yuan J, Jiang Z, Chen M, Liu D, Wang J, Li Y, Wang P. Segmented Template-Directed Self-Assembly of Giant Truncated Triangular Supramolecules. Inorg Chem 2024; 63:4152-4159. [PMID: 38372260 DOI: 10.1021/acs.inorgchem.3c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The template-directed strategy has been extensively employed for the construction of supramolecular architectures. However, with the increase in the size and complexity of these structures, the synthesis difficulty of the templates escalates exponentially, thereby impeding the widespread application of this strategy. In this study, two truncated triangles T1 and T2 were successfully self-assembled through a novel segmented template strategy by segmenting the core triangular template into portions. Two metallo-organic ligands L2 and L3 were designed and synthesized by dividing the central stable triangle into three separate parts and incorporating them into the precursor ligands, which served as templates to guide the self-assembly process with ligands L1 and L4, respectively. The assembled structures were unambiguously characterized by multidimensional and multinuclear NMR (1H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), and transmission electron microscopy (TEM). Moreover, we observed the formation of fiberlike nanotubes from single-molecule triangles by hierarchical self-assembly.
Collapse
Affiliation(s)
- He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Linlin Huang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Wenping Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Xinxiang 453007, Henan, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Li Z, Zhang J, Li G, Puddephatt RJ. Self-assembly of the smallest and tightest molecular trefoil knot. Nat Commun 2024; 15:154. [PMID: 38168068 PMCID: PMC10762025 DOI: 10.1038/s41467-023-44302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Molecular knots, whose synthesis presents many challenges, can play important roles in protein structure and function as well as in useful molecular materials, whose properties depend on the size of the knotted structure. Here we report the synthesis by self-assembly of molecular trefoil metallaknot with formula [Au6{1,2-C6H4(OCH2CC)2}3{Ph2P(CH2)4PPh2}3], Au6, from three units of each of the components 1,2-C6H4(OCH2CCAu)2 and Ph2P(CH2)4PPh2. Structure determination by X-ray diffraction revealed that the chiral trefoil knot contains only 54 atoms in the backbone, so that Au6 is the smallest and tightest molecular trefoil knot known to date.
Collapse
Affiliation(s)
- Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Richard J Puddephatt
- Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
8
|
Zhang YW, Lu Y, Sun LY, Dutschke PD, Gan MM, Zhang L, Hepp A, Han YF, Hahn FE. Unravelling the Roles of Solvophobic Effects and π⋅⋅⋅π Stacking Interactions in the Formation of [2]Catenanes Featuring Di-(N-Heterocyclic Carbene) Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202312323. [PMID: 37819869 DOI: 10.1002/anie.202312323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
A series of [2]catenanes has been prepared from di-NHC building blocks by utilizing solvophobic effects and/or π⋅⋅⋅π stacking interactions. The dinickel naphthobiscarbene complex syn-[1] and the kinked biphenyl-bridged bipyridyl ligand L2 yield the [2]catenane [2-IL](OTf)4 by self-assembly. Solvophobic effects are pivotal for the formation of the interlocked species. Substitution of the biphenyl-linker in L2 for a pyromellitic diimide group gave ligand L3 , which yielded in combination with syn-[1] the [2]catenane [3-IL](OTf)4 . This assembly exhibits enhanced stability in diluted solution, aided by additional π⋅⋅⋅π stacking interactions. The π⋅⋅⋅π stacking was augmented by the introduction of a pyrene bridge between two NHC donors in ligand L4 . Di-NHC precursor H2 -L4 (PF6 )2 reacts with Ag2 O to give the [Ag2 L4 2 ]2 [2]catenane [4-IL](PF6 )4 , which shows strong π⋅⋅⋅π stacking interactions between the pyrene groups. This assembly was readily converted into the [Au2 L4 2 ]2 gold species [5-IL](PF6 )4 , which exhibits exceptional stability based on the strong π⋅⋅⋅π stacking interactions and the enhanced stability of the Au-CNHC bonds.
