1
|
Chen SH, Zhang S, Chen ZY, Wu Y, Wang P. Cu-Catalyzed Enantioselective Carbene Insertion into Ge-H and Si-H Bonds Enabled by SPSiBox with a Tunable Chiral Pocket. J Am Chem Soc 2025; 147:15666-15675. [PMID: 40292853 DOI: 10.1021/jacs.5c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Here, we report the Cu-catalyzed asymmetric carbene insertion into both Ge-H and Si-H bonds with α-trifluoromethyl diazo compounds, enabled by a class of newly developed C2-symmetrical bisoxazoline ligands. This protocol provides an efficient method for the preparation of enantioenriched α-trifluoromethyl ogranogermanes and organosilanes, featuring a broad substrate scope, mild reaction conditions, excellent enantioselectivity, and low catalyst loading. The key to the tolerance of both Si-H and Ge-H bonds is the use of SPSiBox ligands bearing a flexible and tunable chiral pocket. Preliminary mechanistic studies and computational studies unveiled the origin of chiral induction with SPSiBox ligands, the mechanism of Cu-catalyzed Ge-H insertion. This method not only provides a new method for the construction of trifluoromethyl-containing chiral molecules but also opens a new avenue for the preparation of chiral Si- and Ge-containing functional molecules.
Collapse
Affiliation(s)
- Shi-Hao Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Shengye Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Zi-Yang Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
2
|
Tyagi A, Gaur K, Goswami A, Seal A, Joddar M, Jindal G. A combined experimental and computational study reveals a crossover between conventional cross-coupling and carbene insertion pathways in a Pd catalyzed C(sp 2)-H insertion. Chem Sci 2025; 16:6793-6804. [PMID: 40110525 PMCID: PMC11915135 DOI: 10.1039/d5sc00777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Computational (DFT and DLPNO-CCSD(T)) calculations along with experimental tools (deuterium labelling, kinetic studies using VTNA, ESI-HRMS and UV) are used to probe the mechanism of a Pd(ii)-catalyzed enantioselective carbene insertion into C(sp2)-H of indole. Using deuterium labelling studies, we demonstrate the intermediacy of a metal-hydride species, which contrasts with mechanistic routes for other transition metals (Rh, Fe, Au, Cu, etc.). Our VTNA study reveals the order to be one in both diazo and indole, which along with microkinetic modelling aligns well with the computationally predicted mechanism. The mechanism is further supported by the detection of the most stable intermediate in the catalytic cycle using ESI-HRMS. An investigation into the origin of stereoselectivity using DLPNO-CCSD(T) presents a new paradigm, wherein stereocontrol arises during the formation of the Pd carbene itself as opposed to proton transfer steps found for all other metal catalysts.
Collapse
Affiliation(s)
- Arushi Tyagi
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore Karnataka-560012 India
| | - Kritika Gaur
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore Karnataka-560012 India
| | - Anubhav Goswami
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore Karnataka-560012 India
| | - Arko Seal
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore Karnataka-560012 India
| | - Mayuk Joddar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat Gujarat-395007 India
| | - Garima Jindal
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science Bangalore Karnataka-560012 India
| |
Collapse
|
3
|
Xiao T, Liu J, Wu X, Liu S. Photoinduced Diazo Carbene-Promoted C(sp 3)-H Oxidative Cross-Coupling Reaction for α-Triazolation of Isochromans. J Org Chem 2025; 90:4202-4208. [PMID: 40094969 DOI: 10.1021/acs.joc.4c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A photocatalytic diazo triplet carbene-promoted C(sp3)-H oxidative coupling of isochromans and triazoles was developed in up to 83% yield at room temperature in air. The radical-like triplet carbenes were used as efficient HAT acceptors, and the possible synergistic HAT enabled the unprecedented process with a high regioselectivity.
Collapse
Affiliation(s)
- Tang Xiao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinhua Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Chang KC, Chiu HH, Huang PG, Miñoza S, Lee WH, Keerthipati PK, Racochote S, Lee YH, Chou CJ, Hsu CM, Chang CW, Soorukram D, Chiu CC, Liao HH. Photoenolization of α,β-Unsaturated Esters Enables Enantioselective Contra-Thermodynamic Positional Isomerization to α-Tertiary β,γ-Alkenyl Esters. J Am Chem Soc 2025; 147:7452-7460. [PMID: 39991782 PMCID: PMC11887454 DOI: 10.1021/jacs.4c15732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
The enantioselective protonation of prochiral enolates is an ideal and straightforward platform to synthesize stereodefined α-tertiary esters, which are recurring motifs in a myriad of biorelevant molecules and important intermediates thereof. However, this approach remains onerous, particularly when dealing with α-unactivated esters and related acids, as enantioinduction on the nascent nucleophile necessitates peremptory reaction conditions, thus far only achieved via preformed enolates. A complementary and contra-thermodynamic catalytic strategy is herein described, where a transient photoenol, in the form of a ketene hemiacetal, is enantioselectively protonated with a chiral phosphoric acid (CPA). The prochiral photoketene hemiacetals are procured from excited α,β-unsaturated esters, specifically from the Z-geometric isomer through [1,5]-hydride shift as a chemically productive nonradiative relaxation pathway. Tautomerization via formal 1,3-proton transfer in the photoketene hemiacetal with CPA as a proton shuttle delivers α-branched β,γ-alkenyl esters in good to excellent yields and enantioselectivity under mild conditions. Furthermore, the current protocol was coupled to functional group interconversion experiments, as well as in a formal total synthesis of a known marine γ-butyrolactone-type metabolite. Performing the reaction in a continuous photoflow setup also enabled a gram-scale synthesis of a β,γ-alkenyl ester with up to 92% ee.
