1
|
Ye L, Su L, Cen W, Sun D. Steering electron flow by constructing an integrated structure in a metal-organic framework (MOF) via iminopyridine units for efficient CO 2 photoreduction to C 2H 4 and C 2H 6. NANOSCALE 2025; 17:11345-11352. [PMID: 40259712 DOI: 10.1039/d5nr00853k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Selective photoreduction of CO2 to C2+ products has attracted increasing interest, but it remains challenging. Herein, we reported a novel strategy to steer electron flow by constructing integrated photocatalysts to achieve selective photoreduction of CO2 to C2H4 and C2H6. Using iminopyridine units in NH2-MIL-125(Ti) (Ti-MOF) as a tag, both the Ru photosensitizer and CuCo active sites were assembled within the Ti-MOF to form the integrated structure. Due to the strong interaction of the Ru photosensitizer and CuCo with Ti-MOF, the integrated CuCo/Ti-MOF-Py-Ru exhibited accelerated charge separation and migration efficiency, resulting in significant electron accumulation around CuCo. Compared with the discrete counterparts, the CO2 photoreduction products were upgraded from CO and CH4 to C2H4 and C2H6, with a high C2 selectivity of 86.1% over the integrated CuCo/Ti-MOF-Py-Ru, highlighting the critical role of the integrated structure in enhancing the selective CO2 photoreduction to C2+ products.
Collapse
Affiliation(s)
- Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Linghui Su
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China.
- National Engineering Research Centre for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Zubair M, Shen L, Hyeong Lee T, Qian Y, Joon Kang D. Stabilizing Polyoxometalate for Enhanced OER Performance Using a Porous Manganese Oxide Support. CHEMSUSCHEM 2025; 18:e202402294. [PMID: 39726113 DOI: 10.1002/cssc.202402294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
The oxygen evolution reaction (OER) is a critical challenge in electrocatalytic water splitting, hindered by high energy demands and slow kinetics. Polyoxometalates (POMs), recognized for their unique redox capabilities, structural archetypes, and molecular precision, are promising candidates for the oxygen evolution reaction (OER). Yet, their application is hindered by high water solubility, causing rapid degradation and efficiency loss under harsh OER conditions. This study enhances the performance and stability of polyoxometalates (POMs) for OER by anchoring keggin-type POM [TiCoW11O40]7- nanosheets onto a conductive, carbon-protected manganese oxide (C-Mn2O3) nanospheres support. The acquired porous framework enhances POM/C-Mn₂O₃ (PCM) contact, improving stability, reaction kinetics, and redox activity by offering nucleation sites, electronic pathways, and abundant active sites, significantly boosting OER activity. The resulting PCM nanohybrid demonstrates remarkable OER activity in 1 M KOH, requiring only a 300 mV overpotential to achieve a current density of 10 mA cm-2 with a Tafel slope of 88 mV/dec. The PCM electrocatalyst also shows high mass activity (784 A/g at 1.6 V) and maintains stability over 100 hours at 100 mA cm-2 without performance fatigue. Consequently, this study offers a viable strategy for developing efficient, durable electrocatalysts using low-cost materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Lin Shen
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tae Hyeong Lee
- Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yongteng Qian
- Pharmaceutical Engineering College, Jinhua University of Vocational Technology, Jinhua, Zhejiang Province, 321007, P.R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
3
|
Zhao Q, Zeng Y, Jiang Z, Huang Z, Long DL, Cronin L, Xuan W. High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond. Angew Chem Int Ed Engl 2025; 64:e202421132. [PMID: 39653655 DOI: 10.1002/anie.202421132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [P8W48O184]40- precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [H16P8W58O218]32- {W58} and a fully-closed [H16P8W64O236]32- {W64}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W58} and {W64} as nodes, {Cu11(HL)9W58} HNPOMOF-1 and {Cu9(HL)9W64} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W58} and {W64}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date. HNPOMOF-1 features 3D framework possessing cage-like cavities filled with exposed carboxyl groups, while the inherent 2D layer-like HNPOMOF-2 allows for facile exfoliation into ultrathin nanosheets, and the resulted HNPOMOF-2NS exhibits superior activity towards photocatalytic oxidative cleavage of C-C bond for a series of lignin models. This work not only provides a strategy to build high-nuclearity POM cluster-based frameworks, but also demonstrates their great potential as functional materials for green catalysis.
Collapse
Affiliation(s)
- Qixin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yang Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenxuan Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - De-Liang Long
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Song B, Song W, Liang Y, Liu Y, Li B, Li H, Zhang L, Ma Y, Ye R, Tang BZ, Zhao D, Zhou Y, Liu B. Direct Synthesis of Topology-Controlled BODIPY and CO 2-Based Zirconium Metal-Organic Frameworks for Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202421248. [PMID: 39742452 DOI: 10.1002/anie.202421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/03/2025]
Abstract
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO2 as a feedstock. By controlling synthetic conditions, we successfully obtained two distinct Zr-MOFs. The first, CO2-Zr6-DEPB, exhibits a face-centered cubic (fcu) topology based on a Zr6(μ3-O)4(μ3-OH)4 node, while the second, CO2-Zr12-DEPB, features a hexagonal closed packed (hcp) topology, structured around a Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 node. Both MOFs demonstrated excellent crystallinity, as verified through powder X-ray diffraction and high-resolution transmission electron microscopy analyses. These MOF catalysts displayed suitable photocatalytic redox potentials for the reduction of CO2 to CO using H2O as the electron donor in the absence of co-catalyst or toxic sacrificial reagent. Under light irradiation, CO2-Zr12-DEPB and CO2-Zr6-DEPB offered high CO yields of 16.72 and 13.91 μmol g-1 h-1, respectively, with nearly 100 % selectivity. CO2 uptake and photoelectrochemical experiments revealed key insights into the mechanisms driving the different catalytic activities of the two MOFs. These BODIPY and CO2-based, light-responsive Zr-MOFs represent a promising platform for the development of efficient photocatalysts.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuhang Liang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yong Liu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Liang Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yanhang Ma
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Zhou
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Guo S, Pan CW, Hou M, Hou YT, Yao S, Lu TB, Zhang ZM. Dual Regulation of Sensitizers and Cluster Catalysts in Metal-Organic Frameworks to Boost H 2 Evolution. Angew Chem Int Ed Engl 2025; 64:e202420398. [PMID: 39586781 DOI: 10.1002/anie.202420398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Photocatalytic efficiency is closely correlated to visible-light absorption ability, electron transfer efficiency and catalytic center activity of photocatalysts, nevertheless, the concurrent management of these factors to improve photocatalytic efficiency remains underexplored. Herein, we proposed a sensitizer/catalyst dual regulation strategy on the polyoxometalate@Metal-Organic Framework (POM@MOF) molecular platform to construct highly efficient photocatalysts. Impressively, Ni-Sb9@UiO-Ir-C6, obtained by coupling strong sensitizing [Ir(coumarin 6)2(bpy)]+ with Ni-Sb9 POM with extremely exposed nickel site [NiO3(H2O)3], can drive H2 evolution with a turnover number of 326923, representing a record value among all the POM@MOF composite photocatalysts. This performance is over 34 times higher than that of the typical Ni4P2@UiO-Ir constructed from [Ir(ppy)2(bpy)]+ and Ni4P2 POM. Systematical investigations revealed that dual regulation of sensitizing and catalytic centers endowed Ni-Sb9@UiO-Ir-C6 with strong visible-light absorption, efficient inter-component electron transfer and high catalytic activity to concurrently promote H2 evolution. This work opens up a new avenue to develop highly active POM@MOF photocatalysts by dual regulation of sensitizing/catalytic centers at the molecular level.