Collapse
Affiliation(s)
- Ya-Wen Zhang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
- College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, China, 200234
| | - Li-Ying Sun
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ming-Ming Gan
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Le Zhang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Ying-Feng Han
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
9
|
Chen T, Zhao Y, Dang LL, Zhang TT, Lu XL, Chai YH, Lu MY, Aznarez F, Ma LF. Self-Assembly and Photothermal Conversion of MetallaRussian Doll and Metalla[2]catenanes Induced via Multiple Stacking Interactions. J Am Chem Soc 2023; 145:18036-18047. [PMID: 37459092 DOI: 10.1021/jacs.3c05720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A variety of organometallic supramolecular architectures have been constructed over the past decades and their properties were also explored via different strategies. However, the synthesis of metalla-Russian doll is still a fascinating challenge. Herein, a series of new coordination supramolecular complexes, including a metalla-Russian doll, metalla[2]catenanes, and metallarectangles, were synthesized by using meticulously selected Cp*Rh (Cp* = η5-C5Me5) building units (E1, E2, and E3) and three rigid anthracylpyridine ligands (L1, L2, and L3) via a self-assembly strategy. While the combination of the short ligand L1 and E1 or E2 generated two metallarectangles, the longer ligand L2 containing an alkynyl group resulted in two new [2]catenanes, most likely due to which the strong electron-donating effect of alkynyl groups causes self-accumulation. Interestingly, an unusual Russian doll assembly was obtained through the reaction of L3 and E3 based on sextuple π···π stacking interactions. Furthermore, the dynamic structural conversion between [2]catenanes and the corresponding metallarectangles could be observed through concentration-, solvent-, and guest-induced effects. The [2]catenane complexes 4b displayed efficient photothermal conversion efficiency in solution (20.2%), in comparison with other organometallic macrocycles. We believe that π···π stacking interactions generate active nonradiative pathways and promote radiative photodeactivation pathways. This study proves the versatility of half-sandwich building units, not only to build complicated supramolecular topologies but also in effective functional materials for various appealing applications.
Collapse
Affiliation(s)
- Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xiao-Li Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yin-Hang Chai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ming-Yu Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Lu Y, Dutschke PD, Kinas J, Hepp A, Jin GX, Hahn FE. Organometallic Borromean Rings and [2]Catenanes Featuring Di-NHC Ligands. Angew Chem Int Ed Engl 2023; 62:e202217681. [PMID: 36629746 DOI: 10.1002/anie.202217681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
We report herein a series of organometallic Borromean rings (BRs) and [2]catenanes prepared from benzobiscarbene ligands. The reaction of dinickel complexes of the benzobiscarbenes 1 a-1 c with a thiazolothiazole bridged bipyridyl ligand L2 led by self-assembly to a series of organometallic BRs. Solvophobic effects played a crucial role in the formation and stability of the interlocked species. The stability of BRs is related to the N-alkyl substituents at the precursors 1 a-1 c, where longer alkyl substitutes improve stability and inter-ring interactions. Solvophobic effects are also important for the stability of [2]catenanes prepared from 1 a-1 c and a flexible bipyridyl ligand L3 . In solution, an equilibrium between the [2]catenanes and their macrocyclic building blocks was observed. High proportions of [2]catenanes were obtained in concentrated solutions or polar solvents. The proportion of [2]catenanes in solution could be further enhanced by lengthening of the N-alkyl substitutes.
Collapse
Affiliation(s)
- Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
11
|
Trefoil-shaped metallacycle and metallacage via heteroleptic self-assembly. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
12
|
Mohan B, Shanmugaraju S. Synthesis, characterization, and heparin-binding study of a self-assembled p-cymene-Ru(II) metallocycle based on a 4-amino-1,8-naphthalimide Tröger's base supramolecular scaffold. Dalton Trans 2023; 52:2566-2570. [PMID: 36330868 DOI: 10.1039/d2dt03079a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the very first example of a self-assembled p-cymene-Ru(II) metallocycle based on a green emitting 4-amino-1,8-naphthalimide Tröger's base (TBNap) supramolecular scaffold. A new cleft-shaped TBNap-derived di-4-picolyl donor was synthesized and reacted in a 2 : 2 stoichiometry ratio with a dinuclear Ru(II) acceptor (Ru-A) to generate a [2 + 2] self-assembled metallocycle (TBNap-Ru-MC) in good yield. Both TBNap and TBNap-Ru-MC showed positive solvatochromism in different solvents with varying polarities. In addition, the binding propensity of cationic TBNap-Ru-MC toward the heparin polyanion was determined using fluorescence titration studies. The initial fluorescence emission of TBNap-Ru-MC was quenched upon the gradual addition of the heparin polyanion, and the Stern-Volmer quenching constant (KSV) was calculated to be 3.97 × 105 M-1.