Collapse
Affiliation(s)
- Kuei-Chen Chang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Hung-Hsuan Chiu
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Pin-Gong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Shinje Miñoza
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Wen-Hsuan Lee
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Prem Kumar Keerthipati
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Sasirome Racochote
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH−CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yi-Hua Lee
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Chih-Ju Chou
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Che-Ming Hsu
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Che-Wei Chang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Darunee Soorukram
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH−CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Cheng-chau Chiu
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Hsuan-Hung Liao
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
- Department
of Applied and Medicinal Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan (R.O.C.)
| |
Collapse
|
5
|
Battaglia V, Meninno S, Lattanzi A. Asymmetric Organocatalysed Synthesis of (R)-Mandelic Acid Esters and α-Alkoxy Derivatives from Commercial Sources. Chemistry 2025; 31:e202403769. [PMID: 39526444 DOI: 10.1002/chem.202403769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Optically active mandelic acid esters represent a highly valuable class of building blocks in organic synthesis and recurrent motifs embedded in bioactive compounds and drugs. Herein, we provide an enantioselective one-pot synthesis based on Knoevenagel condensation/asymmetric epoxidation/domino ring-opening hydrolysis (DROH) sequence to the crude mandelic acids, which underwent a final esterification step to (R)-methyl mandelates. These products have been obtained in good to high overall yield and enantioselectivity, using commercially and widely available reagents and catalyst including aldehydes, phenylsulfonyl acetonitrile, cumyl hydroperoxide, water and an epi-quinine-derived urea as the organocatalyst. Moreover, the versatility of the process has been demonstrated to prepare the corresponding α-alkoxy esters in highly enantioselective manner, when using primary alcohols in a domino ring-opening esterification (DROE) step. This system is a first example of non-enzymatic catalytic one-pot protocol which allows a straightforward asymmetric synthesis of highly valuable mandelic acid derivatives from aldehyde feedstocks.
Collapse
Affiliation(s)
- Vincenzo Battaglia
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84081, Fisciano, Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84081, Fisciano, Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84081, Fisciano, Italy
| |
Collapse
|
6
|
Xu J, Wang G, Ding K, Wang X. Dirhodium-Palladium Dual-Catalyzed [1 + 1 + 3] Annulation to Heterocycles Using Primary Amines or H 2O as the Heteroatom Sources. J Am Chem Soc 2025; 147:2000-2009. [PMID: 39772613 DOI: 10.1021/jacs.4c15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The ever-increasing demand in chemical biology and medicinal research requires the development of new synthetic methods for the rapid construction of libraries of heterocycles from simple raw materials. In this context, the utilization of primary amines or H2O as the simple N- or O-sources in the assembly of a heterocyclic ring skeleton is highly desirable from the viewpoint of atom- and step-economy. Herein, we describe a highly efficient three-component reaction of diazo, allylic diacetates, and commercially available anilines (or H2O) to access structurally diverse pyrrolidine and tetrahydrofuran derivatives. This formal [1 + 1 + 3] annulation reaction features high efficiency, good yields, and broad functional group compatibility, making it a versatile and robust platform for the (formal) synthesis of several important bioactive molecules. Mechanistic studies suggested that the dirhodium-palladium bimetallic relay catalysis should play a key role in the successive steps of the current reaction, including sequential carbene insertion into the X-H bond and double allylic substitutions, thus allowing for building up molecular complexity from these simple raw materials.
Collapse
Affiliation(s)
- Jie Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Gaoyin Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Wang X, Yang C, Chen D, Chen P, Wang Y, Cao B, Qiao C, Szostak M. Synthesis of Functionalized Indoles by an Iridium-Catalyzed N-H Insertion Cascade: Nucleophilic Cyclization of Naphthylamines with α-Diazocarbonyl Compounds. J Org Chem 2024; 89:18291-18300. [PMID: 39606850 DOI: 10.1021/acs.joc.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel iridium-catalyzed [3 + 2] annulation of naphthylamines and α-diazocarbonyl compounds was developed for the rapid assembly of densely functionalized indoles. This new catalytic process represents the first example of a cascade intramolecular nucleophilic cyclization by the N-H insertion of amines. Various naphthylamines and α-diazocarbonyl compounds could be obtained in high yields with excellent functional group tolerance. The reaction affords valuable indole derivatives, enabling expedient access to novel heterocyclic analogues not easily accessible by other methods.
Collapse
Affiliation(s)
- Xiaogang Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Chi Yang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Di Chen
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, China
| | - Pu Chen
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji 721013, China
| | - Yishou Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Baoyue Cao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
Du Y, Duan S, Huang S, Liu T, Zhang H, Walsh PJ, Yang X. Enantioselective Synthesis of Aminals Via Nickel-Catalyzed Hydroamination of 2-Azadienes with Indoles and N-Heterocycles. J Am Chem Soc 2024; 146:30947-30957. [PMID: 39475252 DOI: 10.1021/jacs.4c09750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
New methods for the enantioselective synthesis of N-alkylated indoles and their derivatives are of great interest because indoles are pivotal structural elements in biologically active molecules and natural products. They are also versatile intermediates in organic synthesis. Among well-established asymmetric hydroamination methods, the asymmetric hydroamination with indole-based substrates is a formidable challenge. This observation is likely due to the reduced nucleophilicity of the indole nitrogen. Herein, a unique nickel-catalyzed enantio- and branched-selective hydroamination of 2-azadienes with indoles and structurally related N-heterocycles is reported for the generation of enantioenriched N,N-aminals. Salient features of this reaction include good yields, mild reaction conditions, high enantioselectivities, and broad substrate scope (60 examples, up to 96% yield and 99% ee). The significance of this approach with indoles and other N-heterocycles is demonstrated through structural modification of natural products and drug molecules and the preparation of enantioenriched N-alkylated indole core structures. Mechanistic studies reveal that olefin insertion into a Ni-H bond in the hydroamination is the enantio-determining step and oxidative addition of the N-H bond may be the turnover-limiting step.
