1
|
Li H, Feng R, Wang G, Wang Y, Liu W, Guo S. Direct Observation of C-F Bond Formation from Isolable Palladium(IV) Systems via an Outer-Sphere Pathway. J Am Chem Soc 2025; 147:16217-16224. [PMID: 40311106 DOI: 10.1021/jacs.5c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Despite recent advancements in synthetic methods for palladium-catalyzed C-F couplings, the mechanistic understanding─particularly concerning high-valent palladium species─remains underexplored. In contrast to the commonly proposed inner-sphere mechanism, which involves C-F reductive elimination at a palladium(IV) center, the outer-sphere pathway is poorly understood, and little experimental evidence has been provided using well-defined, isolable high-valent Pd systems. In this study, we present the design and synthesis of a series of isolable and characterizable palladium(IV) alkyl systems. Their reactivity in C-F bond formation has been investigated and systematically compared. Through the isolation of intermediates, reactivity comparisons, kinetic studies, and DFT calculations, this work presents, for the first time, isolable palladium(IV) model systems that enable the direct observation of C-F bond formation via an outer-sphere pathway.
Collapse
Affiliation(s)
- Haobin Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Rui Feng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yimeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenxi Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuai Guo
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
2
|
Liu PY, Zhao YM, Xu Y, Wang S, Song L, Meng Q, Zhang Z, Yu F, He YP. Experiment and Computational Study on Pd-Catalyzed Methoxyiminoacyl-Directed γ-Alkoxylation of Alkylamides. J Org Chem 2023; 88:14445-14453. [PMID: 37815929 DOI: 10.1021/acs.joc.3c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The direct alkoxylation of amides has been accomplished via methoxyiminoacyl (MIA)-mediated Pd-catalyzed C-H functionalization. A diverse array of alkylamide substrates is amenable to this protocol, providing γ-C(sp3)-alkoxylation of alkylamide derivatives with good to high efficiency. Two aspects of the research were completed to explore the reaction mechanism. On the one hand, the result of the kinetic isotopic effect experiment and control experiment indicated that reductive elimination is a rate-limiting step. On the other hand, density functional theory calculations demonstrated that a concerted Sn2 reductive elimination mechanism pathway is prior. Finally, the MIA group could be efficiently hydrogenated and protected in a one-pot procedure, which provides a short synthetic route to γ-methoxy amino acid derivatives.
Collapse
Affiliation(s)
- Peng-Yu Liu
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yi-Min Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yuehui Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Shuai Wang
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Lijuan Song
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qingtao Meng
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Fang Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
- School of pharmaceutical engineering, Zhejiang Pharmaceutical University, No 666 Siming road, Fenghua District, Ningbo 315599, China
| | - Yu-Peng He
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
3
|
Liu SC, Fang DC. DFT Studies on the Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates. J Org Chem 2023; 88:14540-14549. [PMID: 37773964 DOI: 10.1021/acs.joc.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Density functional theory (DFT) calculations have been employed to investigate the mechanism of carboamination and diamination of unactivated alkenes mediated by Pd(IV) intermediates. Both reactions share a common Pd(IV) intermediate, serving as the starting point for either the carboamination or the diamination pathway. The formation of this Pd(IV) intermediate encompasses a transition state that substantially impacts the turnover frequency (TOF) of catalytic cycles, with an apparent activation free-energy barrier of 26.1 kcal mol-1. Carboamination of unactivated alkenes proceeds through the coordination of a toluene molecule, C-H activation, inner reductive elimination, and the separation of the carboamination product from this intermediate, while diamination of unactivated alkenes involves the formation of the ion nucleophile, SN2 attack, and the separation of the diamination product. A comparison of the free-energy profiles for carboamination and diamination of unactivated alkenes can elucidate the origin of the chemoselectivity, and Bader's atoms in molecules (AIM) wave function analyses have been performed to analyze the contributions of the outer C-N bonding in the diamination process.