Collapse
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chun-Wei Pan
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Hou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yi-Tong Hou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuang Yao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
6
|
Liu X, Si C, Xu J, Sun H, Li J, Han Q. Constructing a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic Oxidation of Thioethers to Sulfoxides Utilizing In Situ-Generated Superoxide Radicals. Inorg Chem 2025; 64:1263-1271. [PMID: 39812524 DOI: 10.1021/acs.inorgchem.4c03219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), CoBW12-TPT, was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BW12O405-, and the photosensitizer TPT. CoBW12-TPT was applied in the photocatalytic oxidation of thioethers to sulfoxides. Under irradiation, the photoinduced electron transfer of POMOF leads to the generation of superoxide radicals from O2, which controls the selective generation of sulfoxide compounds in the photocatalytic desulfurization reaction and shows good activity. In particular, it can be applied to the construction of some drug molecules such as Modafinil and Albendazole Oxide.
Collapse
Affiliation(s)
- Xueling Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chen Si
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Junjie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hui Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jie Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
7
|
Tong Y, Yang J, Xia F, Gu J. Construction of Compartmentalized Meso/Micro Spaces in Hierarchically Porous MOFs with Long-Chain Functional Ligands Inspired by Biological Signal Amplification. JACS AU 2025; 5:178-186. [PMID: 39886565 PMCID: PMC11775693 DOI: 10.1021/jacsau.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template. The adoption of long-chain functional 2,2'-bipyridine-5,5'-dicarboxylic acid ligands not only resulted in larger microporous sizes, facilitating the transport of various cascade reaction intermediates, but also provided anchorages for the introduction of enzyme-mimicking active sites. A cascade amplification system was designed based on the developed HMUiO-67, in which enzyme cascade reactions were initiated and relayed by a target analyte in the separate but coupled meso/micro spaces. As a proof of concept, natural acetylcholinesterase (AChE) and Cu-based laccase mimetics were integrated into HMMOFs, establishing a spatially coupled nanoreactor. The activity of AChE was triggered by the target analyte of carbaryl, while the amplified products of AChE catalysis mediated the activity of biomimetic enzyme in the closely proximate microporous spaces, producing further amplification of detectable signal. This enabled the entire cascade system to respond to minimal carbaryl with a limit of detection as low as approximately 2 nM. Such a model of cascade amplification is expected to set a conceptual guideline for the rational design of various bioreactors, serving as a sensitive response system for quantifying numerous target analytes.
Collapse
Affiliation(s)
- Yao Tong
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Liu CY, Mu YJ, Chen WJ, Yin YA, Lin CG, Miras HN, Song YF. Modulating the Supramolecular Assembly of α-Cyclodextrin and Anderson-type Polyoxometalate through Covalent Modifications. Chemistry 2025; 31:e202403520. [PMID: 39523520 DOI: 10.1002/chem.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A series of unprecedented supramolecular complexes of covalently modified Anderson-type polyoxometalates (POMs) and α-cyclodextrins (α-CDs) have been obtained and characterized in solid state by single-crystal X-ray diffraction, and in aqueous solution using various techniques including 1H DOSY NMR, 2D NOESY 1H NMR, isothermal titration calorimetry (ITC), and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). It has been demonstrated that the supramolecular assembly process could be modulated by different covalent modification modes of the Anderson POMs, giving rise to a new type of POM/α-CD complexes featuring organic-inorganic pseudo-rotaxane structures, which are in good contrast to those of POM/γ-CD complexes of poly-rotaxane structures. Moreover, it is delighted to find that these pseudo-rotaxanes of POM/α-CD complexes exhibit stable chirality in aqueous solution, which has not been accomplished in previously reported POM/CD assemblies.
Collapse
Affiliation(s)
- Chun-Yan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yun-Jing Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wu-Ji Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi-An Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chang-Gen Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | | | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Maru K, Kalla S, Jangir R. Development of polyoxometalate-loaded MOFs for heterogeneous catalysis and enhanced dye adsorption. Dalton Trans 2024; 54:298-317. [PMID: 39540595 DOI: 10.1039/d4dt02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study focuses on the enhancement of MIL-117 functionality by incorporating a well-known polyoxometalate (POM), tetrabutylammonium octamolybdate [(n-C4H9)4N]4[Mo8O26]. Using an encapsulation method with conventional heating, Mo8O264- anions were for the first time successfully integrated into MIL-117 tubular channels (Mo8O26@MIL-117). Comprehensive characterization of the material through FTIR, XRD, BET, FE-SEM, EDX, and XPS confirmed the uniform distribution of Mo8O264- within MIL-117 without compromising its structural integrity. The Mo8O26@MIL-117 composite demonstrates exceptional catalytic performance in oxidative C-N bond formation and Paal-Knorr pyrrole synthesis, achieving high yields under optimized conditions with diverse amine substrates. Characterization and stability assessments confirm Mo8O26@MIL-117 as a robust and recyclable catalyst, maintaining structural integrity and catalytic activity over multiple cycles, highlighting its potential for sustainable applications in synthetic chemistry. The composite material was also evaluated for its efficacy in dye removal, specifically targeting methylene blue (MB) and Rhodamine B (RHB) from aqueous solutions. Mo8O26@MIL-117 exhibited superior adsorption capacity for MB compared to MIL-117 alone, demonstrating high efficiency even at elevated concentrations. The composite showed improved selectivity towards MB over RHB, highlighting its potential for selective dye removal in wastewater treatment applications.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
10
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024; 53:11772-11803. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Passadis SS, Gray M, Parac-Vogt TN, Keramidas AD, Miras HN, Kabanos TA. Revitalisation of group IV metal-oxo clusters: synthetic approaches, structural motifs and applications. Dalton Trans 2024; 53:18400-18419. [PMID: 39446114 DOI: 10.1039/d4dt02417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Group (IV) metal oxo clusters represent a unique family of molecular species that are increasingly being utilized in applications ranging from catalysis and materials chemistry to electronics, and sensors. These clusters exhibit distinctive structural features, chemical reactivity, and electronic structure. Nevertheless, their full potential has yet to be fully realized due to the lack of deeper understanding regarding their structure and formation mechanisms, inherent traits, and intricacies in their design, which could ultimately enable significant customization of their properties and overall behaviour. Considering the recently observed reignited interest in the chemistry of group IV molecular species, the scope of this article is to bring to the readers the main chemical characteristics of the family of titanium, zirconium, and hafnium-based clusters, their structural features and their potential in future applications.