Collapse
Affiliation(s)
- Ya Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Shuntao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Tongqi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
9
|
Rana A, Chauhan R, Mottafegh A, Kim DP, Singh AK. DigiChemTree enables programmable light-induced carbene generation for on demand chemical synthesis. Commun Chem 2024; 7:251. [PMID: 39487355 PMCID: PMC11530455 DOI: 10.1038/s42004-024-01330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
The reproducibility of chemical reactions, when obtaining protocols from literature or databases, is highly challenging for academicians, industry professionals and even now for the machine learning process. To synthesize the organic molecule under the photochemical condition, several years for the reaction optimization, highly skilled manpower, long reaction time etc. are needed, resulting in non-affordability and slow down the research and development. Herein, we have introduced the DigiChemTree backed with the artificial intelligence to auto-optimize the photochemical reaction parameter and synthesizing the on demand library of the molecules in fast manner. Newly, auto-generated digital code was further tested for the late stage functionalization of the various active pharmaceutical ingredient.
Collapse
Affiliation(s)
- Abhilash Rana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ruchi Chauhan
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ajay K Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Li H, Xia Z, Li L, Zeng J, Lv J, Wang H, Gu S, Chen F. Regioselective Cleavage and Reconfiguration of C-S Bonds with Diazo Compounds. Org Lett 2024; 26:8405-8409. [PMID: 39297546 DOI: 10.1021/acs.orglett.4c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A coupling reaction between diazo compounds and phenyl benzyl sulfide catalyzed by TfOH has been reported. This reaction can synthesize important α-arylthio carbonyl compounds via regioselective cleavage and reconfiguration of C-S bonds, and various functional groups were tolerant to the reaction conditions. Mechanistic studies have conclusively established that the pivotal intermediate in the reaction was meticulously investigated through spectroscopic evidence, complemented by rigorous control experiments.
Collapse
Affiliation(s)
- Huan Li
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhimin Xia
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lewan Li
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jie Zeng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jian Lv
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haifeng Wang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Shuangxi Gu
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
11
|
Qiu G, Li F, Kowah JAH, Xie J, Long Q, Wang L, Liu X. Novel chiral matrine derivatives as potential antitumor agents: Design, synthesis and biological evaluation. Bioorg Chem 2024; 146:107276. [PMID: 38479132 DOI: 10.1016/j.bioorg.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Since the thalidomide incident, research on chiral drugs has escalated immensely. Differences in drug configuration can lead to significant variations in therapeutic efficacy. Matrine, a natural product esteemed for its low toxicity and high water solubility, has garnered significant attention in research endeavors. Nonetheless, its precise target has proven elusive. In this study, we designed and synthesized a novel chiral matrine derivative. Their cytotoxicity against three types of tumor cells was assessed. Comparing the newly synthesized derivatives to the parent matrine, most compounds exhibited significantly enhanced inhibitory effects on cancer cells. Among them, Q12 exhibited the highest activity, with IC50 values of 8.31 μM against rat glioma cells C6, 6.3 μM against human liver cancer cells HepG2 and 7.14 μM against human gastric cancer cells HGC-27, meanwhile showing low toxicity. Based on IC50 values, we constructed a preliminary structure-activity relationship (SAR). Compound Q12 significantly suppressed the cloning and migration of HepG2 cells. Further mechanistic studies indicated that Q12 inhibited Topo I in HepG2 cells, leading to DNA damage, induction of G0/G1 cell cycle arrest and ultimately causing apoptosis. The molecular docking experiments provided a rational binding mode of Q12 with the Topo I-DNA complex. In vivo, experiments demonstrated that Q12 exhibited a higher tumor growth inhibition rate (TGI) compared to the positive control drug Lenvatinib, while maintaining good safety. In summary, it suggests that Topo I might be a potential target for matrine and Q12 represents a promising candidate for cancer treatment.
Collapse
Affiliation(s)
- Gan Qiu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Fan Li
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jamal A H Kowah
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Junwei Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Qingfeng Long
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Lisheng Wang
- School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xu Liu
- School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
13
|
Montiège O, Rouzier F, Lhoste J, Gaulon-Nourry C, Castanet AS, Chany AC. Rhodium(I)-Catalyzed O-H Insertions on O-Protected α-Diazo-β-Hydroxyesters. J Org Chem 2024; 89:3194-3201. [PMID: 38349765 DOI: 10.1021/acs.joc.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The X-H insertion reaction constitutes a powerful tool to create diversity through the diazo decomposition of diazocarbonyl compounds. However, until now, X-H insertion on α-diazo-β-aryl-β-hydroxyester scaffolds, readily prepared by aldol-type addition, remained a challenge for the organic chemist. We report herein the first O-H insertions on O-protected α-diazo-β-aryl-β-hydroxyesters, providing straightforward access to a wide range of α,β-dioxygenated esters through modulation of the alcohol and of the aryl substituent. The key feature to achieving this transformation is the use of Rh(I) catalysts, which proved to be crucial to favor the targeted O-H insertion product over the competing 1,2-H and 1,2-Ar migration products. Overall, 32 O-H insertion products have been prepared, in moderate to good yields, with a diastereoisomeric ratio up to 7.5:1 in favor of the syn diastereoisomer.
