1
|
Pan Q, Li S, Yu J, Li Y, Wang Y, Ding T, Chen H, Wang Y. Colloidal substrate-facilitated synthesis of gold nanohelices. J Colloid Interface Sci 2025; 682:519-527. [PMID: 39637648 DOI: 10.1016/j.jcis.2024.11.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Helical nanostructures have unique optical and mechanical properties, yet their syntheses had always been quite challenging. Various symmetry-breaking mechanisms such as chiral templates, strain-restriction and asymmetric ligand-binding have been developed to induce the helical growth at nanoscale. In this work, with neither chiral ligands nor templates, gold (Au) nanohelices were synthesized via a facile wet-chemical method, through an asymmetric Active Surface Growth facilitated by colloidal silica nanoparticles (NPs). The one-dimensional growth followed the Active Surface Growth, which employs a thiolated ligand to direct continuous deposition of Au at the interface, known as the active surface, between the Au nanostructures and the silica NPs - the colloidal substrates. More importantly, the colloidal substrates are crucial for the helical growth, as the diameter of the obtained nanohelices was found proportional to the size of the colloidal substrates. We propose that the nanoscale size and the curvature of the silica NPs would reduce the size of anchoring point between Au nanowires and the substrates, causing partial blockage of the active surface by the substrate and divergence of the activity on the active surface towards Au deposition. The subsequent inequivalent deposition, and the dynamic shifting of the blockage lead to the asymmetric growth and the formation of nanohelices. Factors that would affect the asymmetric Active Surface Growth were also identified and discussed, including the reduction kinetics, substrate treatment and the type and concentration of the ligand. In particular, variation of the size of the active surfaces would change the degree of the surface inequivalence, and thus affect the yield of the nanohelices.
Collapse
Affiliation(s)
- Qiao Pan
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, PR China
| | - Shumin Li
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, PR China
| | - Jialong Yu
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, PR China
| | - Yong Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China
| | - Yijie Wang
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, PR China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China
| | - Hongyu Chen
- School of Science, Westlake University, 866 Yuhangtang Road, Hangzhou 310023, PR China
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Liu Q, Wang X, Wang X. Sub-1 nm Materials Chemistry: Challenges and Prospects. J Am Chem Soc 2024; 146:26587-26602. [PMID: 39312400 DOI: 10.1021/jacs.4c08828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Subnanometer materials (SNMs) refer to nanomaterials with a feature size close to 1 nm, similar to the diameter of a single polymer, DNA strand, and a single cluster/unit cell. The growth and assembly of subnanometer building blocks can be controlled by interactions at atomic levels, representing the limit for the precise manipulation of materials. The size, geometry, and flexibility of 1D SNMs inorganic backbones are similar to the polymer chains, bringing excellent gelability, adhesiveness, and processability different from inorganic nanocrystals. The ultrahigh surface atom ratio of SNMs results in significantly increased surface energy, leading to significant rearrangement of surface atoms. Unconventional phases, immiscible metal alloys, and high entropy materials with few atomic layers can be stabilized, and the spontaneous twisting of SNMs may induce the intrinsic structural chirality. Electron delocalization may also emerge at the subnanoscale, giving rise to the significantly enhanced catalytic activity. In this perspective, we summarized recent progress on SNMs, including their synthesis, polymer-like properties, metastable phases, structural chirality, and catalytic properties, toward energy conversion. As a critical size region in nanoscience, the development of functional SNMs may fuse the boundary of inorganic materials and polymers and conduce to the precise manufacturing of materials at atomic levels.
Collapse
Affiliation(s)
- Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoya Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Liu Q, Lan Y, Shi H, Shi Y, Pan Q, Yang D, Wang T. Cu-Ni Bimetallic Nanowires with Various Structures Originating from Ni Reduction Kinetics. NANO LETTERS 2024; 24:11992-11999. [PMID: 39269785 DOI: 10.1021/acs.nanolett.4c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Bimetallic nanowires play important roles in the fields of electronics and mechanics. However, their structure types and morphological control methods are limited, especially for systems with low lattice mismatch. Herein, for a Cu-Ni bimetallic system with lattice mismatch ratio less than 2.5%, a novel preparation approach of various Cu-Ni nanowires dominated by Ni(II) reduction kinetics is presented. With the increase of Ni(II) reduction rate, the core-shell Cu@Ni straight nanowires, the asymmetric Cu-Ni nanocurves, and asymmetric Cu-Ni nanocoils can be prepared, respectively. The formation of Cu-Ni nanowires with different structures can be divided into the growth of Cu nanowires and the deposition of Ni. The regulatory effects were revealed by establishing a kinetic model for Ni(II) reduction. For the novel Cu-Ni asymmetrically distributed nanocurves and nanocoils, the formation mechanism was proposed by considering the Cu nanowire bending due to the rearrangement of surface ligand and bending-induced symmetry breaking of Ni(II) reduction.
