1
|
Sridhar S, Nikolov ME, Beutler EK, Knobeloch M, Paranzino B, Vernon KL, Zhong Y, Ye X, Baker LA, Skrabalak SE, Masiello DJ, Willets KA. Scattering vs Interference in Interferometric Scattering Spectroscopy of Plasmonic Nanoparticles. J Phys Chem Lett 2025:4410-4418. [PMID: 40273367 DOI: 10.1021/acs.jpclett.5c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Interferometric scattering (iSCAT) is a powerful tool to study single plasmonic nanoparticles (NPs), particularly when the particles become too small to be observed by their scattering signal alone. This sensitivity to NP size makes the technique a promising tool to monitor dynamic morphological changes in NPs in electrochemical or other reactive environments. However, because the signal measured in iSCAT consists of both the NP scattering and its interference with a reflected reference field, the role of the substrate and local environment can have an outsize influence, leading to significant differences between iSCAT and dark-field scattering spectra, even for large particles where scattering is expected to dominate. In this work, we show that the iSCAT contrast spectra of gold NPs can be tuned between scattering- or interference-dominated regimes by changing the refractive index of the embedding medium, the reflectivity of the substrate-medium interface, and the size of the NP. We compare the iSCAT spectra to dark-field scattering spectra to show how the interference contribution can shift spectral features away from the plasmon resonance and use a dipole oscillator model to explain the observed spectral lineshapes. Lastly, we demonstrate the need to measure the iSCAT signal at multiple illumination wavelengths during electrodissolution experiments to extract kinetic parameters that are representative of the NP's morphological changes.
Collapse
Affiliation(s)
- Sanjay Sridhar
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Marie E Nikolov
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Elliot K Beutler
- Department of Chemistry, University of Washington, Seattle, Washington 89195, United States
| | - Megan Knobeloch
- Department of Chemistry, Indiana University-Bloomington, Bloomington, Indiana 47405, United States
| | - Bianca Paranzino
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kelly L Vernon
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University-Bloomington, Bloomington, Indiana 47405, United States
| | - Xingchen Ye
- Department of Chemistry, University of Washington, Seattle, Washington 89195, United States
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University-Bloomington, Bloomington, Indiana 47405, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 89195, United States
| | - Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
2
|
Li J, Lin P, Wu L, Yue Y, Ma G. Deciphering Complex Electrochemical Reaction Dynamics and Interactions of Single Nanoentities via Evanescent Scattering Microscopy. Angew Chem Int Ed Engl 2025:e202506226. [PMID: 40219640 DOI: 10.1002/anie.202506226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Electrochemical reactions at the nanoscale are governed by intricate surface interactions, yet existing imaging techniques often lack the surface sensitivity and throughput needed to resolve these dynamics clearly. Here, we introduce electrochemical evanescent scattering microscopy (EC-ESM), a high-throughput, surface-sensitive imaging technique that enables real-time tracking of single-nanoentity electrochemistry with high resolution. Using EC-ESM, we monitored the motion and dissolution dynamics of silver nanoparticles and identified a clear relationship between nanoparticle velocity and electron transfer rates. The high throughput of EC-ESM not only ensures statistical reliability but also allows the detection of rare electron transfer events in molecularly modified AgNPs. Additionally, EC-ESM's high resolution enabled direct imaging of both single and interacting silver nanowires, revealing diverse dissolution behaviors that provide insights into structural and surface properties. We envision EC-ESM as a powerful platform for advancing nanoscale electrochemical research and interfacial charge transfer studies.