Collapse
Affiliation(s)
- Ophélie Montiège
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Florian Rouzier
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Jérôme Lhoste
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Catherine Gaulon-Nourry
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Anne-Sophie Castanet
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Anne-Caroline Chany
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
14
|
Han AC, Xiao LJ, Zhou QL. Construction of Ge-Stereogenic Center by Desymmetric Carbene Insertion of Dihydrogermanes. J Am Chem Soc 2024; 146:5643-5649. [PMID: 38327018 DOI: 10.1021/jacs.3c14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We developed a method for the enantioselective synthesis of germanium-stereogenic compounds by the desymmetric carbene insertion of dihydrogermanes. A chiral rhodium phosphate catalyst decomposes diaryldiazo-methanes to generate rhodium carbenes that insert enantioselectively into one of the two Ge-H bonds of dihydrogermanes to form germanium-stereogenic compounds under mild reaction conditions. By this method, a variety of chiral germanes with germanium-stereogenic centers were synthesized in high yields and excellent enantioselectivities. Kinetic studies of the reaction showed that the diazo decomposition process was the rate-determining step. The remaining Ge-H bond of the chiral germane products provides a possibility for preparing chiral tetra-substituted germanium-stereogenic compounds.
Collapse
Affiliation(s)
- Ai-Cui Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Tan F, Wang W, Huang X, Zhong Y, Song T, Wang J, Mei L. O-H Insertion of Hydrogenphosphate Derivatives and α-Diazo Compounds. J Org Chem 2024; 89:2588-2598. [PMID: 38270667 DOI: 10.1021/acs.joc.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
An efficient O-H insertion of hydrogenphosphate derivatives and α-diazo compounds has been developed to construct α-phosphoryloxy scaffolds. Diverse α-phosphoryloxy skeletons could be obtained under mild and catalyst-free conditions in good yields. The control experiments suggest a protonation and nucleophilic addition process of α-diazo compounds via a diazonium ion pair for this transformation.
Collapse
Affiliation(s)
- Fei Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi Zhong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ling Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Teimouri M, Raju S, Acheampong E, Schmittou AN, Donnadieu B, Wipf DO, Pierce BS, Stokes SL, Emerson JP. Aminoquinoline-Based Tridentate ( NNN)-Copper Catalyst for C-N Bond-Forming Reactions from Aniline and Diazo Compounds. Molecules 2024; 29:730. [PMID: 38338473 PMCID: PMC10856582 DOI: 10.3390/molecules29030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.
Collapse
Affiliation(s)
- Mohsen Teimouri
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Allison N. Schmittou
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - David O. Wipf
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| |
Collapse
|
17
|
Harariya MS, Gogoi R, Goswami A, Sharma AK, Jindal G. Is Enol Always the Culprit? The Curious Case of High Enantioselectivity in a Chiral Rh(II) Complex Catalyzed Carbene Insertion Reaction. Chemistry 2023; 29:e202301910. [PMID: 37665257 DOI: 10.1002/chem.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
The mechanism of Rh2 (S-NTTL)4 catalyzed carbene insertion into C(3)-H of indole is investigated using DFT methods. Since the commonly accepted enol mechanism cannot account for enantioinduction, a concerted oxocarbenium pathway was proposed in an earlier work using a model catalyst. However, after considering the full catalytic system, this study finds that akin to other reactions, here, too, the enol pathway is of lower energy, which now naturally raises a conundrum regarding the mode of chiral induction. Herein, a new water promoted mechanistic pathway involving a metal-associated enol intermediate hydrogen bonding and stereochemical model are proposed to solve this puzzle. It is shown how the catalyst bowl-shaped structure along with substrate-catalyst binding is crucial for achieving high levels of enantioselectivity. A stereodetermining water-assisted proton transfer is proposed and confirmed through deuterium-labeling experiments. The water molecules are held together by H-bonding interactions with the carboxylate ligands that is reminiscent of enzyme catalysis. Although several previous studies have aimed at understanding the mechanism of metal catalyzed carbene insertion reactions, the origin of high stereoinduction especially with chiral metal complexes remains unclear, and till date there is no transition state model that can explain the high enantioselectivity with such chiral Rh complexes. The metal-associated enol pathway is currently underrepresented in catalytic cycles and may play a crucial role in catalyst design. Since the enol pathway is commonly adopted in other metal-catalyzed X-H insertion reactions involving a diazoester, the presented results are not specific to the current reaction. Therefore, this study could provide the direction for achieving high levels of enantioselectivity which is otherwise difficult to achieve with a single metal catalyst.
Collapse
Affiliation(s)
- Mahesh S Harariya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Romin Gogoi
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anubhav Goswami
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 1643007, Tarragona, 560012, Spain
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
18
|
Peng Q, Huang M, Xu G, Zhu Y, Shao Y, Tang S, Zhang X, Sun J. Asymmetric N-Alkylation of 1H-Indoles via Carbene Insertion Reaction. Angew Chem Int Ed Engl 2023; 62:e202313091. [PMID: 37819054 DOI: 10.1002/anie.202313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
An intermolecular enantioselective N-alkylation reaction of 1H-indoles has been developed by cooperative rhodium and chiral phosphoric acid catalyzed N-H bond insertion reaction. N-Alkyl indoles with newly formed stereocenter adjacent to the indole nitrogen atom are produced in good yields (up to 95 %) with excellent enantioselectivities (up to >99 % ee). Importantly, both α-aryl and α-alkyl diazoacetates are tolerated, which is extremely rare in asymmetric X-H (X=N, O, S et al.) and C-H insertion reactions. With this method, only 0.1 mol % of rhodium catalyst and 2.5 mol % of chiral phosphoric acid are required to complete the conversion as well as achieve the high enantioselectivity. Computational studies reveal the cooperative relay of rhodium and chiral phosphoric acid, and the origin of the chemo and stereoselectivity.