Collapse
Affiliation(s)
- Stamatis S Passadis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Mark Gray
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
12
|
Yu X, Xu X, Gao L, Luo R, Liu YF, Gu YH, Yuan S. Imine bond-directed assembly of polyoxometalate-based metal-organic frameworks. Dalton Trans 2024; 53:17902-17908. [PMID: 39431951 DOI: 10.1039/d4dt02609h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Polyoxometalate-based metal-organic frameworks (POMOFs) are highly effective heterogeneous catalysts that combine the catalytic activity of polyoxometalates (POMs) with the high surface area, tunable porosity, and structural diversity of MOFs. Nevertheless, there is still a lack of a general method to integrate POMs with various transition metal-based building units into POMOFs under mild conditions. In this work, we employed imine bonds to link amino-functionalized Anderson-type POMs with aldehyde-terminated divalent metal clusters, resulting in a series of isostructural POMOFs, M(II)-POMOFs (M = Zn, Co, Mg, or Mn). Furthermore, we used post-synthetic metal exchange and oxidation to transform Zn-POMOF into Fe(III)-POMOF with strong Lewis acidic Fe3+ sites. Notably, both the synthesis and post-synthetic modifications were performed under mild conditions (room temperature, acid-free), preventing the decomposition of the POMs. Compared to M(II)-POMOFs or MOFs without POMs, the combination of Lewis acidic Fe3+ and POMs enhanced its catalytic activity for CO2 cycloaddition with epoxides, enabling efficient synthesis of cyclic carbonates. This versatile synthetic method could broaden the scope of POMOFs, extending their applications in catalysis and beyond.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Rengan Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Fan Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yu-Hao Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Ma D, Li J, Cao Z. CH 4 Carbonylation to Acetic Acid Using H 2O as an Oxidant on a Rh-Functionalized UiO-67 Combined with Oriented External Electric Fields: Selectivity and Mechanistic Insights from DFT Calculations. Inorg Chem 2024; 63:21110-21120. [PMID: 39444298 DOI: 10.1021/acs.inorgchem.4c03309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acetic acid (CH3COOH), as an industrially important petrochemical product, is predominantly produced via multistep energy-intensive processes. The development of a rhodium single-site heterogeneous catalyst has received considerable attention due to its potential to transform CH4 into CH3COOH in a single step. Herein, the reaction mechanism for the generation of CH3COOH from CH4, CO, and H2O catalyzed by Rh-functionalized metal-organic framework (MOF) UiO-67 and the selectivity of products CH3COOH, formic acid (HCOOH), methanol (CH3OH), and acetaldehyde (CH3CHO) under the oriented external electric fields (OEEFs) were systematically explored by density functional theory (DFT) calculations. The results reveal that the insertion of CO into Rh-CH3 is the rate-determining step with a free energy barrier of 21.0 kcal/mol in CH4 carbonylation to CH3COOH. Upon applying an OEEF of Fx = +0.0050 au along the C-C bond, the rate-determining step shifts toward H2O decomposition with the barrier of 19.6 kcal/mol, significantly improving the selectivity for CH3COOH production, compared to the major competitive HCOOH route. The Brønsted-Evans-Polanyi (BEP) relationships between key transition states, field strength, and NPA charge transfer were established. This study may guide the rational design of atomically dispersed MOF catalysts for the selective coconversion of CH4 and CO to CH3COOH using H2O as the oxidant under the OEEF.
Collapse
Affiliation(s)
- Denghui Ma
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Jianming Li
- School of New Energy, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
14
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
15
|
Dong ZM, Zhu YH, Zhou JL, Xiang XY, Pan JH, Mei H, Xu Y. Small Conjugated Organic Ligand-Modified Polyoxometalate-Based Hybrid Materials for Boosting Photocatalytic CO 2 Reduction. Inorg Chem 2024; 63:16791-16798. [PMID: 39190829 DOI: 10.1021/acs.inorgchem.4c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Photocatalytic carbon dioxide (CO2) reduction to value-added chemicals is a multielectron transfer process, and the crucial step is the synthesis of photocatalysts. The introduction of small conjugated organic ligands can make the catalytic active site of the compound easier to be exposed in the reaction system and fully contact with the substrate, accelerating the photocatalytic reaction process. In this paper, we synthesized two isomorphic compounds, namely, {[Co(mtrz)3·(H2O)2]2·[SiW12O40]}·6H2O (1) and {[Ni(mtrz)3·(H2O)2]2·[SiW12O40]}·6H2O (2) (mtrz = 1-methyl-1,2,4-triazole). We found that compound 1 has a great photocatalytic performance through a series of experiments, with a CO reduction yield of 7364.92 μmol g-1 h-1 and a CO selectivity of 82.5%. Furthermore, the high catalytic activity can be maintained over four cycle experiments. The catalytic mechanism of its photocatalytic system is also elucidated, which provides an idea for realizing efficient catalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Zhi-Ming Dong
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yin-Hua Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiu-Lin Zhou
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin-Ying Xiang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jia-Hang Pan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
16
|
Rahimi FA, Singh A, Jena R, Dey A, Maji TK. GFP Chromophore Integrated Conjugated Microporous Polymers toward Bioinspired Photocatalytic CO 2 Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43171-43179. [PMID: 39135392 DOI: 10.1021/acsami.4c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of highly active, durable, and low-cost metal-free catalysts for the photocatalytic CO2 reduction reaction (CO2RR) is an efficient and environmentally friendly solution to address significant problems like global warming and high energy demand. In the present study, we have demonstrated the design and synthesis of a donor-acceptor based conjugated microporous polymer (CMP), TPA-GFP, by integrating an electron donor, tris(4-ethynylphenyl)amine (TPA), with a green fluorescent protein chromophore analogue (Z)-4-(2-hydroxy-3,5-diiodobenzylidene)-1-(4-iodophenyl)-2-methyl-1H-imidazol-5(4H)-one (o-HBDI-I3) (GFP). In comparison to nondonor 1,3,5-triethynylbenzene (TEB) based TEB-GFP CMP, photocatalytic CO2 reduction using donor-acceptor based TPA-GFP CMP displays a 3-fold increment of CO production yield with a maximum CO yield of 1666 μmol g-1 at 12 h. Further, the CO selectivity increases significantly from a mere 54% in TEB-GFP to an impressive 95% in TPA-GFP. The impressive CO2 reduction efficiency and selectivity for TPA-GFP can be attributed to the efficient light-harvesting capability and facile charge separation and migration through donor-acceptor building units of the CMP. The mechanistic aspect of the photocatalytic CO2 reduction process is explored using in situ DRIFTS and DFT calculation, and a plausible photocatalytic mechanism is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
17
|
Wang P, Yang F, Qu J, Cai Y, Yang X, Li CM, Hu J. Recent Advances and Challenges in Efficient Selective Photocatalytic CO 2 Methanation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400700. [PMID: 38488718 DOI: 10.1002/smll.202400700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Solar-driven carbon dioxide (CO2) methanation holds significant research value in the context of carbon emission reduction and energy crisis. However, this eight-electron catalytic reaction presents substantial challenges in catalytic activity and selectivity. In this regard, researchers have conducted extensive exploration and achieved significant developments. This review provides an overview of the recent advances and challenges in efficient selective photocatalytic CO2 methanation. It begins by discussing the fundamental principles and challenges in detail, analyzing strategies for improving the efficiency of photocatalytic CO2 conversion to CH4 comprehensively. Subsequently, it outlines the recent applications and advanced characterization methods for photocatalytic CO2 methanation. Finally, this review highlights the prospects and opportunities in this area, aiming to inspire CO2 conversion into high-value CH4 and shed light on the research of catalytic mechanisms.
Collapse
Affiliation(s)
- Piyan Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fengyi Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
18
|
Li G, Gu Y, Ren R, Li S, Zhu H, Xue D, Kong X, Zheng Z, Liu N, Li B, Zhang J. Efficient reduction of CO 2 and inhibition of hydrogen precipitation by polyoxometalate photocatalyst modified with the metal Mn. NANOSCALE 2024; 16:12550-12558. [PMID: 38884386 DOI: 10.1039/d4nr00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Photocatalytic reduction of CO2 to chemical fuels is attractive for solving both the greenhouse effect and the energy crisis, but the key challenge is to design and synthesize photocatalysts with remarkable performance under visible light irradiation. Efficient catalytic carbon dioxide reduction (CO2RR) with light is considered a promising sustainable and clean approach to solve environmental problems. Herein, we found a new photocatalyst ([Mn(en)2]6[V12B18O54(OH)6]) (abbreviated as Mn6V12) based on the modifiability of polyoxometalates, in which Mn acts as a modifying unit to efficiently reduce CO2 to CO and effectively inhibit the hydrogen precipitation reaction. This Mn modified polyoxometalate catalyst has a maximum CO generation rate of 4625.0 μmol g-1 h-1 and a maximum H2 generation rate of 499.6 μmol g-1 h-1, with a selectivity of 90.3% for CO generation and 9.7% for H2 generation. This polyoxometalate photocatalyst can effectively reduce CO and inhibit the hydrogen precipitation reaction. It provides a new idea for the efficient photocatalytic carbon dioxide reduction (CO2RR) with polyoxometalate catalysts.