Collapse
Affiliation(s)
- Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | | |
Collapse
|
13
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
14
|
Cui Z, Mu QS, Gao X, Jin GX. Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes. J Am Chem Soc 2023; 145:725-731. [PMID: 36550680 DOI: 10.1021/jacs.2c12027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have successfully constructed a chiral linear [3]catenane stereoselectively by coordination-driven self-assembly using a ditopic monodentate ligand containing l-valine residues with a binuclear half-sandwich organometallic rhodium(III) unit. Furthermore, by increasing the steric hindrance of the amino acid residues in the ligand, a chiral [2]catenane was obtained, which can be regarded as the factor catenane of the chiral linear [3]catenane from a topological viewpoint. Notably, the resulting molecular catenanes all exhibit complex coconformational mechanical helical chirality and planar chirality ascribed to the point chirality of the ligands. Linear [3]catenanes and [2]catenanes with the opposite chirality can be obtained by using ligands containing the corresponding d-amino acid residues, which have been confirmed by single-crystal X-ray diffraction, NMR, mass spectrometry, and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiu-Shui Mu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
15
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
16
|
Abstract
Different from polymers or peptides (lacking metals), metal–organic cycles (MOCs) have properties which arise from the combination of metals and common nonmetal elements and topologies. The development of MOC supramolecular materials is in its infancy, and how the coordination bonds work to make the corresponding suprastructures is unknown. This has limited the potential application of these MOC-based materials. Considering the applications of individual MOCs, the study and discovery of the unique factors in MOC-involved multilevel self-assembly are critical to further our knowledge of the underlying molecular mechanisms of metal-containing compounds. Here, a systematic study of MOC assembly in various solvent systems has confirmed the critical role of coordination linkers in tuning the shape and size of the MOC-derived suprastructures. It is well known that chemical compositions and structural arrangements of materials have a great influence on their resultant properties. Diverse functional materials have been constructed by using either biomolecules (peptides, DNA, and RNA) in nature or artificially synthesized molecules (polymers and pillararenes). The relationships between traditional building blocks (such as peptides) have been widely investigated, for example how hydrogen bonds work in the peptide multistage assembly process. However, in contrast to traditional covalent bond-based building blocks-based assembly, suprastructures formed by noncovalent bonds are more influenced by specific bond features, but to date only a few results have been reported based on noncovalent bond-based building block multistage assembly. Here, three metal–organic cycles (MOCs) were used to show how coordination bonds influence the bimetallacycle conformation then lead to the topology differences of MOC multilevel ordered materials. It was found that the coordination linker (isophthalate-Pt-pyridine) is an important factor to tune the shape and size of the MOC-derived suprastructures.