Collapse
Affiliation(s)
- Quanxin Peng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
19
|
Ren Q, Lang M, Liu H, Li X, Wu D, Wu J, Yang M, Wei J, Ren Z, Wang L. Stereocontrol of C-N Axial and Spiro-Central Chirality via Rh(II)-Catalyzed Enantioselective N-H Bond Insertion of Indolinone-Spiroacetal. Org Lett 2023; 25:7745-7750. [PMID: 37843414 DOI: 10.1021/acs.orglett.3c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A rhodium-catalyzed carbene N-H insertion protocol for simultaneously controlling the C-N axial and spiro-central chiralities is disclosed, resulting in the rapid assembly of enantiopure N-arylindolinone-spiroacetal derivatives in high yields with excellent enantioselectivities. This promising strategy features the chiral C-N axis, spiro-central chirality, functional group tolerance, and late-stage diversification. DFT calculations indicate that the N-H insertion is the axial-chirality-determining step and that the 1,5-H shift step is regiospecifically caused by the spirocycle.
Collapse
Affiliation(s)
- Qiao Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
- College of Pharmaceutical Science, Southwest University, Chongqing 400715, China
| | - Ming Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Haitao Liu
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, China
| | - Xiangyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
| | - Jiayun Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Meihua Yang
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, China
| | - Zhi Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lei Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, Hainan 570311, China
| |
Collapse
|
20
|
Wei L, Li J, Zhao Y, Zhou Q, Wei Z, Chen Y, Zhang X, Yang X. Chiral Phosphoric Acid Catalyzed Asymmetric Hydrolysis of Biaryl Oxazepines for the Synthesis of Axially Chiral Biaryl Amino Phenol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202306864. [PMID: 37338333 DOI: 10.1002/anie.202306864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.
Collapse
Affiliation(s)
- Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
21
|
Guo FK, Lu YL, Huang MY, Yang JM, Guo JL, Wan ZY, Zhu SF. Wittig/B─H insertion reaction: A unique access to trisubstituted Z-alkenes. SCIENCE ADVANCES 2023; 9:eadj2486. [PMID: 37703379 PMCID: PMC10499320 DOI: 10.1126/sciadv.adj2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
The Wittig reaction, which is one of the most effective methods for synthesizing alkenes from carbonyl compounds, generally gives thermodynamically stable E-alkenes, and synthesis of trisubstituted Z-alkenes from ketones presents notable challenges. Here, we report what we refer to as Wittig/B─H insertion reactions, which innovatively combine a Wittig reaction with carbene insertion into a B─H bond and constitute a promising method for the synthesis of thermodynamically unstable trisubstituted Z-boryl alkenes. Combined with the easy transformations of boryl group, this methodology provides efficient access to a variety of previously unavailable trisubstituted Z-alkenes and thus provides a platform for discovery of pharmaceuticals. The unique Z-selectivity of the reaction is determined by the maximum overlap of the orbitals between the B─H bond of the borane adduct and the alkylidene carbene intermediate in the transition state.
Collapse
Affiliation(s)
- Feng-Kai Guo
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ji-Min Yang
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Lei Guo
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zi-Yi Wan
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | |
Collapse
|
22
|
Gu X, Mo X, Bai WJ, Xie P, Hu W, Jiang J. Catalytic Asymmetric P-H Insertion Reactions. J Am Chem Soc 2023; 145:20031-20040. [PMID: 37642381 DOI: 10.1021/jacs.3c06906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Albeit notable endeavors in enantioselective carbene insertion into X-H bonds (X = C, O, N, S, Si, B), the catalytic asymmetric P-H insertion reactions still stand for a long-lasting challenge. By merging transition-metal catalysis with organocatalysis, we achieve a scalable enantioselective P-H insertion transformation between diazo pyrazoleamides and H-phosphine oxides that upon subsequent reduction delivers a wide variety of optically active β-hydroxyl phosphine oxides in good yields with high enantioselectivity. The achiral copper catalyst fosters the carbenoid insertion into the P-H bond, while the chiral cinchona alkaloid-derived organocatalyst controls the subsequent enantioselective outcome. Density functional theory (DFT) calculations further reveal that the copper catalyst chelates to the organocatalyst, enhances its acidity, and accordingly promotes the enantioselective proton transfer. Our work showcases the potential of combining transition-metal catalysis with organocatalysis to realize elusive asymmetric reactions.
Collapse
Affiliation(s)
- Xiu Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoyu Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
23
|
Okuda S, Tsukano C, Irie K. Synthesis of Stereoisomeric Simplified Analogs of Alotaketals toward the Elucidation of the Structural Requirements of Protein Kinase C Isozyme-Selective Binding. Org Lett 2023; 25:805-809. [PMID: 36715604 DOI: 10.1021/acs.orglett.2c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A set of four stereoisomeric compounds were designed and synthesized as ligands of protein kinase C (PKC). The compounds were simplified analogs of the alotaketals, a class of natural products that were predicted to be ligands of PKC by computational screening. Bioassays revealed that the orientation of the alkyl side chain of the analogs was important for PKC binding and that the stereochemistry of the fused ring moiety influenced the PKC isozyme selectivity.
Collapse
Affiliation(s)
- Sogen Okuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Cao J, Su YX, Zhang XY, Zhu SF. Highly Enantioselective Brønsted Acid Catalyzed Heyns Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202212976. [PMID: 36316277 DOI: 10.1002/anie.202212976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 12/05/2022]
Abstract
Herein we report the first method for highly enantioselective Brønsted acid catalyzed Heyns rearrangements. These reactions, catalyzed by a chiral spiro phosphoric acid, afforded synthetically valuable chiral α-aryl-α-aminoketones which cannot be obtained by means of previously reported Heyns rearrangement methods. This method features low catalyst loadings, high yields and high enantioselectivities, making these reactions highly practical. We used the method to efficiently synthesize various chiral amines, including some biologically active molecules. We experimentally proved that these acid-catalyzed Heyns rearrangements proceeded via a proton-transfer process involving an enol intermediate and the stereocontrol was realized during the proton-transfer step.