Collapse
Affiliation(s)
- Si-Cong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Mandal A, Jang J, Yang B, Kim H, Shin K. Palladium-Catalyzed Electrooxidative Hydrofluorination of Aryl-Substituted Alkenes with a Nucleophilic Fluorine Source. Org Lett 2023; 25:195-199. [PMID: 36583971 DOI: 10.1021/acs.orglett.2c04045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report an electrocatalytic hydrofluorination of aryl-substituted alkenes with a nucleophilic fluorine source. The merger of palladium catalysis with electrooxidation enables the transformation of various substrates ranging from styrenes to more challenging α,β-unsaturated carbonyl derivatives to the corresponding benzylic fluorides. This method can also be applied to the late-stage modification of pharmaceutical derivatives. Mechanistic studies suggest that the generation of a high-valent palladium intermediate via anodic oxidation is the crucial step in this electrocatalytic hydrofluorination.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Baeho Yang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Milbauer MW, Kampf JW, Sanford MS. Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp 2)–C(sp 3) Coupling. J Am Chem Soc 2022; 144:21030-21034. [DOI: 10.1021/jacs.2c10778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael W. Milbauer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Kuhn L, Vil' VA, Barsegyan YA, Terent'ev AO, Alabugin IV. Carboxylate as a Non-innocent L-Ligand: Computational and Experimental Search for Metal-Bound Carboxylate Radicals. Org Lett 2022; 24:3817-3822. [PMID: 35609004 DOI: 10.1021/acs.orglett.2c01356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We show that the carboxylate radical acts as an L-ligand with certain high-spin transition metal centers. Such coordination preserves the O-radical character needed for C-H activation via hydrogen atom transfer. Capture of the new C-radical by the metal and subsequent reductive elimination leads to formal C-H acyloxylation. Decarboxylation of the RCO2 radical is minimized through hybridization effects introduced by spiro-cyclopropyl moiety.
Collapse
Affiliation(s)
- Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Yana A Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
7
|
Gao Z, Wang H, Zhou C, Wang N, Li S, Li G. Formal C-H/C-I Metathesis: Site-Selective C-H Iodination of 2-Aryl Benzoic Acid Derivatives Using Aryl Iodide. Org Lett 2022; 24:3926-3931. [PMID: 35638770 DOI: 10.1021/acs.orglett.2c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-H functionalization via functional group metathesis is extremely rare. A protocol of remote site-selective C-H iodination of 2-aryl benzoic acid derivatives via formal C(sp2)-H/C(sp2)-I metathesis using readily available 1-iodo-4-methoxy-2-nitrobenzene as the mild iodinating reagent was reported herein. A range of 2-aryl benzoic acid derivatives including 2-(naphthalen-1-yl)benzoic acids and [1,1'-binaphthalene]-2-carboxylic acids were iodinated under mild conditions to give valuable iodinated products in a site- and chemo-selective fashion.