Collapse
|
17
|
Liu D, Lu Y, Lin Y, Jin G. Rational Design and Integrative Assembly of Heteromeric Metalla[2]Catenanes Featuring Cp*Ir/Rh Fragments. Chemistry 2022; 28:e202104617. [DOI: 10.1002/chem.202104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Dong Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Yue‐Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Guo‐Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
18
|
Cui Z, Gao X, Lin YJ, Jin GX. Stereoselective Self-Assembly of Complex Chiral Radial [5]Catenanes Using Half-Sandwich Rhodium/Iridium Building Blocks. J Am Chem Soc 2022; 144:2379-2386. [PMID: 35080385 DOI: 10.1021/jacs.1c13168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we have successfully achieved the stereoselective synthesis of two chiral radial [5]catenanes in a single step through the self-assembly of bidentate ligands containing l-alanine residues and binuclear half-sandwich organometallic rhodium(III)/iridium(III) clips. Remarkably, these two chiral radial [5]catenanes exhibit complex stereochemical structures as revealed by single-crystal X-ray diffraction. The eight binuclear units and eight bidentate ligands in their solid-state structures all exhibit a single planar chirality, and the interlocking between molecular macrocycles exhibits a single co-conformational mechanical helical chirality. This indicates that the introduction of the point chirality in the ligands enables the efficient stereoselective construction of mechanically interlocked molecules. Furthermore, by using ligands containing d-alanine residues, radial [5]catenanes with the opposite planar chirality and opposite co-conformational mechanical helical chirality have also been obtained.
Collapse
Affiliation(s)
- Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
19
|
Dang LL, Zhang TT, Chen T, Zhao Y, Zhao CC, Aznarez F, Sun KX, Ma LF. Coordination assembly and NIR photothermal conversion of Cp*Rh-based supramolecular topologies based on distinct conjugated systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01107g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The selective synthesis and transformation of Borromean rings and [2]catenane, are presented based on linear/aromatic conjugated ligands through different stacking interactions, promoting nonradiative transitions and trigger photothermal conversion.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Chen-Chen Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Kai-Xin Sun
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
20
|
Gao X, Cui Z, Shen YR, Liu D, Lin YJ, Jin GX. Synthesis and Near-Infrared Photothermal Conversion of Discrete Supramolecular Topologies Featuring Half-Sandwich [Cp*Rh] Units. J Am Chem Soc 2021; 143:17833-17842. [PMID: 34641681 DOI: 10.1021/jacs.1c09333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although a large number of novel supramolecular topologies featuring half-sandwich [Cp*Rh] units have been reported, investigations into the properties of these architectures are astoundingly rare. In addition, the bidentate ligands employed to prepare these species have remained relatively homogeneous (i.e., symmetrical bis(pyri-4-dyl) ligands). To address these paucities in the field, the novel unsymmetrical ligand L2 and the rarely reported pyri-3-dyl ligand L3, all bearing aromatic phenazine groups (an N-heterocyclic analog of anthracene), were synthesized in addition to the common symmetrical pyri-4-dyl L1. [3]Catenane, [2]catenane, and Borromean rings assemblies were constructed successfully by the self-assembly of L1 with different building blocks. Afterward, ligand L2 was applied to prepare two novel molecular-tweezer-like compounds. Lastly, a twisted [2]catenane (relative to the [2]catenane constructed using L1) and a sandwiched metallarectangle were obtained using L3. π-π stacking interactions were observed to play a significant role in stabilizing these topologies, which also promoted nonradiative migration and triggered photothermal conversion in both the solution and the solid state. In the solution state, a clear rule of thumb was derived whereby the NIR photothermal conversion efficiency increased as the π-π stacking increased, and a very high photothermal conversion efficiency (35.5-62.4%) was observed. In addition, this family of half-sandwich-based assemblies also exhibited good photothermal conversion properties in the crystalline and noncrystal powder states. This research provides a novel method to synthesize excellent NIR photothermal conversion materials featuring half-sandwich [Cp*Rh] units and points to potential applications in the near future.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Zheng Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Rong Shen
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Dong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
21
|