Collapse
Affiliation(s)
- Jin Cao
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xin-Yu Zhang
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| |
Collapse
|
25
|
Li L, Sivaguru P, Han X, Karmakar S, Bi X. Ligand-enabled silver-catalyzed carbene insertion into the N–H bond of aliphatic and electron-rich aromatic amines. Org Chem Front 2023. [DOI: 10.1039/d3qo00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The stable effect of tris(pyrazolyl)borate ligand and 1,2-diaminocyclohexane ligand on the silver metal center was used respectively, to realize the efficient N–H bond insertion reaction of carbene to aliphatic amines and aromatic amines.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Xinyue Han
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat-743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Xue J, Luo Z, Huang J, Deng Y, Dong S, Liu S. Enantioselective Construction of C3-Multifunctionalization α-Hydroxy-β-amino Pyridines via α-Pyridyl Diazoacetate, Water, and Imines for Drug Hunting. Org Lett 2022; 24:9502-9507. [PMID: 36537781 DOI: 10.1021/acs.orglett.2c03987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An asymmetric catalytic approach for the construction of C3-multifunctionalization α-hydroxy-β-amino pyridines has been reported. The products can be accessed by the modulation of two chiral catalysts independently in high yield and with good enantioselectivity. The method features mild reaction conditions and an excellent functional group tolerance. Biological activity analysis shows that the resulting products have a selective antiosteosarcoma activity on 143B cells.
Collapse
Affiliation(s)
- Jian Xue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhengli Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jisheng Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yaqi Deng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
27
|
Three-component Chemo-selective Oxy-allylation of α-Diazo Carbonyl Compounds: Access to α-Ternary Carboxylic Esters. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Li Y, Su YX, Zhao YT, Liu L, Li ML, Zhu SF. Enantioselective Synthesis of Unnatural Carbamate-Protected α-Alkyl Amino Esters via N–H Bond Insertion Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- You Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lu Liu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mao-Lin Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
29
|
Liu X, Tang Z, Si Z, Zhang Z, Zhao L, Liu L. Enantioselective
para
‐C(sp
2
)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid**. Angew Chem Int Ed Engl 2022; 61:e202208874. [DOI: 10.1002/anie.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xun‐Shen Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhi‐Yao Si
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhikun Zhang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lei Zhao
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
30
|
Liu XS, Tang Z, Si ZY, Zhang Z, Zhao L, Liu L. Enantioselective para‐C(sp2)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun-Shen Liu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhiqiong Tang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhi-Yao Si
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhikun Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lei Zhao
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lu Liu
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
31
|
Yuan H, Guo Y, Zhang Z, Sha H, He Y, Xu X, Hu W. A diastereoselective three-component reaction for the assembly of succinimide and isatin hybrid molecules with potent anticancer activities. Mol Divers 2022; 27:837-843. [PMID: 35668164 DOI: 10.1007/s11030-022-10457-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
A Rh2(OAc)4 catalyzed three-component reaction of vinyl diazosuccinimides with alcohols and isatins has been reported, which provides a practical assess to the direct assembly of succinimide and isatin hybrid molecules in good-to-high yields with excellent stereoselectivity. The antiproliferation activity of these synthesized succinimide and isatin hybrid products has been tested via the CCK8 assay in different cancer cell lines, and compounds 4g (SJSA-1, IC50 = 3.82 μM) and 4r (HCT-116, IC50 = 9.02 μM) exhibit higher anticancer potency than other tested compounds.
Collapse
Affiliation(s)
- Haoxuan Yuan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China
| | - Yinfeng Guo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China
| | - Zhijing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China
| | - Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China
| | - Yicheng He
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat Sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
32
|
Pei C, Koenigs RM. A Computational Study on the Photochemical O-H Functionalization of Alcohols with Diazoacetates. J Org Chem 2022; 87:6832-6837. [PMID: 35500213 DOI: 10.1021/acs.joc.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this computational study, we provide a detailed analysis of the underlying reaction mechanism and show that a singlet carbene is initially formed. Depending on the pKA of the alcohol, this singlet carbene can engage in direct protonation or enol formation to yield the O-H functionalization product. On the contrary, propargylic alcohols take up a dual role and form a complex with the carbene intermediate that leads to facile cyclopropenation reactions.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
33
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
34
|
Martínez-Laguna J, Mollar-Cuni A, Ventura-Espinosa D, Martín S, Caballero A, Mata JA, Pérez PJ. Gold nanoparticle-catalysed functionalization of carbon-hydrogen bonds by carbene transfer reactions. Dalton Trans 2022; 51:5250-5256. [PMID: 35285846 DOI: 10.1039/d1dt04351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles stabilized by NHC ligands and supported onto reduced graphene oxide (rGO) catalyse the functionalization of cyclohexane and benzene C-H bonds upon insertion of carbene CHCO2Et (from N2CHCO2Et) groups. This is the first example in which such Csp3-H or Csp2-H bonds are functionalized with this strategy with nanoparticulated gold. This Au-NP@rGO material shows an exceptional activity, providing TON values 5-10 times higher than those already reported for molecular gold catalysts. Recyclability is also effective, reaching an accumulated TON value of 1400 after six consecutive uses.
Collapse
Affiliation(s)
- Jonathan Martínez-Laguna
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - David Ventura-Espinosa
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Química Física, Universidad de Zaragoza, 50009, Zaragoza (Spain) and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINCA). Universitat Jaume I, Avda. Sos Baynat s/n, 12006-Castellón, Spain.