Collapse
Affiliation(s)
- Zezhong Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ning Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Martínez-Flores S, Mujica-Martinez CA, Polindara-García LA. Pd(II)‐Catalyzed C(sp2/sp3)‐H Arylation of Aryl‐glycinamide Derivatives Using Picolinamide as Directing Group. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastián Martínez-Flores
- Universidad Nacional Autónoma de México: Universidad Nacional Autonoma de Mexico Instituto de Química Ciudad Universitaria 04310 Ciudad de Mexico MEXICO
| | | | - Luis Angel Polindara-García
- Universidad Nacional Autonoma de Mexico Chemistry Institute Ciudad Universitaria 04510 Ciudad de Mexico MEXICO
| |
Collapse
|
9
|
Valdés H, Germán-Acacio JM, van Koten G, Morales-Morales D. Bimetallic complexes that merge metallocene and pincer-metal building blocks: synthesis, stereochemistry and catalytic reactivity. Dalton Trans 2022; 51:1724-1744. [PMID: 34985477 DOI: 10.1039/d1dt03870b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This perspective is to illustrate the synthesis and applications of bimetallic complexes by merging a metallocene and a (cyclopentadienyl/aryl) pincer metal complex. Four possible ways to merge metallocene and pincer-metal motifs are reported and representative examples are discussed in more detail. These bimetallic complexes have been employed in some important catalytic reactions such as cross-coupling, transfer hydrogenation or synthesis of ammonia. The metallocene fragment may tune the electronic properties of the pincer ligand, due to its redox reversible properties. Also, the presence of two metals in a single complex allows their electronic communication, which proved beneficial for, e.g., the catalytic activity of some species. The presence of the metallocene fragment provides an excellent opportunity to develop chiral catalysts, because the metallocene merger generally renders the two faces of the pincer-metal catalytic site diastereotopic. Besides, an extra chiral functionality may be added to the bimetallic species by using pincer motifs that are planar chiral, e.g. by using the different substituents of pincer ligand "arms" or non-symmetrical arene groupings. Post-functionalization of pre-formed pincer-metal complexes, via η6-coordination with an areneophile such as [CpRu]+ and [Cp*Ru]+ presents a striking strategy to obtain diastereomeric metallocene-pincer type derivatives, that actually involve half-sandwich metallocenes. This approach offers the possibility to create diastereomerically pure derivatives by using the chiral TRISPHAT anion. The authors hope that this report of the synthetic, physico-chemical properties and remarkable catalytic activities of metallocene-based pincer-metal complexes will inspire other researchers to continue exploring this realm.
Collapse
Affiliation(s)
- Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona E-17003, Catalonia, Spain
| | - Juan M Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, C. P.14000, Ciudad de México, Mexico
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México. C. P. 04510, Mexico.
| |
Collapse
|
10
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
12
|
Xue Y, Park HS, Jiang C, Yu JQ. Palladium-Catalyzed β-C(sp 3)–H Nitrooxylation of Ketones and Amides Using Practical Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Canty AJ, Ariafard A, van Koten G. Computational Study of Bridge Splitting, Aryl Halide Oxidative Addition to Pt II , and Reductive Elimination from Pt IV : Route to Pincer-Pt II Reagents with Chemical and Biological Applications. Chemistry 2021; 27:15426-15433. [PMID: 34473849 DOI: 10.1002/chem.202102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/06/2022]
Abstract
Density functional theory computation indicates that bridge splitting of [PtII R2 (μ-SEt2 )]2 proceeds by partial dissociation to form R2 Pta (μ-SEt2 )Ptb R2 (SEt2 ), followed by coordination of N-donor bromoarenes (L-Br) at Pta leading to release of Ptb R2 (SEt2 ), which reacts with a second molecule of L-Br, providing two molecules of PtR2 (SEt2 )(L-Br-N). For R=4-tolyl (Tol), L-Br=2,6-(pzCH2 )2 C6 H3 Br (pz=pyrazol-1-yl) and 2,6-(Me2 NCH2 )2 C6 H3 Br, subsequent oxidative addition assisted by intramolecular N-donor coordination via PtII Tol2 (L-N,Br) and reductive elimination from PtIV intermediates gives mer-PtII (L-N,C,N)Br and Tol2 . The strong σ-donor influence of Tol groups results in subtle differences in oxidative addition mechanisms when compared with related aryl halide oxidative addition to palladium(II) centres. For R=Me and L-Br=2,6-(pzCH2 )2 C6 H3 Br, a stable PtIV product, fac-PtIV Me2 {2,6-(pzCH2 )2 C6 H3 -N,C,N)Br is predicted, as reported experimentally, acting as a model for undetected and unstable PtIV Tol2 {L-N,C,N}Br undergoing facile Tol2 reductive elimination. The mechanisms reported herein enable the synthesis of PtII pincer reagents with applications in materials and bio-organometallic chemistry.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
14
|
Yang L, Xie H, An G, Li G. Acid-Enabled Palladium-Catalyzed β-C(sp3)–H Functionalization of Weinreb Amides. J Org Chem 2021; 86:7872-7880. [DOI: 10.1021/acs.joc.1c00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liming Yang
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Henan Xie
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| |
Collapse
|
15
|
Canty AJ, Ariafard A. Computational Study of Intramolecular Coordination Enhanced Oxidative Addition to form PdIV-Pincer Complexes, and Selectivity in Aryloxide Attack at PdIVCH2CRR′ Motifs in Palladium-Mediated Organic Synthesis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Allan J. Canty
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
16
|
Abdolalian P, Tizhoush SK, Farshadfar K, Ariafard A. The role of hypervalent iodine(iii) reagents in promoting alkoxylation of unactivated C(sp 3)-H bonds catalyzed by palladium(ii) complexes. Chem Sci 2021; 12:7185-7195. [PMID: 34123345 PMCID: PMC8153247 DOI: 10.1039/d1sc01230d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)-H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)-H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd-C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C-O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X- anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG ‡ 0-6 kcal mol-1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)-Pd(iv)-Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.