Collapse
Affiliation(s)
- Guifen Li
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yulan Gu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Rui Ren
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Sitan Li
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Houen Zhu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Dongdong Xue
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Xiangyi Kong
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Ziyi Zheng
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Nuo Liu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| | - Jiangwei Zhang
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
- Ordos Laboratory, Ordos 017000, P. R. China
| |
Collapse
|
19
|
Wang J, Li L, Liu Y, Yuan Z, Meng S, Ma P, Wang J, Niu J. Intensifying Photocatalytic Baeyer-Villiger Oxidation of Ketones with the Introduction of Ru Metalloligands and Bimetallic Units in POM@MOF. Inorg Chem 2024; 63:7325-7333. [PMID: 38602808 DOI: 10.1021/acs.inorgchem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The synthesis of visible light-responsive and efficient photocatalysts toward green Baeyer-Villiger oxidation organic synthesis is of extraordinary significance. In this work, we have synthesized two examples of visible light responsive crystalline polyoxometalate@metal-organic framework materials Ru-NiMo and Ru-CoMo by introducing Ru metalloligands and {CdM3O12} bimetallic units (M = Ni or Co). This is the first report of metalloligand-modified polyoxometalate@metal-organic framework materials with bimetallic nodes, and the materials form a three-dimensional framework directly through coordination bonds between {CdM3O12} bimetallic units and metalloligands. In particular, Ru-NiMo can achieve efficient photocatalytic conversion of cyclohexanone to ε-caprolactone in yields as high as 95.5% under visible light excitation in the range of λ > 400 nm, achieving a turnover number and turnover frequency of 955 and 440 h-1, respectively, which are the best known photocatalysts for Baeyer-Villiger oxidation, while apparent quantum yield measured at 485 nm is 4.4%. Moreover, Ru-NiMo exhibited excellent structural stability and recyclability, producing a 90.8% yield after five cycles of recycling.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
20
|
Zhang L, Jiang H, Wang C, Yu K, Lv J, Wang C, Zhou B. Improved supercapacitors and water splitting performances of Anderson-type manganese(III)-polyoxomolybdate through assembly with Zn-MOF in a host-guest structure. J Colloid Interface Sci 2024; 654:1393-1404. [PMID: 37918098 DOI: 10.1016/j.jcis.2023.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Enhancing performance through the combination of polyoxometalates (POMs) clusters with metal-organic frameworks (MOFs) that contain various transition metals is a challenging task. In this study, we synthesized a polyoxometalate-based metal-organic framework (POMOF) named HRBNU-5 using a solvothermal method. HRBNU-5 is composed of Zn[N(C4H9)4][MnMo6O18{(OCH2)3CNH2}2]@Zn3(C9H3O6)2·6C3H7NO, which includes two components: Zn[N(C4H9)4][MnMo6O18{(OCH2)3CNH2}2]·3C3H7NO ({Zn[MnMo6]}) and Zn3(C9H3O6)2·3C3H7NO (Zn-BTC). Structural characterization confirmed the host-guest structure, with Zn-BTC encapsulating {Zn[MnMo6]}. In a three-electrode system, HRBNU-5 exhibited a specific capacitance of 851.3 F g-1 at a current density of 1 A/g and retained high stability (97.2 %) after 5000 cycles. Additionally, HRBNU-5 performed well in aqueous-symmetric/asymmetric supercapacitors (SSC/ASC) in terms of energy density and power density in a double-electrode system. Moreover, it demonstrated excellent catalytic performance in a 1.0 M KOH solution, with low overpotentials and Tafel slopes for hydrogen and oxygen evolution reactions: 177.1 mV (η10 HER), 126.9 mV dec-1 and 370.3 mV (η50 OER), 36.3 mV dec-1, respectively, surpassing its precursors and most reported studies. HRBNU-5's positive performance is attributed to its host-guest structure, high electron-transfer conductivity, and porous structure that enhances efficient mass transport. This work inspires the design of Anderson-type POMOF electrode materials with multiple active sites and a well-defined structure.
Collapse
Affiliation(s)
- Lanyue Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Hongquan Jiang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China; Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China; Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| |
Collapse
|
21
|
Ren G, Zhao J, Zhao Z, Li Z, Wang L, Zhang Z, Li C, Meng X. Defects-Induced Single-Atom Anchoring on Metal-Organic Frameworks for High-Efficiency Photocatalytic Nitrogen Reduction. Angew Chem Int Ed Engl 2024; 63:e202314408. [PMID: 37968240 DOI: 10.1002/anie.202314408] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Aiming to improve the photocatalytic activity in N2 fixation to produce ammonia, herein, we proposed a photochemical strategy to fabricate defects, and further deposition of Ru single atoms onto UiO-66 (Zr) framework. Electron-metal-support interactions (EMSI) were built between Ru single atoms and the support via a covalently bonding. EMSI were capable of accelerating charge transfer between Ru SAs and UiO-66, which was favorable for highly-efficiently photocatalytic activity. The photocatalytic production rate of ammonia improved from 4.57 μmol g-1 h-1 to 16.28 μmol g-1 h-1 with the fabrication of defects onto UiO-66, and further to 53.28 μmol g-1 h-1 with Ru-single atoms loading. From the DFT results, it was found that d-orbital electrons of Ru were donated to N2 π✶-antibonding orbital, facilitating the activation of the N≡N triple bond. A distal reaction pathway was probably occurred for the photocatalytic N2 reduction to ammonia on Ru1 /d-UiO-66 (single Ru sites decorated onto the nodes of defective UiO-66), and the first step of hydrogenation of N2 was the reaction determination step. This work shed a light on improving the photocatalytic activity via feasibly anchoring single atoms on MOF, and provided more evidences to understand the reaction mechanism in photocatalytic reduction of N2 .
Collapse
Affiliation(s)
- Guangmin Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jianyong Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zehui Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zizhen Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
22
|
Singh M, Yadav A, Singh R, Pradeep CP. Aryl selenonium vs. aryl sulfonium counterions in polyoxometalate chemistry: the impact of Se + cationic centers on the photocatalytic reduction of dichromate. Dalton Trans 2024; 53:724-737. [PMID: 38086687 DOI: 10.1039/d3dt03465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A selenonium organic counter ion has been used in polyoxometalate chemistry to develop a new aryl selenonium polyoxometalate (POM) hybrid, and its photocatalytic properties have been explored in comparison with an aryl sulfonium POM-hybrid counterpart for the first time. The chalcogenonium counterions, namely, methyldiphenylsulfonium trifluoromethane sulfonate (MDPST) and methyldiphenylselenonium trifluoromethane sulfonate (MDPSeT), and their octamolybdate ([Mo8O26]4-) hybrids, 1 and 2, with the general formula (C13H13X)4[Mo8O26] (where X = S for 1 and Se for 2) were synthesized and characterized. Hybrids 1 and 2 vary in their chalcogenonium cationic center (S+vs. Se+), which enabled a direct comparison of their photocatalytic properties as a function of the cationic center. The photocatalytic activities of hybrids 1 and 2 were tested using the reduction of dichromate (Cr2O72-) as a model reaction under UV irradiation. A 99% photocatalytic reduction of Cr2O72- with a rate constant of 0.0305 min-1 was achieved with hybrid 2, while only a 67% reduction with a rate constant of 0.0062 min-1 was observed with hybrid 1 in 180 minutes. The better catalytic performance of hybrid 2 may be correlated to the larger atomic radii of Se than S, which helps in better stabilizing the photogenerated electron-hole (e--h+) pair on the POM cluster by polarizing its lone pair more efficiently compared to S. The catalytic recyclability was tested for up to 4 cycles using hybrid 2, and up to 98% reduction was obtained even after the 4th cycle. Recyclability tests and control experiments also indicated the generation of some elemental Se through possible cleavage of some C-Se bonds of MDPSe under prolonged UV exposure during catalysis, and the Se thus generated was found to contribute to the catalytic reduction of dichromate. This study, therefore, opens new avenues for aryl selenonium moieties and their POM hybrids for potential catalytic applications.