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química. Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| |
Collapse
|
35
|
Zhao Q, Yao Q, Dou T, Xu T, Zhang J, Chen X. Catalysts Based on the C−H⋅⋅⋅M Weak Interaction: Synthesis, Characterization and Catalytic Application of Bis(pyrazolyl)borate Cu(I) Complexes in Carbene Insertion into Heteroatom Hydrogen Bonds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Qiu‐Yue Yao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Dou
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Xu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
36
|
Empel C, Pei C, He F, Jana S, Koenigs RM. Proton or Carbene Transfer? On the Dark and Light Reaction of Diazoalkanes with Alcohols. Chemistry 2022; 28:e202104397. [PMID: 35060651 PMCID: PMC9306865 DOI: 10.1002/chem.202104397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/23/2022]
Abstract
The formal alkylation reaction of OH groups with diazoalkanes under catalyst-free reaction conditions finds broad application in organic synthesis. However, even today, this reaction is mainly limited to the use of diazomethane as reaction partner. In this combined experimental and theoretical study, we aim at a fundamental understanding of the reaction of diazoalkanes with alcohols to make this transformation amenable to a generalized approach towards formal alkylation reactions of alcohols with diazoalkanes. Experimental and theoretical studies suggest a direct proton transfer only in exceptional cases. In a more general setting, such O-H functionalization proceed both under dark and photochemical conditions via a key hydrogen-bonded singlet carbene intermediate that undergoes a protonation-addition mechanism. We conclude with applications of this approach in O-H functionalization reactions of alcohols, including simple fluorinated, halogenated and aliphatic alcohols and showcase functional-group tolerance of this method in the reaction of biologically active and pharmaceutically relevant alcohols.
Collapse
Affiliation(s)
- Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 1D-52074AachenGermany
| | - Chao Pei
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 1D-52074AachenGermany
| | - Feifei He
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 1D-52074AachenGermany
| | - Sripati Jana
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 1D-52074AachenGermany
| | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 1D-52074AachenGermany
| |
Collapse
|
37
|
Zhang X, Zhang X, Song Q, Sivaguru P, Wang Z, Zanoni G, Bi X. A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Xinyu Zhang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qingmin Song
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | | | - Zikun Wang
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Giuseppe Zanoni
- Department of Chemistry University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Xihe Bi
- Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Lang J, Wang S, He C, Liu X, Feng X. Asymmetric synthesis of isochromanone derivatives via trapping carboxylic oxonium ylides and aldol cascade. Chem Sci 2022; 13:1163-1168. [PMID: 35211283 PMCID: PMC8790771 DOI: 10.1039/d1sc06025b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient asymmetric synthesis of isochromanone derivatives was realized through Z-selective-1,3-OH insertion/aldol cyclization reaction involving acyclic carboxylic oxonium ylides. The combination of achiral dirhodium salts and chiral N,N′-dioxide–metal complexes, along with the use of α-diazoketones instead of α-diazoesters, enables the cascade reaction efficiently. A variety of benzo-fused δ-lactones bearing vicinal quaternary stereocenters were obtained with good to excellent enantioselectivity, bypassing the competitive 1,1-OH insertion and racemic background aldol reaction. A highly enantioselective cascade Z-selective-1,3-OH insertion/aldol cyclization of ketoacids with diazoketones involving carboxylic oxonium ylides was achieved by using a bimetallic Rh(ii)/chiral N,N′-dioxide-Fe(iii) or Sc(iii) complex catalyst.![]()
Collapse
Affiliation(s)
- Jiawen Lang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Changli He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
39
|
Liu D, Xu Z, Liu M, Fu Y. Mechanistic insights into the rhodium-catalyzed aryl C–H carboxylation. Org Chem Front 2022. [DOI: 10.1039/d1qo01560e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have conducted an in-depth theoretical exploration of the details for direct C–H bond activation and lactonization of 2-arylphenols.
Collapse
Affiliation(s)
- DeGuang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - ZheYuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - MingQiang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
40
|
He H, Yan Z, Wang J, Yan Q, Wang W, Wang H, Chen F. A solvent controlled three-component reaction of diazo compounds for the synthesis of hydrazone compounds under Brønsted acid catalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj04983j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel Brønsted acid catalyzed three-component reaction of diazo compounds has been achieved from α-diazo ester, N-aminophthalimide and a solvent.
Collapse
Affiliation(s)
- Hangli He
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhewei Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junyong Wang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
41
|
Cen S, Zhang Z. Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Sun YT, Rao X, Xu W, Xu MH. Rhodium(I)-catalyzed C-S bond formation via enantioselective carbenoid S-H insertion: catalytic asymmetric synthesis of α-thioesters. Org Chem Front 2022. [DOI: 10.1039/d2qo00164k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric construction of C-S bond through transition-metal catalysis is a challenging subject. By using chiral diene as ligand, we have developed the first rhodium(I)-catalyzed asymmetric carbene insertion approach for C-S...