Collapse
Affiliation(s)
- Jiaying Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Peng Lin
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Liwei Wu
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Yuxi Yue
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Guangzhong Ma
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| |
Collapse
|
3
|
Valavanis D, Ciocci P, McPherson IJ, Meloni GN, Lemineur JF, Kanoufi F, Unwin PR. Operando Electrochemical and Optical Characterization of the Meniscus of Scanning Electrochemical Cell Microscopy (SECCM) Probes. ACS ELECTROCHEMISTRY 2025; 1:153-163. [PMID: 39935601 PMCID: PMC11808645 DOI: 10.1021/acselectrochem.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 02/13/2025]
Abstract
We present a thorough description of the scanning electrochemical cell microscopy (SECCM) meniscus probe, in operation, by combining dual-channel SECCM measurements with in situ interference reflection microscopy (IRM). SECCM is a pipette-based nanoscale characterization tool with an unparalleled capacity for mapping the electrochemical activity of material surfaces, with high precision and at high throughput. In hopping mode, it operates by bringing the electrolyte meniscus, at the scanned pipette tip, in contact with the sample, restricting the probed area each time to a separate, newly wetted site, and forming a small-scale reactor. Each contact area can normally be imaged post-experiment, to inform on the wetted area stability and enable quantitative data interpretation (e.g., to calculate current density). However, the description of meniscus behavior during measurements would be beneficial. Herein, we utilize semi-transparent electrode substrates, to enable the direct optical observation, by IRM, of the meniscus status, with high spatial and temporal resolution, and synchronously to SECCM operation. The surface-sensitive optical method allows us to accurately capture the nature of the miniature electrochemical cell during all phases of the experiment-during approach, meniscus contact, wetting, and pipette withdrawal-and to follow subtle changes while in contact with the electrode substrate. Through the use of a dual-channel probe, we are able to monitor both the ionic current across the meniscus, between quasi-reference counter electrodes (QRCEs) under bias, and between the working electrode surface and the QRCEs. Correlating these electrochemical data and operando optical information via the hybrid SECCM-IRM approach aids the design of experimental protocols, streamlines the interpretation of results, and paints a comprehensive picture of meniscus wetting behavior.
Collapse
Affiliation(s)
- Dimitrios Valavanis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ian J. McPherson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Gabriel N. Meloni
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute
of Chemistry, Department of Chemistry, University
of São Paulo, São
Paulo, SP 05508-000, Brazil
| | | | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
4
|
Lu SM, Wang HW, Chen M, Xie BK, Long YT. Unlocking Single Particle Anisotropy in Real-Time for Photoelectrochemistry Processes at the Nanoscale. Angew Chem Int Ed Engl 2024; 63:e202404170. [PMID: 38781086 DOI: 10.1002/anie.202404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| |
Collapse
|
5
|
Jiang B, Li H, Wang W, Wang H. Optical in situ deciphering of the surface reconstruction-assistant multielectron transfer event of single Co 3O 4 nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2407146121. [PMID: 39018196 PMCID: PMC11287257 DOI: 10.1073/pnas.2407146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Surface reconstruction determines the fate of catalytic sites on the near-surface during the oxygen evolution reaction. However, deciphering the conversion mechanism of various intermediate-states during surface reconstruction remains a challenge. Herein, we employed an optical imaging technique to draw the landscape of dynamic surface reconstruction on individual Co3O4 nanoparticles. By regulating the surface states of Co3O4 nanoparticles, we explored dynamic growth of the CoOx(OH)y sublayer on single Co3O4 nanoparticles and directly identified the conversion between two dynamics. Rich oxygen vacancies induced more active sites on the surface and prolonged surface reconstruction, which enhanced electrochemical redox and oxygen evolution. These results were further verified by in situ electrochemical extinction spectroscopy of single Co3O4 nanoparticles. We elucidate the heterogeneous evolution of surface reconstruction on individual Co3O4 nanoparticles and present a unique perspective to understand the fate of catalytic species on the nanosurface, which is of enduring significance for investigating the heterogeneity of multielectron-transfer events.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| |
Collapse
|
6
|
Lu SM, Chen M, Wen H, Zhong CB, Wang HW, Yu Z, Long YT. Hydrodynamics-Controlled Single-Particle Electrocatalysis. J Am Chem Soc 2024; 146:15053-15060. [PMID: 38776531 DOI: 10.1021/jacs.3c14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huilin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng-Bing Zhong
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Xie RC, Gao J, Wang SC, Li H, Wang W. Optically Imaging In Situ Effects of Electrochemical Cycling on Single Nanoparticle Electrocatalysis. Anal Chem 2024. [PMID: 38285921 DOI: 10.1021/acs.analchem.3c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Single-nanoparticle studies often need one or a series of nanoparticle populations that are designed with differences in a nominally particular structural parameter to clarify the structure-activity relationship (SAR). However, the heterogeneity of various properties within any population would make it rather difficult to approach an ideal one-parameter control. In situ modification ensures the same nanoparticle to be investigated and also avoids complicating effects from the otherwise often needed ex situ operations. Herein, we apply electrochemical cycling to single platinum nanoparticles and optically examine their SAR. An electrocatalytic fluorescent microscopic method is established to evaluate the apparent catalytic activity of a number of single nanoparticles toward the oxygen reduction reaction. Meanwhile, dark-field microscopy with the substrate electrode under a cyclic potential control is found to be able to assess the electrochemically active surface area (ECSA) of single nanoparticles via induced chloride redox electrochemistry. Consequently, nanoparticles with drastically increased catalytic activity are discovered to have larger ECSAs upon potential regulation, and interestingly, there are also a few particles with decreased activity, as opposed to the overall trend, that all develop a smaller ECSA in the process. The deactivated nanoparticles against the overall enhancement effects of potential cycling are revealed for the first time. As such, the SAR of single nanoparticles when subjected to an in situ structural control is optically demonstrated.
