1
|
Chen Y, Cheng H, Liu R, Tai W, Sun B, Chen J, Lu C, Song K, Hu H. Empowering lithium-ion storage: unveiling the superior performance of niobium-based oxide/perovskite heterojunction with built-in electric field. J Colloid Interface Sci 2025; 677:790-799. [PMID: 39121663 DOI: 10.1016/j.jcis.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The increasing demand for high-performance electrode materials in lithium-ion batteries has driven significant attention towards Nb2O5 due to its high working voltage, large theoretical capacity, environmental friendliness, and cost-effectiveness. However, inherent drawbacks such as poor electrical conductivity and sluggish electrochemical reaction kinetics have hindered its lithium storage performance. In this study, we introduced KCa2Nb3O10 into Nb2O5 to form a heterojunction, creating a built-in electric field to enhance the migration and diffusion of Li+, effectively promoting electrochemical reaction kinetics. Under the regulation of the built-in electric field, the charge transfer resistance of the KCa2Nb3O10/Nb2O5 anode decreased by 3.4 times compared to pure Nb2O5, and the Li+ diffusion coefficient improved by two orders of magnitude. Specifically, the KCa2Nb3O10/Nb2O5 anode exhibited a high capacity of 276 mAh g-1 under 1 C, retaining a capacity of 128 mAh g-1 even at 100 C. After 3000 cycles at 25 C, the capacity degradation was only 0.012% per cycle. Through combined theoretical calculations and experimental validation, it was found that the built-in electric field induced by the heterojunction interface contributed to an asymmetric charge distribution, thereby improving the rates of charge and ion migration within the electrode, ultimately enhancing the electrochemical performance of the electrode material. This study provides an effective approach for the rational design of high-performance electrode materials.
Collapse
Affiliation(s)
- Yongkang Chen
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Haoyan Cheng
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ruohan Liu
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenhao Tai
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bo Sun
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiahui Chen
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chang Lu
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kexing Song
- Henan Academy of Sciences, Zhengzhou 450002, China
| | - Hao Hu
- Collaborative Innovation Center of Nonferrous Metals, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
2
|
Zhang G, Wang F, Tubul T, Baranov M, Leffler N, Neyman A, Poblet JM, Weinstock IA. Complexed Semiconductor Cores Activate Hexaniobate Ligands as Nucleophilic Sites for Solar‐Light Reduction of CO
2
by Water. Angew Chem Int Ed Engl 2022; 61:e202213162. [PMID: 36200676 PMCID: PMC10098893 DOI: 10.1002/anie.202213162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Although pure and functionalized solid-state polyniobates such as layered perovskites and niobate nanosheets are photocatalysts for renewable-energy processes, analogous reactions by molecular polyoxoniobate cluster-anions are nearly absent from the literature. We now report that under simulated solar light, hexaniobate cluster-anion encapsulated 30-NiII -ion "fragments" of surface-protonated cubic-phase-like NiO cores activate the hexaniobate ligands towards CO2 reduction by water. Photoexcitation of the NiO cores promotes charge-transfer reduction of NbV to NbIV , increasing electron density at bridging oxo atoms of Nb-μ-O-Nb linkages that bind and convert CO2 to CO. Photogenerated NiO "holes" simultaneously oxidize water to dioxygen. The findings point to molecular complexation of suitable semiconductor "fragments" as a general method for utilizing electron-dense polyoxoniobate anions as nucleophilic photocatalysts for solar-light driven activation and reduction of small molecules.
Collapse
Affiliation(s)
- Guanyun Zhang
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
- Key Lab for Colloid and Interface Science of Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Fei Wang
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Tal Tubul
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Ira A. Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| |
Collapse
|
3
|
Calorimetric metal vapor adsorption energies for characterizing industrial catalyst support materials. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|