Collapse
|
43
|
Kang Z, Chang W, Tian X, Fu X, Zhao W, Xu X, Liang Y, Hu W. Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones. J Am Chem Soc 2021; 143:20818-20827. [PMID: 34871492 DOI: 10.1021/jacs.1c09148] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicomponent reactions that involve interception of onium ylides through Aldol, Mannich, and Michael addition with corresponding bench-stable acceptors have demonstrated broad applications in synthetic chemistry. However, because of the high reactivity and transient survival of these in situ generated intermediates, the substitution-type interception process, especially the asymmetric catalytic version, remains hitherto unknown. Herein, a three-component asymmetric allylation of α-diazo carbonyl compounds with alcohols and allyl carbonates is disclosed by employing a ternary cooperative catalysis of achiral Pd-complex, Rh2(OAc)4, and chiral phosphoric acid CPA. This method represents the first example of three-component asymmetric allylic alkylation through an SN1-type trapping process, which involves a convergent assembly of two active intermediates, Pd-allyl species, and enol derived from onium ylides, providing an expeditious access to chiral α,α-disubstituted ketones in good to high yields with high to excellent enantioselectivity. Combined experimental and computational studies have shed light on the mechanism of this novel three-component reaction, including the critical role of Xantphos ligand and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xue Tian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
44
|
Zhang X, Zhang X, Song Q, Sivaguru P, Wang Z, Zanoni G, Bi X. A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones. Angew Chem Int Ed Engl 2021; 61:e202116190. [PMID: 34889004 DOI: 10.1002/anie.202116190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/29/2022]
Abstract
Hydrodefluorination is one of the most promising chemical strategies to degrade perfluorochemicals into partially fluorinated compounds. However, controlled progressive hydrodefluorination remains a significant challenge, owing to the decrease in the strength of C-F bonds along with the defluorination. Here we describe a carbene strategy for the sequential (deutero)hydrodefluorination of perfluoroalkyl ketones under rhodium catalysis, allowing for the controllable preparation of difluoroalkyl- and monofluoroalkyl ketones from aryl- and even alkyl-substituted perfluoro-alkyl ketones in high yield with excellent functional group tolerance. The reaction mechanism and the origin of the intriguing chemoselectivity of the reaction were rationalized by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Zikun Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
45
|
Zhou S, Xie X, Xu X, Dong S, Hu W, Xu X. An asymmetric oxidative cyclization/Mannich-type addition cascade reaction for direct access to chiral pyrrolidin-3-ones. Chem Commun (Camb) 2021; 57:12171-12174. [PMID: 34726687 DOI: 10.1039/d1cc04830a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold and chiral phosphoric acid cooperatively catalyzed enantioselective oxidative cyclization/Mannich-type addition reaction of homopropargyl amides with nitrones has been developed, which provides chiral pyrrolidin-3-ones in high yields with excellent enantioselectivities under mild conditions. This reaction employed stable and readily available alkynes as non-diazo carbene precursors, which provides a 100% atom economy method with high bond formation efficiency.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xiongda Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinxin Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Shanliang Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
46
|
Chen J, Gao B, Feng X, Meng W, Du H. Relay Catalysis by Achiral Borane and Chiral Phosphoric Acid in the Metal-Free Asymmetric Hydrogenation of Chromones. Org Lett 2021; 23:8565-8569. [PMID: 34669401 DOI: 10.1021/acs.orglett.1c03286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy of relay catalysis by achiral borane and chiral phosphoric acid was successfully developed for the asymmetric hydrogenation of chromones, giving the desired products in high yields with up to 95% ee. Achiral borane and chiral phosphoric acid are highly compatible in this reaction. The achiral borane acts as a Lewis acid for the first-step hydrogenation, and the chiral phosphoric acid acts as an effective chiral proton shuttle to control the enantioselectivity.
Collapse
Affiliation(s)
- Jingjing Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute for Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Affiliation(s)
- Shou‐Fei Zhu
- Frontiers Science Center of New Organic Matter, State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
48
|
Zhou S, Li Y, Liu X, Hu W, Ke Z, Xu X. Enantioselective Oxidative Multi-Functionalization of Terminal Alkynes with Nitrones and Alcohols for Expeditious Assembly of Chiral α-Alkoxy-β-amino-ketones. J Am Chem Soc 2021; 143:14703-14711. [PMID: 34463096 DOI: 10.1021/jacs.1c06178] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalytic oxidative functionalization of alkynes has emerged as an effective method in synthetic chemistry in recent decades. However, enantioselective transformations via metal carbene intermediates are quite rare due to the lack of robust chiral catalysts, especially in the intermolecular versions. Herein, we report the first asymmetric three-component reaction of commercially available alkynes with nitrones and alcohols, which affords α-alkoxy-β-amino-ketones in good yields with high to excellent enantioselectivity using combined catalysis by an achiral gold complex and a chiral spiro phosphoric acid (CPA). Mechanistically, this atom-economic reaction involves a catalytic alkyne oxidation/ylide formation/Mannich-type addition sequence that uses nitrone as the oxidant and the leaving fragment imine as the electrophile, providing a novel method for multi-functionalization of commercially available terminal alkynes.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinwu Li
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangrong Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
49
|
Yuan H, Hong K, Liu X, Qian Y, Xu X, Hu W. Enantioselective assembly of 3,3-disubstituted succinimides via three-component reaction of vinyl diazosuccinimides with alcohols and imines. Chem Commun (Camb) 2021; 57:8043-8046. [PMID: 34291251 DOI: 10.1039/d1cc02876f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enantioselective three-component reaction of vinyl diazosuccinimdes with alcohols and imines has been realized by a cooperative catalysis of Rh2(OAc)4 and a chiral phosphoric acid, leading to chiral 3,3-disubstituted succinimides in good to high yields with high to excellent enantioselectivity. The generated product with an alkenyl species could be converted to the chiral tricyclic structure under mild conditions.
Collapse
Affiliation(s)
- Haoxuan Yuan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xiangrong Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
50
|
Ueda J, Harada S, Kobayashi M, Yanagawa M, Nemoto T. Maleic Acid/Thiourea‐Catalyzed Dearomative
ipso
‐Friedel–Crafts Reaction of Indoles to Produce Functionalized Spiroindolenines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jun Ueda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mai Yanagawa
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
- Molecular Chirality Research Center Chiba University 1-33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|