Collapse
Affiliation(s)
- Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Han D, Jiang D, Valenti G, Paolucci F, Kanoufi F, Chaumet PC, Fang D, Sojic N. Optics Determines the Electrochemiluminescence Signal of Bead-Based Immunoassays. ACS Sens 2023; 8:4782-4791. [PMID: 37978286 DOI: 10.1021/acssensors.3c01878] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Electrochemiluminescence (ECL) is an optical readout technique that is successfully applied for the detection of biomarkers in body fluids using microbead-based immunoassays. This technology is of utmost importance for in vitro diagnostics and thus a very active research area but is mainly focused on the quest for new dyes and coreactants, whereas the investigation of the ECL optics is extremely scarce. Herein, we report the 3D imaging of the ECL signals recorded at single microbeads decorated with the ECL labels in the sandwich immunoassay format. We show that the optical effects due to the light propagation through the bead determine mainly the spatial distribution of the recorded ECL signals. Indeed, the optical simulations based on the discrete dipole approximation compute rigorously the electromagnetic scattering of the ECL emission by the microbead and allow for reconstructing the spatial map of ECL emission. Thus, it provides a global description of the ECL chemical reactivity and the associated optics. The outcomes of this 3D imaging approach complemented by the optical modeling provide insight into the ECL optics and the unique ECL chemical mechanism operating on bead-based immunoassays. Therefore, it opens new directions for mechanistic investigations, ultrasensitive ECL bioassays, and imaging.
Collapse
Affiliation(s)
- Dongni Han
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP,Univ. Bordeaux, 33607 Pessac, France
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy
| | | | - Patrick C Chaumet
- Institut Fresnel, Aix Marseille Univ, CNRS, Centrale Marseille, 13013 Marseille, France
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Neso Sojic
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP,Univ. Bordeaux, 33607 Pessac, France
| |
Collapse
|
9
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
10
|
Zhang Z, Faez S. Iontronic microscopy of a tungsten microelectrode: "seeing" ionic currents under an optical microscope. Faraday Discuss 2023; 246:426-440. [PMID: 37404127 PMCID: PMC10568260 DOI: 10.1039/d3fd00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 07/06/2023]
Abstract
Optical methods for monitoring electrochemical reactions at an interface are advantageous because of their table-top setup and ease of integration into reactors. Here we apply EDL-modulation microscopy to one of the main components of amperometric measurement devices: a microelectrode. We present experimental measurements of the EDL-modulation contrast from the tip of a tungsten microelectrode at various electrochemical potentials inside a ferrocene-dimethanol Fe(MeOH)2 solution. Using the combination of the dark-field scattering microscope and the lock-in detection technique, we measure the phase and amplitude of local ion-concentration oscillations in response to an AC potential as the electrode potential is scanned through the redox-activity window of the dissolved species. We present the amplitude and phase map of this response, as such this method can be used to study the spatial and temporal variations of the ion-flux due to an electrochemical reaction close to metallic and semiconducting objects of general geometry. We discuss the advantages and possible extensions of using this microscopy method for wide-field imaging of ionic currents.