Collapse
Affiliation(s)
- Mahender Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Aakash Yadav
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Ranjit Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| |
Collapse
|
23
|
Jabbour R, Ashling CW, Robinson TC, Khan AH, Wisser D, Berruyer P, Ghosh AC, Ranscht A, Keen DA, Brunner E, Canivet J, Bennett TD, Mellot-Draznieks C, Lesage A, Wisser FM. Unravelling the Molecular Structure and Confining Environment of an Organometallic Catalyst Heterogenized within Amorphous Porous Polymers. Angew Chem Int Ed Engl 2023; 62:e202310878. [PMID: 37647152 DOI: 10.1002/anie.202310878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic-level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non-crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis, 129 Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh-based organometallic complex incorporated inside the cavity of amorphous bipyridine-based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs.
Collapse
Affiliation(s)
- Ribal Jabbour
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Christopher W Ashling
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Thomas C Robinson
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Arafat Hossain Khan
- Chair of Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Pierrick Berruyer
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Ashta C Ghosh
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Alisa Ranscht
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France, PSL Research University, CNRS Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100, Villeurbanne, France
| | - Florian M Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
24
|
Liang Y, Zhang Z, Su X, Feng X, Xing S, Liu W, Huang R, Liu Y. Coordination Defect-Induced Frustrated Lewis Pairs in Polyoxo-metalate-Based Metal-Organic Frameworks for Efficient Catalytic Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309030. [PMID: 37488072 DOI: 10.1002/anie.202309030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal-organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2 . This FLP catalyst can heterolytically dissociate H2 into active Hδ- , thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.
Collapse
Affiliation(s)
- Yan Liang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaofang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan, 453007, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
25
|
Song Y, Gómez-Recio I, Ghoridi A, Igoa Saldaña F, Janisch D, Sassoye C, Dupuis V, Hrabovsky D, Ruiz-González ML, González-Calbet JM, Casale S, Zitolo A, Lassalle-Kaiser B, Laberty-Robert C, Portehault D. Heterostructured Cobalt Silicide Nanocrystals: Synthesis in Molten Salts, Ferromagnetism, and Electrocatalysis. J Am Chem Soc 2023; 145:19207-19217. [PMID: 37615605 DOI: 10.1021/jacs.3c01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nanoscale heterostructures of covalent intermetallics should give birth to a wide range of interface-driven physical and chemical properties. Such a level of design however remains unattainable for most of these compounds, due to the difficulty to reach a crystalline order of covalent bonds at the moderate temperatures required for colloidal chemistry. Herein, we design heterostructured cobalt silicide nanoparticles to trigger magnetic and catalytic properties in silicon-based materials. Our strategy consists in controlling the diffusion of cobalt atoms into silicon nanoparticles, by reacting these particles in molten salts. By adjusting the temperature, we tune the conversion of the initial silicon particles toward homogeneous CoSi nanoparticles and core-shell nanoparticles made of a CoSi shell and a silicon-rich core. The increased interface-to-volume ratio of the CoSi component in the core-shell particles yields distinct properties compared to the bulk and homogeneous nanoparticles. First, the core-shell particles exhibit increased ferromagnetism, despite the bulk diamagnetic properties of cobalt monosilicide. Second, the core-shell nanoparticles act as efficient precatalysts for alkaline water oxidation, where the nanostructure is converted in situ into a layered cobalt silicon oxide/(oxy)hydroxide with high and stable oxygen evolution reaction (OER) electrocatalytic activity. This work demonstrates a route to design heterostructured nanocrystals of covalent intermetallic compounds and shows that these new structures exhibit very rich, yet poorly explored, interface-based physical properties and reactivity.
Collapse
Affiliation(s)
- Yang Song
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Isabel Gómez-Recio
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Anissa Ghoridi
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Fernando Igoa Saldaña
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Daniel Janisch
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Capucine Sassoye
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Vincent Dupuis
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 place Jussieu, F-75005 Paris, France
| | - David Hrabovsky
- Sorbonne Université, CNRS, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu, F-75005 Paris, France
| | - M Luisa Ruiz-González
- Dpto. de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - José M González-Calbet
- Dpto. de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Sandra Casale
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | | | - Christel Laberty-Robert
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
26
|
Gäumann P, Ferri D, Sheptyakov D, van Bokhoven JA, Rzepka P, Ranocchiari M. In Situ Neutron Diffraction of Zn-MOF-74 Reveals Nanoconfinement-Induced Effects on Adsorbed Propene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16636-16644. [PMID: 37646009 PMCID: PMC10461295 DOI: 10.1021/acs.jpcc.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Even though confinement was identified as a common element of selective catalysis and simulations predicted enhanced properties of adsorbates within microporous materials, experimental results on the characterization of the adsorbed phase are still rare. In this study, we provide experimental evidence of the increase of propene density in the channels of Zn-MOF-74 by 16(2)% compared to the liquid phase. The ordered propene molecules adsorbed within the pores of the MOF have been localized by in situ neutron powder diffraction, and the results are supported by adsorption studies. The formation of a second adsorbate layer, paired with nanoconfinement-induced short intermolecular distances, causes the efficient packing of the propene molecules and results in an increase of olefin density.
Collapse
Affiliation(s)
- Patrick Gäumann
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Davide Ferri
- Bioenergy
and Catalysis Laboratory, Paul Scherrer
Institut, CH-5232 Villigen, Switzerland
| | - Denis Sheptyakov
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institute
of Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Przemyslaw Rzepka
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institute
of Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marco Ranocchiari
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
27
|
Liu Y, Li L, Meng S, Wang J, Xu Q, Ma P, Wang J, Niu J. Fabrication of Polyoxometalate-Based Metal-Organic Frameworks Integrating Paddlewheel Rh 2(OAc) 4 for Visible-Light-Driven Oxidative Coupling of Amines. Inorg Chem 2023; 62:12954-12964. [PMID: 37531454 DOI: 10.1021/acs.inorgchem.3c01749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of visible-light-responsive, environmentally friendly, and reusable photocatalysts for organic oxidation reactions is of vital significance. Herein, four polyoxometalate-based metal-organic frameworks (POMOFs) were synthesized and systematically characterized by assembling the paddlewheel complex Rh2(OAc)4 and various polyoxometalates (POMs). Single-crystal X-ray diffraction analysis revealed that the four POMOFs were isomorphic and possessed rare structural features among the POMOFs, with POMs as nodes and Rh2(OAc)4 as linkers. As expected, the activities of the four POMOFs for the photocatalytic oxidative coupling of benzylamine were better than that of Rh2(OAc)4 or POMs individually, which was ascribed to the synergistic effect between them, and the intrinsic reasons for the difference in the activity were explained via electrochemical measurements. In particular, the product imine yield reached 96.1% with NaRh-SiW12 as the catalyst and a turnover number and a turnover frequency of 480.5 and 120.5 h-1, respectively, while the product yield remained as high as 92% after three repetitions, evidencing its high stability. Moreover, the higher activities of the four POMOFs for the selective epoxidation of various alkenes reaffirm the synergistic effect between Rh2(OAc)4 and POMs.