Lu Y, Liu D, Lin YJ, Li ZH, Hahn FE, Jin GX. An "All-in-One" Synthetic Strategy for Linear Metalla[4]Catenanes. J Am Chem Soc 2021; 143:12404-12411. [PMID: 34337934 DOI: 10.1021/jacs.1c06689] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One fascinating and challenging synthetic target in the field of mechanically interlocked molecules is the family of linear [4]catenanes, which are topologically identical to the logo of automobile maker Audi. Herein, we report an "all-in-one" synthetic strategy for the synthesis of linear metalla[n]catenanes (n = 2-4) by the coordination-driven self-assembly of Cp*Rh-based (Cp* = η5-pentamethylcyclopentadienyl) organometallic rectangle π-donors and tetracationic organic cyclophane π-acceptors. We selected the pyrenyl group as the π-donor unit, leading to homogeneous metalla[2]catenanes and cyclic metalla[3]catenanes via π-stacking interactions. By taking advantage of the strong electrostatic interactions between π-donor units and π-acceptor units, a heterogeneous metalla[2]catenanes and linear metalla[3]catenanes, respectively, could be obtained by the simple stirring of homogeneous metalla[2]catenanes with a suitable tetracationic cyclophane. On this basis, this "all-in-one" synthetic strategy was further used to realize a quantitative one-step synthesis of a linear metalla[4]catenanes via the self-assembly of cyclic metalla[3]catenanes and tetracationic cyclophanes. All heterogeneous metalla[n]catenanes (n = 2-4) were fully characterized by single-crystal X-ray analysis, NMR spectroscopy and electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Ye Lu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China.,Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster 48149, Germany
| | - Dong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| | - Zhen-Hua Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, Münster 48149, Germany
| | - Guo-Xin Jin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China
| |
Collapse
|
22
|
Lloyd Williams OH, Rijs NJ. Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Front Chem 2021; 9:682743. [PMID: 34169059 PMCID: PMC8217442 DOI: 10.3389/fchem.2021.682743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Nature creates exquisite molecular assemblies, required for the molecular-level functions of life, via self-assembly. Understanding and harnessing these complex processes presents an immense opportunity for the design and fabrication of advanced functional materials. However, the significant industrial potential of self-assembly to fabricate highly functional materials is hampered by a lack of knowledge of critical reaction intermediates, mechanisms, and kinetics. As we move beyond the covalent synthetic regime, into the domain of non-covalent interactions occupied by self-assembly, harnessing and embracing complexity is a must, and non-targeted analyses of dynamic systems are becoming increasingly important. Coordination driven self-assembly is an important subtype of self-assembly that presents several wicked analytical challenges. These challenges are "wicked" due the very complexity desired confounding the analysis of products, intermediates, and pathways, therefore limiting reaction optimisation, tuning, and ultimately, utility. Ion Mobility-Mass Spectrometry solves many of the most challenging analytical problems in separating and analysing the structure of both simple and complex species formed via coordination driven self-assembly. Thus, due to the emerging importance of ion mobility mass spectrometry as an analytical technique tackling complex systems, this review highlights exciting recent applications. These include equilibrium monitoring, structural and dynamic analysis of previously analytically inaccessible complex interlinked structures and the process of self-sorting. The vast and largely untapped potential of ion mobility mass spectrometry to coordination driven self-assembly is yet to be fully realised. Therefore, we also propose where current analytical approaches can be built upon to allow for greater insight into the complexity and structural dynamics involved in self-assembly.
Collapse
Affiliation(s)
| | - Nicole J. Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Chakraborty D, Modak R, Howlader P, Mukherjee PS. De novo approach for the synthesis of water-soluble interlocked and non-interlocked organic cages. Chem Commun (Camb) 2021; 57:3995-3998. [PMID: 33885682 DOI: 10.1039/d1cc00627d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research on self-assembled metallosupramolecular architectures has bloomed in recent times. Analogous metal-free organic architectures with water solubility are highly challenging. We report here a unique class of triazine based immidazolium water-soluble metal-free interlocked organic cage (1), which was synthesized in a one-pot reaction without using dynamic covalent chemistry and without any chromatographic separation. An analogous non-interlocked cage (2) was also successfully achieved by steric control using different positional isomers of the building blocks.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Ritwik Modak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
24
|
Non‐Covalent Interaction‐Directed Coordination‐Driven Self‐Assembly of Non‐Trivial Supramolecular Topologies. CHEM REC 2021; 21:574-593. [DOI: 10.1002/tcr.202000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/07/2022]
|