Collapse
Affiliation(s)
- Zhu Zhang
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
| |
Collapse
|
11
|
Ciocci P, Valavanis D, Meloni GN, Lemineur J, Unwin PR, Kanoufi F. Optical Super‐Localisation of Single Nanoparticle Nucleation and Growth in Nanodroplets. ChemElectroChem 2023. [DOI: 10.1002/celc.202201162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Paolo Ciocci
- Université Paris Cité ITODYS, CNRS F-75013 Paris France
| | - Dimitrios Valavanis
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| | - Gabriel N. Meloni
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
- Institute of Chemistry Department of Fundamental Chemistry University of São Paulo 05508-000 São Paulo, SP Brazil
| | | | - Patrick R. Unwin
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| | | |
Collapse
|
12
|
Liu S, Li H, Fang S, Xu W, Hu W, Wang W. Spontaneous Takeoff of Single Sulfur Nanoparticles during Sublimation Studied by Dark-Field Microscopy. J Am Chem Soc 2023; 145:3987-3993. [PMID: 36763975 DOI: 10.1021/jacs.2c10763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Leidenfrost effect describes a fascinating phenomenon in which a liquid droplet, when deposited onto a very hot substrate, will levitate on its own vapor layer and undergo frictionless movements. Driven by the significant implications for heat transfer engineering and drag reduction, intensive efforts have been made to understand, manipulate, and utilize the Leidenfrost effect on macrosized objects with a typical size of millimeters. The Leidenfrost effect of nanosized objects, however, remains unexplored. Herein, we report on an unprecedented Leidenfrost effect of single nanosized sulfur particles at room temperature. It was discovered when advanced dark-field optical microscopy was employed to monitor the dynamic sublimation process of single sulfur nanoparticles sitting on a flat substrate. Despite the phenomenological similarity, including the vapor-cushion-induced levitation and the extended lifetime, the Leidenfrost effect at the nanoscale exhibited two extraordinary features that were obviously distinct from its macroscopic counterpart. First, there was a critical size below which single sulfur nanoparticles began to levitate. Second, levitation occurred in the absence of the temperature difference between the nanoparticle and the substrate, which was barely possible for macroscopic objects and underscored the value of bridging the gap connecting the Leidenfrost effect and nanoscience. The sublimation-triggered spontaneous takeoff of single sulfur nanoparticles shed new light on its further applications, such as nanoflight.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Susu Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigao Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenbing Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
14
|
Nguyen MC, Berto P, Valentino F, Lemineur JF, Noel JM, Kanoufi F, Tessier G. 3D Spectroscopic Tracking of Individual Brownian Nanoparticles during Galvanic Exchange. ACS NANO 2022; 16:14422-14431. [PMID: 36099198 DOI: 10.1021/acsnano.2c04792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring chemical reactions in solutions at the scale of individual entities is challenging: single-particle detection requires small confocal volumes, which are hardly compatible with Brownian motion, particularly when long integration times are necessary. Here, we propose a real-time (10 Hz) holography-based nm-precision 3D tracking of single moving nanoparticles. Using this localization, the confocal collection volume is dynamically adjusted to follow the moving nanoparticle and allow continuous spectroscopic monitoring. This concept is applied to study galvanic exchange in freely moving colloidal silver nanoparticles with gold ions generated in situ. While the Brownian trajectory reveals particle size, spectral shifts dynamically reveal composition changes and transformation kinetics at the single-object level, pointing at different transformation kinetics for free and tethered particles.
Collapse
Affiliation(s)
- Minh-Chau Nguyen
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Pascal Berto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Fabrice Valentino
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | | | - Jean-Marc Noel
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | | | - Gilles Tessier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- Université Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| |
Collapse
|
15
|
Li G, Mao J, Saqib M, Hao R. Operando Optoelectrochemical Analysis of Single Zinc Dendrites with a Reflective Nanopore Electrode. Chem Asian J 2022; 17:e202200824. [DOI: 10.1002/asia.202200824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Guopeng Li
- Southern University of Science and Technology Chemistry CHINA
| | - Jiaxin Mao
- Southern University of Science and Technology Chemistry CHINA
| | - Muhammad Saqib
- Southern University of Science and Technology CHemistry CHINA
| | - Rui Hao
- Southern University of Science and Technology Department of Chemistry 1088 Xueyuan Ave. 518055 Shenzhen CHINA
| |
Collapse
|
16
|
Weiß LJK, Music E, Rinklin P, Banzet M, Mayer D, Wolfrum B. On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry. Anal Chem 2022; 94:11600-11609. [PMID: 35900877 DOI: 10.1021/acs.analchem.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.
Collapse
Affiliation(s)
- Lennart J K Weiß
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Emir Music
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| |
Collapse
|
17
|
Kostopoulos N, Miranda Vieira M, godeffroy L, Médard J, Combellas C, Lemineur JF, Kanoufi F, Noël JM. Tuning the electrode activity to expose transformational and electrocatalytic characteristics of individual nanoparticles by nanoimpact electrochemistry. ChemElectroChem 2022. [DOI: 10.1002/celc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Louis godeffroy
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 75013 Paris FRANCE
| | - Jérôme Médard
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 FRANCE
| | | | - Jean-Francois Lemineur
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 15 rue jean-Antoine de Baïf 75013 Paris FRANCE
| | - Frédéric Kanoufi
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 15 rue jean-Antoine de Baïf 75013 Paris FRANCE
| | - Jean-Marc Noël
- Universite de Paris UFR de Chimie Laboratoire ITODYS, CNRS, UMR7086 15 rue jean-Antoine de Baïf 75013 Paris FRANCE
| |
Collapse
|
18
|
Lemineur JF, Wang H, Wang W, Kanoufi F. Emerging Optical Microscopy Techniques for Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:57-82. [PMID: 35216529 DOI: 10.1146/annurev-anchem-061020-015943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.