Collapse
Affiliation(s)
- Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qian Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
28
|
Karmakar S, Barman S, Rahimi FA, Rambabu D, Nath S, Maji TK. Confining charge-transfer complex in a metal-organic framework for photocatalytic CO 2 reduction in water. Nat Commun 2023; 14:4508. [PMID: 37495574 PMCID: PMC10371996 DOI: 10.1038/s41467-023-40117-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
In the quest for renewable fuel production, the selective conversion of CO2 to CH4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH4 from CO2. The reported material produces 7.3 mmol g-1 of CH4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Collapse
Affiliation(s)
- Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Soumitra Barman
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sukhendu Nath
- Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
29
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
30
|
Huang X, Zhou Z, Qin L, Zhang D, Wang H, Wang S, Yang L. Structural Regulation of Two Polyoxometalate-Based Metal-Organic Frameworks for the Heterogeneous Catalysis of Quinazolinones. Inorg Chem 2023; 62:5565-5575. [PMID: 36989459 DOI: 10.1021/acs.inorgchem.3c00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Two dimeric {ε-Zn4PMo12}-based metal-organic frameworks (MOFs), [ε-PMo8VMo4VIO34(OH)6Zn4][LO] (SDUT-21, LO = [5-((4'-carboxybenzyl)oxy)isophthalic acid]) and [TBA]3[ε-PMo8VMo4VIO37(OH)3Zn4][LN] (SDUT-22, TBA+ = tetrabutylammonium ion, LN = [5-((4-carboxybenzyl)imino)isophthalic acid]), combining the advantages of polyoxometalates (POMs) and MOFs, were synthesized by the one-pot assembly strategy. The dimeric {ε-Zn4PMo12} units act as nodes that are linked by the flexible ligands and extended into two- or three-dimensional frameworks. The cyclic voltammetry and proton conductivity measurements of SDUT-21 and SDUT-22 were performed and indicated the high electron and proton transfer abilities. These materials also e xhibited the catalytic performance for the synthesis of quinazolinones in the heterogeneous state, and the different binding capacities toward the substrates caused the catalytic activity of SDUT-21 to be higher than that of SDUT-22 under the same conditions. In addition, the used catalysts could be readily recovered for five successive cycles and maintained high catalytic efficiency.
Collapse
Affiliation(s)
- Xiaoxue Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Lan Qin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Haining Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
31
|
Heterogenized Molecular Rhodium Phosphine Catalysts within Metal–Organic Frameworks for Alkene Hydroformylation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
32
|
Cai S, Wu XY, Wu W, Wang SS, Lu CZ. Synergic catalysis of W and Ni originating from substitution of trivacant phosphotungstate for the selective oxidation of aniline to azoxybenzene. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
33
|
Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. Chem Commun (Camb) 2023; 59:1569-1588. [PMID: 36655919 DOI: 10.1039/d2cc05522h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs, also known as porous coordination polymers or PCPs) are a novel class of crystalline porous material. The tailorable porous structure, in terms of size, geometry and function, has attracted the attention of researchers across all disciplines of materials science. One of the many exciting aspects of MOFs is that through directional and reversible coordination bonding, organic linkers (chromophores with metal-coordinating functional groups) and metal ions (and clusters) can be spatially organized in a preconceived geometry. The well-defined spatial geometry of the metals and linkers is very advantageous for optoelectronic functions (solar cells, light-emitting diodes, photocatalysts) of the materials. This feature article evaluates the scope of charge transfer (CT) interactions in MOFs, involving the organic linkers and metal ion or cluster components. Irrespective of the type (size, shape, electronic property) of organic chromophores involved, MOFs provide an insightful path to design and make the CT process efficient. The selected examples of MOFs with CT characteristics do not only illustrate the design principles but render a pathway towards understanding the complex photophysical processes and implementing those for future optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Ritesh Haldar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Hyderabad 500046, India.
| | - Adrija Ghosh
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. .,Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
34
|
Lei T, Mi Y, Wei Z, Li S, Pang S. Application of fully conjugated covalent organic frameworks in photocatalytic carbon dioxide reduction performance. Dalton Trans 2023; 52:1761-1767. [PMID: 36655823 DOI: 10.1039/d2dt03743b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photocatalytic reduction of carbon dioxide into useful feedstocks has attracted increasing attention. In this study, a fully conjugated COF material COF-TMT-A with the main structure containing an alkyne group and triazine part was synthesized using sp2-carbon-carbon double bond (CC) linked COF as a research target. The prepared COF materials were characterized in detail by FT-IR, PXRD, and 13C solid-state NMR. The introduction of an alkyne group not only enhanced the conjugated π-electron leaving domain but also optimized the electronic band structure and significantly improved the photocatalytic activity. The selectivity for the product HCOO was as high as 99%. A 10 h photocatalytic CO2 reduction experiment was carried out, and COF-TMT-A showed a significantly higher HCOO- yield of about 43 μmol compared with COF-701 and the ligand.
Collapse
Affiliation(s)
- Tian Lei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yongsheng Mi
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co. Ltd, Beijing 101111, China.
| | - Zihao Wei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shenghua Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
35
|
Stanley PM, Su AY, Ramm V, Fink P, Kimna C, Lieleg O, Elsner M, Lercher JA, Rieger B, Warnan J, Fischer RA. Photocatalytic CO 2 -to-Syngas Evolution with Molecular Catalyst Metal-Organic Framework Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207380. [PMID: 36394175 DOI: 10.1002/adma.202207380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.
Collapse
Affiliation(s)
- Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Alice Y Su
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Vanessa Ramm
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Pascal Fink
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering and Center for Protein Assemblies (CPA), Technical University of Munich, 85748, Garching, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering and Center for Protein Assemblies (CPA), Technical University of Munich, 85748, Garching, Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Johannes A Lercher
- Chair of Chemical Technology II, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
36
|
Zhang Y, Wei B, Liang H. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3442-3454. [PMID: 36609187 DOI: 10.1021/acsami.2c18440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An organometallic complex-catalyzed artificial coenzyme regeneration system has attracted widespread attention. However, the combined use of organometallic complex catalysts and natural enzymes easily results in mutual inactivation. Herein, we establish a rhodium-based metal-organic framework (MOF)-on-MOF difunctional core-shell nanoreactor as an artificial enzymatic NAD(P)H regeneration system. UiO67 as the core is used to capture rhodium molecules for catalyzing NAD(P)H regeneration. UiO66 as the shell is used to specifically immobilize His-tagged lactate dehydrogenase (LDH) and serve as a protection shield for LDH and [Cp*Rh(bpy)Cl]+ to prevent mutual inactivation. A variety of results indicate that UiO67@Rh@UiO66 has good activity in realizing NAD(P)H regeneration. Noteworthily, UiO67@Rh@UiO66@LDH maintains a high activity level even after 10 cycles. This work reports a novel NAD(P)H regeneration platform to open up a new avenue for constructing chemoenzyme coupling systems.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| |
Collapse
|
37
|
Zhang Q, Wei T, Lu J, Sun C, Zhou Y, Wang M, Liu Y, Xiao B, Qiu X, Xu S. The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat Chem 2022; 14:1342-1356. [DOI: 10.1038/s41557-022-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
39
|
Pan Y, Sanati S, Nadafan M, Abazari R, Gao J, Kirillov AM. Postsynthetic Modification of NU-1000 for Designing a Polyoxometalate-Containing Nanocomposite with Enhanced Third-Order Nonlinear Optical Performance. Inorg Chem 2022; 61:18873-18882. [PMID: 36375112 PMCID: PMC9775467 DOI: 10.1021/acs.inorgchem.2c02709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal-organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal-organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.