25
|
Gao X, Cui Z, Lin YJ, Jin GX. Construction of organometallic trefoil knots and one-dimensional chains featuring half-sandwich Cp*Rh corner units and an abnormal zwitterion ligand. Org Chem Front 2021. [DOI: 10.1039/d0qo01279c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An abnormal flexible O-coordinated zwitterion ligand L shows self-adaptive conformation behaviour in chemical self-assembly. Two trefoil knots were obtained with C-shaped ligand L and two novel 1D chains were obtained with Z-shaped ligand L.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Zheng Cui
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Yue-Jian Lin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Guo-Xin Jin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| |
Collapse
|
26
|
Zhang YY, Qiu FY, Shi HT, Yu W. Self-assembly and guest-induced disassembly of triply interlocked [2]catenanes. Chem Commun (Camb) 2021; 57:3010-3013. [DOI: 10.1039/d0cc08052g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two triply interlocked [2]catenanes and one simple metallacage were constructed by tuning the widths of the organometallic dinuclear building blocks, and the interlocked architectures were disassembled by large aromatic molecules.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| | - Hua-Tian Shi
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan
- P. R. China
| |
Collapse
|
27
|
Shao YG, He L, Mao QQ, Hong T, Ying XW, Zhang Z, Li S, Stang PJ. Efficient one-pot synthesis of [3]catenanes based on Pt( ii) metallacycles with a flexible building block. Org Chem Front 2021. [DOI: 10.1039/d1qo00910a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three [3]catenanes were fabricated in high efficiency through the self-assembly of a 90° platinum(ii) receptor, a flexible bis(4,4′-bipyridinium) donor and a crown ether (DB24C8 or DB30C10).
Collapse
Affiliation(s)
- Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lang He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Qian Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Wen Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
28
|
Yu W, Qiu FY, Luo ST, Shi HT, Yuan G, Wei X. Coordination assembly and host–guest chemistry of a triply interlocked [2]catenane. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00174d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triply catenated systems composed of two or more discrete coordination-metal cages through mechanical bonds exhibit excellent host–guest behaviors, which can be potentially applied in drug delivery systems.
Collapse
Affiliation(s)
- Weibin Yu
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Shi-Ting Luo
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Hua-Tian Shi
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Guozan Yuan
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| | - Xianwen Wei
- Analysis and Testing Central Facility
- Institutes of Molecular Engineering and Applied Chemistry
- Anhui University of Technology
- Ma'anshan 243002
- P. R. China
| |
Collapse
|
29
|
Zhang Z, Hong T, Li S, Crawley MR, Cook TR, Huang XC, Pollock JB, Stang PJ. Multicomponent Coordination-Driven Self-Assembly of Fused C3v Polygons. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Matthew R. Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Xue-Chun Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - J. Bryant Pollock
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Dang LL, Feng HJ, Lin YJ, Jin GX. Self-Assembly of Molecular Figure-Eight Knots Induced by Quadruple Stacking Interactions. J Am Chem Soc 2020; 142:18946-18954. [DOI: 10.1021/jacs.0c09162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
31
|
Dang LL, Gao X, Lin YJ, Jin GX. Selective synthesis and structural transformation between a molecular ring-in-ring architecture and an abnormal trefoil knot. Chem Sci 2020; 11:8013-8019. [PMID: 34094170 PMCID: PMC8163296 DOI: 10.1039/d0sc02733b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of complicated supramolecular architectures and the study of their reversible structural transformations remains a fascinating challenge in the field of supramolecular chemistry. Herein, two types of novel coordination compounds, a non-intertwined ring-in-ring assembly and an abnormal trefoil knot were constructed from a strategically selected Cp*Rh building block and a semi-rigid N,N'-bis(4-pyridylmethyl)diphthalic diimide ligand via coordination-driven self-assembly. Remarkably, the reversible transformation between the abnormal trefoil knot and the ring-in-ring assembly or the corresponding tetranuclear macrocycle could be achieved by the synergistic effects of Ag+ ion coordination and alteration of the solvent. Single-crystal X-ray crystallographic data and NMR spectroscopic experiments support the structural assignments.
Collapse
Affiliation(s)
- Li-Long Dang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Xiang Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Yue-Jian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
| | - Guo-Xin Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
32
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|