Collapse
Affiliation(s)
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | | |
Collapse
|
19
|
Wu G, Zhou X, Lv WL, Qian C, Liu XW. Real-Time Plasmonic Imaging of the Compositional Evolution of Single Nanoparticles in Electrochemical Reactions. NANO LETTERS 2022; 22:4383-4391. [PMID: 35549482 DOI: 10.1021/acs.nanolett.2c00831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles. Using PSIM, we have successfully probed the compositional transformation dynamics of multiple individual nanoparticles during electrochemical reactions. PSIM could be used as a universal platform for exploring the compositional evolution of nanomaterials at the single-nanoparticle level and offers great potentials for addressing the extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Gang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Zhou
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Ahmadinasab N, Stockmann TJ. Single entity electrochemical detection of as‐prepared metallic and dielectric nanoparticle stochastic impacts in a phosphonium ionic liquid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazanin Ahmadinasab
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| | - Talia Jane Stockmann
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| |
Collapse
|
21
|
Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022; 7:884-892. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have experienced an unprecedented story of success. In particular, as of today, most people have likely come into contact with one of their two most famous examples─the pregnancy or the SARS-CoV-2 antigen test. However, their sensing performance is constrained by the optical readout of nanoparticle agglomeration, which typically allows only qualitative measurements. In contrast, single-impact electrochemistry offers the possibility to quantify species concentrations beyond the pM range by resolving collisions of individual species on a microelectrode. Within this work, we investigate the integration of stochastic sensing into a μPAD design by combining a wax-patterned microchannel with a microelectrode array to detect silver nanoparticles (AgNPs) by their oxidative dissolution. In doing so, we demonstrate the possibility to resolve individual nanoparticle collisions in a reference-on-chip configuration. To simulate a lateral flow architecture, we flush previously dried AgNPs along a microchannel toward the electrode array, where we are able to record nanoparticle impacts. Consequently, single-impact electrochemistry poses a promising candidate to extend the limits of lateral flow-based sensors beyond current applications toward a fast and reliable detection of very dilute species on site.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Georg Lubins
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Emir Music
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Hu Peng
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Korkut Terkan
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| |
Collapse
|
22
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
23
|
Deng Z, Renault C. Unravelling the last milliseconds of an individual graphene nanoplatelet before impact with a Pt surface by bipolar electrochemistry. Chem Sci 2021; 12:12494-12500. [PMID: 34603681 PMCID: PMC8480341 DOI: 10.1039/d1sc03646g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of μm s-1 down to few μm s-1 within the last μm above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.
Collapse
Affiliation(s)
- Zejun Deng
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris Route de Saclay 91128 Palaiseau France
| | - Christophe Renault
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris Route de Saclay 91128 Palaiseau France
| |
Collapse
|
24
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
25
|
Ciocci P, Lemineur JF, Noël JM, Combellas C, Kanoufi F. Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An in situ optical microscopy approach. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Godeffroy L, Ciocci P, Nsabimana A, Miranda Vieira M, Noël JM, Combellas C, Lemineur JF, Kanoufi F. Deciphering Competitive Routes for Nickel-Based Nanoparticle Electrodeposition by an Operando Optical Monitoring. Angew Chem Int Ed Engl 2021; 60:16980-16983. [PMID: 34101324 DOI: 10.1002/anie.202106420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Electrodeposition of earth-abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a <25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self-terminated growth, an information which is most often hidden in ensemble averaged measurements.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Unviersité de Paris, ITODYS, CNRS, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Jiang W, Wei W, Yuan T, Liu S, Niu B, Wang H, Wang W. Tracking the optical mass centroid of single electroactive nanoparticles reveals the electrochemically inactive zone. Chem Sci 2021; 12:8556-8562. [PMID: 34221337 PMCID: PMC8221172 DOI: 10.1039/d1sc01623g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inevitable microstructural defects, including cracks, grain boundaries and cavities, make a portion of the material inaccessible to electrons and ions, becoming the incentives for electrochemically inactive zones in single entity. Herein, we introduced dark field microscopy to study the variation of scattering spectrum and optical mass centroid (OMC) of single Prussian blue nanoparticles during electrochemical reaction. The "dark zone" embedded in a single electroactive nanoparticle resulted in the incomplete reaction, and consequently led to the misalignment of OMC for different electrochemical intermediate states. We further revealed the dark zones such as lattice defects in the same entity, which were externally manifested as the fixed pathway for OMC for the migration of potassium ions. This method opens up enormous potentiality to optically access the heterogeneous intraparticle dark zones, with implications for evaluating the crystallinity and electrochemical recyclability of single electroactive nano-objects.