Collapse
Affiliation(s)
- Payam Abdolalian
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Samaneh K Tizhoush
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
- School of Natural Sciences - Chemistry, University of Tasmania Private Bag 75 Hobart TAS 7001 Australia
| |
Collapse
|
17
|
Ma X, Han Z, Liu C, Zhang D. Mechanistic Insight into Palladium-Catalyzed γ-C(sp 3)-H Arylation of Alkylamines with 2-Iodobenzoic Acid: Role of the o-Carboxylate Group. Inorg Chem 2020; 59:18295-18304. [PMID: 33253564 DOI: 10.1021/acs.inorgchem.0c02895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory calculations were performed to understand the distinctly different reactivities of o-carboxylate-substituted aryl halides and pristine aryl halides toward the PdII-catalyzed γ-C(sp3)-H arylation of secondary alkylamines. It is found that, when 2-iodobenzoic acid (a representative of o-carboxylate-substituted aryl halides) is used as an aryl transfer agent, the arylation reaction is energetically favorable, while when the pristine aryl halide iodobenzene is used as the aryl transfer reagent, the reaction is kinetically difficult. Our calculations showed an operative PdII/PdIV/PdII redox cycle, which differs in the mechanistic details from the cycle proposed by the experimental authors. The improved mechanism emphasizes that (i) the intrinsic role of the o-carboxylate group is facilitating the C(sp3)-C(sp2) bond reductive elimination from PdIV rather than facilitating the oxidative addition of the aryl iodide on PdII, (ii) the decarboxylation occurs at the PdII species instead of the PdIV species, and (iii) the 1,2-arylpalladium migration proceeds via a stepwise mechanism where the reductive elimination occurs before decarboxylation, not via a concerted mechanism that merges the three processes decarboxylation, 1,2-arylpalladium migration, and C(sp3)-C(sp2) reductive elimination into one. The experimentally observed exclusive site selectivity of the reaction was also rationalized well.
Collapse
Affiliation(s)
- Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhe Han
- Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre for Municipal Sludge Disposal, Jinan 250014, People's Republic of China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
18
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
19
|
Bjelopetrović A, Barišić D, Duvnjak Z, Džajić I, Juribašić Kulcsár M, Halasz I, Martínez M, Budimir A, Babić D, Ćurić M. A Detailed Kinetico-Mechanistic Investigation on the Palladium C–H Bond Activation in Azobenzenes and Their Monopalladated Derivatives. Inorg Chem 2020; 59:17123-17133. [DOI: 10.1021/acs.inorgchem.0c02418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alen Bjelopetrović
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Dajana Barišić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Zrinka Duvnjak
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivan Džajić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marina Juribašić Kulcsár
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Ivan Halasz
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Ana Budimir
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Darko Babić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Manda Ćurić
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|