Collapse
Affiliation(s)
- Yangdan Pan
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Soheila Sanati
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran
| | - Marzieh Nadafan
- Department
of Physics, Shahid Rajaee Teacher Training
University, 16788-15811Tehran, Iran
| | - Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran,
| | - Junkuo Gao
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China,
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001Lisbon, Portugal,
| |
Collapse
|
40
|
Stanley PM, Hemmer K, Hegelmann M, Schulz A, Park M, Elsner M, Cokoja M, Warnan J. Topology- and wavelength-governed CO 2 reduction photocatalysis in molecular catalyst-metal-organic framework assemblies. Chem Sci 2022; 13:12164-12174. [PMID: 36349115 PMCID: PMC9601321 DOI: 10.1039/d2sc03097g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Optimising catalyst materials for visible light-driven fuel production requires understanding complex and intertwined processes including light absorption and catalyst stability, as well as mass, charge, and energy transport. These phenomena can be uniquely combined (and ideally controlled) in porous host-guest systems. Towards this goal we designed model systems consisting of molecular complexes as catalysts and porphyrin metal-organic frameworks (MOFs) as light-harvesting and hosting porous matrices. Two MOF-rhenium molecule hybrids with identical building units but differing topologies (PCN-222 and PCN-224) were prepared including photosensitiser-catalyst dyad-like systems integrated via self-assembled molecular recognition. This allowed us to investigate the impact of MOF topology on solar fuel production, with PCN-222 assemblies yielding a 9-fold turnover number enhancement for solar CO2-to-CO reduction over PCN-224 hybrids as well as a 10-fold increase compared to the homogeneous catalyst-porphyrin dyad. Catalytic, spectroscopic and computational investigations identified larger pores and efficient exciton hopping as performance boosters, and further unveiled a MOF-specific, wavelength-dependent catalytic behaviour. Accordingly, CO2 reduction product selectivity is governed by selective activation of two independent, circumscribed or delocalised, energy/electron transfer channels from the porphyrin excited state to either formate-producing MOF nodes or the CO-producing molecular catalysts.
Collapse
Affiliation(s)
- Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Karina Hemmer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Markus Hegelmann
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Annika Schulz
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Mihyun Park
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich Garching Germany
| | - Mirza Cokoja
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Catalysis Research Center (CRC), Technical University of Munich Garching Germany
| |
Collapse
|
41
|
Shi C, Kang N, Wang C, Yu K, Lv J, Wang C, Zhou B. An inorganic-organic hybrid nanomaterial with a core-shell structure constructed by using Mn-BTC and Ag 5[BW 12O 40] for supercapacitors and photocatalytic dye degradation. NANOSCALE ADVANCES 2022; 4:4358-4365. [PMID: 36321138 PMCID: PMC9552923 DOI: 10.1039/d2na00510g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 05/16/2023]
Abstract
Creating inorganic-organic hybrids with polyoxometalates (POMs) and metal-organic frameworks (MOFs) as energy storage and dye-degradation materials remains challenging. Here, a new hybrid nanomaterial Mn-BTC@Ag5[BW12O40] is synthesized by using Ag5[BW12O40] and Mn3(BTC)2(H2O)6 (Mn-BTC, BTC = 1,3,5-benzenetricarboxylic acid) through a plain grinding method. The structure and morphology characterization by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) shows that the synthetic products have core-shell construction. Due to its unique structure wherein the core is Mn-BTC and the shell is Ag5[BW12O40], it exhibits excellent capacitance performance. In a three-electrode system where nickel foam is a collector, at a current density of 1 A g-1, its specific capacitance is 198.09 F g-1; after 5000 cycles, the capacitance retention rate is 94.4%. When the power density is 503.1 W kg-1, the symmetrical supercapacitor reveals a high energy density which is 10.9 W h kg-1. At the same time, the capacitance retention is 92.9% after 5000 cycles which showed good cycle stability. The photocatalytic degradation efficiencies of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) dyes exceed 90% after 140 min, and the degradation results remained unchanged after five photocatalytic cycles. The photocatalytic degradation mechanism shows that ˙OH has a major effect. The results show that this research provides a fresh idea for the development of energy storage and dye photocatalytic degradation materials.
Collapse
Affiliation(s)
- Caihong Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Ning Kang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University Harbin Heilongjiang 150025 China
| |
Collapse
|
42
|
Grammatico D, Bagnall AJ, Riccardi L, Fontecave M, Su BL, Billon L. Heterogenised Molecular Catalysts for Sustainable Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202206399. [PMID: 35781916 DOI: 10.1002/anie.202206399] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 12/17/2022]
Abstract
There has been a rapid rise in interest regarding the advantages of support materials to protect and immobilise molecular catalysts for the carbon dioxide reduction reaction (CO2 RR) in order to overcome the weaknesses of many well-known catalysts in terms of their stability and selectivity. In this Review, the state of the art of different catalyst-support systems for the CO2 RR is discussed with the intention of leading towards standard benchmarking for comparison of such systems across the most relevant supports and immobilisation strategies, taking into account these multiple pertinent metrics, and also enabling clearer consideration of the necessary steps for further progress. The most promising support systems are described, along with a final note on the need for developing more advanced experimental and computational techniques to aid the rational design principles that are prerequisite to prospective industrial upscaling.
Collapse
Affiliation(s)
- Domenico Grammatico
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France.,Present address: Energy Conversion and Hydrogen Center for Energy, Austrian Institute of Technology GmbH, Giefinggasse 2, 1210, Vienna, Austria
| | - Andrew J Bagnall
- Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France.,Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 751 20, Uppsala, Sweden.,Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 Rue des Martyrs, 38054, Grenoble Cedex, France
| | - Ludovico Riccardi
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 751 20, Uppsala, Sweden.,Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Laurent Billon
- Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France
| |
Collapse
|
43
|
Wang X, Ding X, Wang T, Wang K, Jin Y, Han Y, Zhang P, Li N, Wang H, Jiang J. Two-Dimensional Porphyrin-Based Covalent Organic Framework with Enlarged Inter-layer Spacing for Tunable Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41122-41130. [PMID: 36044780 DOI: 10.1021/acsami.2c12542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) porphyrin-based covalent organic frameworks (COFs) are one of the most promising candidates for photocatalytic carbon dioxide reduction reaction (CO2RR), which however still suffer from the hindered mass transfer during the catalysis procedure associated with the close packing of 2D COF layers due to the strong axial π-π stacking. Herein, condensation between the porphyrinic aldehydes p-MPor-CHO (M = H2, Co, and Ni) and 3,8-diamino-6-phenyl-phenanthridine (DPP) affords new porphyrin-based 2D COF architecture MPor-DPP-COFs (M = H2, Co, and Ni). The bulky phenyl substituent at the phenanthridine periphery of the linking unit reduces the axial π-π stacking, providing an enlarged inter-layer spacing of 6.0 Å according to high-resolution transmission electron microscopy. This, in combination with the large surface area (1021 m2 g-1) revealed by nitrogen sorption measurements at 77 K for CoPor-DPP-COF possessing electroactive Co ions, endows it with excellent photocatalytic activity for CO2RR with a CO generation rate of 10 200 μmol g-1 h-1 and a CO selectivity up to 82%. This work affords new ideas for achieving efficient photocatalytic CO2RR upon fine-tuning the inter-layer spacing of 2D COFs.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
44
|
Chen W, Li H, Jin Y, Wu C, Yuan Z, Ma P, Wang J, Niu J. An intriguing tetranuclear Rh-based polyoxometalate for the reduction of nitroarene and oxidation of aniline. Chem Commun (Camb) 2022; 58:9902-9905. [PMID: 35975716 DOI: 10.1039/d2cc03076d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organic-inorganic hybrid polyoxometalate Na5H5.68 [Na0.17Rh0.83III(C6H8N2)2Cl2]2(C8H8N2)2[As4W40O140Rh4IV(C6H4N2S)2]·nH2O (1) containing 5.66 Rh atoms is prepared; to our knowledge, it owns the largest number of Rh atoms in the Rh-POM family. Compound 1 demonstrates good catalytic performance in the reduction of nitrobenzene to aniline and the oxidation of aniline to azobenzene under mild conditions. Moreover, catalyst 1 exhibits high activity, excellent stability and recyclability.