Collapse
Affiliation(s)
- Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| |
Collapse
|
29
|
Linnemann J, Kanokkanchana K, Tschulik K. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julia Linnemann
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, Universitätsstr. 150, ZEMOS, 44801 Bochum, Germany
| | - Kannasoot Kanokkanchana
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, Universitätsstr. 150, ZEMOS, 44801 Bochum, Germany
| | - Kristina Tschulik
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, Universitätsstr. 150, ZEMOS, 44801 Bochum, Germany
| |
Collapse
|
30
|
Operando analysis of the electrosynthesis of Ag2O nanocubes by scanning electrochemical microscopy. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Yuan T, Wei W, Jiang W, Wang W. Vertical Diffusion of Ions within Single Particles during Electrochemical Charging. ACS NANO 2021; 15:3522-3528. [PMID: 33560133 DOI: 10.1021/acsnano.1c00431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Determining the trajectory of ionic transport and diffusion within single electroactive nanomaterials is critical for understanding the charging kinetics and capacity fading associated with ion batteries, with implications for rational design of excellent-performance electrode materials. While the horizontal pathway of mass transport has been feasibly investigated by optical superlocalization methods and electron microscopes, determination on the vertical trajectory has proven a more challenging task. Herein, we developed dual-angle total internal reflection microscopy by simultaneously introducing different angle-dependent illumination depths to trace the optical centroid shifts of nano-objects in the vertical dimension. We first demonstrated the proof of concept by resolving the vertical moving trails of a nanosphere doing Brownian motion and subsequently explored the picture of mass transport in the interior of single Prussian blue (PB) particles during electrochemical cycling. The results indicated that the vertical centroids of single PB particles remained unchanged when ions were inserted or extracted, suggesting an outside-in ionic transport pathway instead of bottom-up trajectory that one would intuitively expect.
Collapse
Affiliation(s)
- Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
33
|
Polonschii C, Gheorghiu M, David S, Gáspár S, Melinte S, Majeed H, Kandel ME, Popescu G, Gheorghiu E. High-resolution impedance mapping using electrically activated quantitative phase imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:20. [PMID: 33479199 PMCID: PMC7820407 DOI: 10.1038/s41377-020-00461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 05/23/2023]
Abstract
Retrieving electrical impedance maps at the nanoscale rapidly via nondestructive inspection with a high signal-to-noise ratio is an unmet need, likely to impact various applications from biomedicine to energy conversion. In this study, we develop a multimodal functional imaging instrument that is characterized by the dual capability of impedance mapping and phase quantitation, high spatial resolution, and low temporal noise. To achieve this, we advance a quantitative phase imaging system, referred to as epi-magnified image spatial spectrum microscopy combined with electrical actuation, to provide complementary maps of the optical path and electrical impedance. We demonstrate our system with high-resolution maps of optical path differences and electrical impedance variations that can distinguish nanosized, semi-transparent, structured coatings involving two materials with relatively similar electrical properties. We map heterogeneous interfaces corresponding to an indium tin oxide layer exposed by holes with diameters as small as ~550 nm in a titanium (dioxide) over-layer deposited on a glass support. We show that electrical modulation during the phase imaging of a macro-electrode is decisive for retrieving electrical impedance distributions with submicron spatial resolution and beyond the limitations of electrode-based technologies (surface or scanning technologies). The findings, which are substantiated by a theoretical model that fits the experimental data very well enable achieving electro-optical maps with high spatial and temporal resolutions. The virtues and limitations of the novel optoelectrochemical method that provides grounds for a wider range of electrically modulated optical methods for measuring the electric field locally are critically discussed.
Collapse
Affiliation(s)
| | | | - Sorin David
- International Centre of Biodynamics, 060101, Bucharest, Romania
| | | | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Hassaan Majeed
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Eugen Gheorghiu
- International Centre of Biodynamics, 060101, Bucharest, Romania.
| |
Collapse
|
34
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|