Collapse
Affiliation(s)
- Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Che Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. .,Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
45
|
Maru K, Kalla S, Jangir R. MOF/POM hybrids as catalysts for organic transformations. Dalton Trans 2022; 51:11952-11986. [PMID: 35916617 DOI: 10.1039/d2dt01895k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insertion of molecular metal oxides, e.g. polyoxometalates (POMs), into metal-organic frameworks (MOFs) opens up new research opportunities in various fields, particularly in catalysis. POM/MOF composites have strong acidity, oxygen-rich surface, and redox capacity due to typical characteristics of POMs and the large surface area, highly organized structures, tunable pore size, and shape are due to MOFs. Such hybrid materials have gained a lot of attention due to astonishing structural features, and hence have potential applications in organic catalysis, sorption and separation, proton conduction, magnetism, lithium-ion batteries, supercapacitors, electrochemistry, medicine, bio-fuel, and so on. The exceptional chemical and physical characteristics of POMOFs make them useful as catalysts in simple organic transformations with high capacity and selectivity. Here, the thorough catalytic study starts with a brief introduction related to POMs and MOFs, and is followed by the synthetic strategies and applications of these materials in several catalytic organic transformations. Furthermore, catalytic conversions like oxidation, condensation, esterification, and some other types of catalytic reactions including photocatalytic reactions are discussed in length with their plausible catalytic mechanisms. The disadvantages of the POMOFs and difficulties faced in the field have also been explored briefly from our perspectives.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
46
|
Guo S, Kong LH, Wang P, Yao S, Lu TB, Zhang ZM. Switching Excited State Distribution of Metal-Organic Framework for Dramatically Boosting Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202206193. [PMID: 35562329 DOI: 10.1002/anie.202206193] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Photosensitization associated with electron/energy transfer represents the central science of natural photosynthesis. Herein, we proposed a protocol to dramatically improve the sensitizing ability of metal-organic frameworks (MOFs) by switching their excited state distribution from 3 MLCT (metal-to-ligand charge transfer) to 3 IL (intraligand). The hierarchical organization of 3 IL MOFs and Co/Cu catalysts facilitates electron transfer for efficient photocatalytic H2 evolution with a yield of 26 844.6 μmol g-1 and CO2 photoreduction with a record HCOOH yield of 4807.6 μmol g-1 among all the MOF photocatalysts. Systematic investigations demonstrate that strong visible-light-absorption, long-lived excited state and ingenious multi-component synergy in the 3 IL MOFs can facilitate both interface and intra-framework electron transfer to boost photocatalysis. This work opens up an avenue to boost solar-energy conversion by engineering sensitizing centers at a molecular level.
Collapse
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical, Engineering Tianjin University of Technology, Tianjin, 300384, China
| | - Li-Hui Kong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical, Engineering Tianjin University of Technology, Tianjin, 300384, China
| | - Ping Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical, Engineering Tianjin University of Technology, Tianjin, 300384, China
| | - Shuang Yao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical, Engineering Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical, Engineering Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical, Engineering Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
47
|
Zhang Y, Cui H, Zhang B, Tian A. Three Keggin-based complexes modified by an asymmetric ligand: structures, electrochemical, photocatalytic and fluorescence sensing properties. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Solé-Daura A, Benseghir Y, Ha-Thi MH, Fontecave M, Mialane P, Dolbecq A, Mellot-Draznieks C. Origin of the Boosting Effect of Polyoxometalates in Photocatalysis: The Case of CO 2 Reduction by a Rh-Containing Metal–Organic Framework. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Youven Benseghir
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Minh-Huong Ha-Thi
- CNRS, Institut des Sciences Moléculaires d’Orsay, Université Paris-Saclay, Orsay 91405, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Pierre Mialane
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Anne Dolbecq
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| |
Collapse
|
49
|
Zheng Y, Shen Q, Li Z, Jing X, Duan C. Two Copper-Containing Polyoxometalate-Based Metal-Organic Complexes as Heterogeneous Catalysts for the C-H Bond Oxidation of Benzylic Compounds and Olefin Epoxidation. Inorg Chem 2022; 61:11156-11164. [PMID: 35799381 DOI: 10.1021/acs.inorgchem.2c01073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a one-pot assembly method, two novel copper-containing Keggin-type polyoxometalates (POMs)-based metal-organic complexes, that is, [CuII2(pbba)2NO3-(H2O)2(PW12O40)]·3H2O [PW12-Cu-pbba, H2pbba = 1,1'-(1,4-phenylene-bis(methylene))-bis(pyridine-3-carboxylic acid)] and [CuII2(pbba)2(H2O)2(GeW12O40)]·3H2O (GeW12-Cu-pbba), were successfully synthesized. These two complexes are isostructural, differing only in their POM components. They are applicable as heterogeneous catalysts for the C-H bond oxidation of benzylic compounds and olefin epoxidation under mild conditions, with oxygen as the oxidant and isobutyraldehyde as the coreductant. The catalytic activity of PW12-Cu-pbba was superior to that of GeW12-Cu-pbba. Under the optimal conditions, PW12-Cu-pbba catalyzed the oxidation of indane into 1-indanone with an 81% yield and >99% selectivity within 48 h. As heterogeneous catalysts, both complexes demonstrated excellent recoverability and high stability and could be stably reused five times without significant activity loss.
Collapse
Affiliation(s)
- Yiying Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingbo Shen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhentao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
50
|
Grammatico D, Bagnall AJ, Riccardi L, Fontecave M, Su BL, Billlon L. Heterogenised molecular catalysts for sustainable electrochemical CO2 reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Domenico Grammatico
- University of Namur: Universite de Namur Chemistry-CMI 61 rue de Bruxelles 5000 Namur BELGIUM
| | - Andrew J. Bagnall
- Uppsala University: Uppsala Universitet Ångström Laboratories SWEDEN
| | - Ludovico Riccardi
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems NETHERLANDS
| | | | - Bao-Lian Su
- University of Namur: Universite de Namur Chemistry 61 rue de Bruxelles 5000 Namur BELGIUM
| | - Laurent Billlon
- Université de Pau et des Pays de l'Adour: Universite de Pau et des Pays de l'Adour Physical Chemistry FRANCE
| |
Collapse
|