Collapse
Affiliation(s)
- Qing Liu
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yangeng Lan
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongbin Shi
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuling Shi
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qianqian Pan
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Danlong Yang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Guillemeney L, Dutta S, Valleix R, Patriarche G, Mahler B, Abécassis B. Ligand Tail Controls the Conformation of Indium Sulfide Ultrathin Nanoribbons. J Am Chem Soc 2024; 146:22318-22326. [PMID: 39078881 DOI: 10.1021/jacs.4c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We report the conformational control of 2D ultrathin indium sulfide nanoribbons by tuning their amine ligands' alkyl chain. The initial orthorhombic InS nanoribbons bare n-octylamine ligands and display a highly curved geometry with a characteristic figure of eight shapes. Exchanging the native ligand by oleylamine induces their complete unfolding to yield flat board-shaped nanoribbons. Significant strain variations in the InS crystal structure accompany this shape-shifting. By tuning the linear alkyl chain length from 4 to 18 carbon atoms, we show using small-angle X-ray scattering in solution and transmission electron microscopy that the curvature of the nanoribbon subtly depends on the ligand-ligand interactions at the nanoribbon's surface. The curvature decreases gradually as the chain length increases, while carbon unsaturation has an unexpectedly significant effect at constant chain length. These experiments shed light on the critical role of the ligand monolayer on the curvature of ultrathin 2D crystalline nanosheets and demonstrate that weak supramolecular forces within the organic part of colloidal nanocrystals can dramatically impact their shape. This transduction mechanism, in which changes in the organic monolayer impact the shape of a nanocrystal, will help to devise new strategies to design stimuli-responsive systems that take advantage of both the flexibility of organic moieties and the physical properties of the inorganic core.
Collapse
Affiliation(s)
- Lilian Guillemeney
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Sarit Dutta
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Rodolphe Valleix
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris Saclay, 91120 Palaiseau, France
| | - Benoît Mahler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumiere Matière (iLM), F-69622 Villeurbanne, France
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
5
|
Monego D, Dutta S, Grossman D, Krapez M, Bauer P, Hubley A, Margueritat J, Mahler B, Widmer-Cooper A, Abécassis B. Ligand-induced incompatible curvatures control ultrathin nanoplatelet polymorphism and chirality. Proc Natl Acad Sci U S A 2024; 121:e2316299121. [PMID: 38381786 PMCID: PMC10907275 DOI: 10.1073/pnas.2316299121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
The ability of thin materials to shape-shift is a common occurrence that leads to dynamic pattern formation and function in natural and man-made structures. However, harnessing this concept to rationally design inorganic structures at the nanoscale has remained far from reach due to a lack of fundamental understanding of the essential physical components. Here, we show that the interaction between organic ligands and the nanocrystal surface is responsible for the full range of chiral shapes seen in colloidal nanoplatelets. The adsorption of ligands results in incompatible curvatures on the top and bottom surfaces of the NPL, causing them to deform into helicoïds, helical ribbons, or tubes depending on the lateral dimensions and crystallographic orientation of the NPL. We demonstrate that nanoplatelets belong to the broad class of geometrically frustrated assemblies and exhibit one of their hallmark features: a transition between helicoïds and helical ribbons at a critical width. The effective curvature [Formula: see text] is the single aggregate parameter that encodes the details of the ligand/surface interaction, determining the nanoplatelets' geometry for a given width and crystallographic orientation. The conceptual framework described here will aid the rational design of dynamic, chiral nanostructures with high fundamental and practical relevance.
Collapse
Affiliation(s)
- Debora Monego
- School of Chemistry, Australian Research Council (ARC) Centre of Excellence in Exciton Science, University of Sydney, Sydney, NSW2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW2006, Australia
| | - Sarit Dutta
- ENSL, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, LyonF-69364, France
| | - Doron Grossman
- Laboratoire d’hydrodynamique (LadHyX), UMR, École Polytechnique, CNRS, PalaiseauF-91128, France
| | - Marion Krapez
- School of Chemistry, Australian Research Council (ARC) Centre of Excellence in Exciton Science, University of Sydney, Sydney, NSW2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW2006, Australia
| | - Pierre Bauer
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, VilleurbanneF-69622, France
| | - Austin Hubley
- ENSL, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, LyonF-69364, France
| | - Jérémie Margueritat
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, VilleurbanneF-69622, France
| | - Benoit Mahler
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, VilleurbanneF-69622, France
| | - Asaph Widmer-Cooper
- School of Chemistry, Australian Research Council (ARC) Centre of Excellence in Exciton Science, University of Sydney, Sydney, NSW2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW2006, Australia
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d’Italie, LyonF-69364, France
| |
Collapse
|
6
|
Du W, Gao F, Cui P, Yu Z, Tong W, Wang J, Ren Z, Song C, Xu J, Ma H, Dang L, Zhang D, Lu Q, Jiang J, Wang J, Pi L, Sheng Z, Lu Q. Twisting, untwisting, and retwisting of elastic Co-based nanohelices. Nat Commun 2023; 14:4426. [PMID: 37481654 PMCID: PMC10363140 DOI: 10.1038/s41467-023-40001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/07/2023] [Indexed: 07/24/2023] Open
Abstract
The reversible transformation of a nanohelix is one of the most exquisite and important phenomena in nature. However, nanomaterials usually fail to twist into helical crystals. Considering the irreversibility of the previously studied twisting forces, the reverse process (untwisting) is more difficult to achieve, let alone the retwisting of the untwisted crystalline nanohelices. Herein, we report a new reciprocal effect between molecular geometry and crystal structure which triggers a twisting-untwisting-retwisting cycle for tri-cobalt salicylate hydroxide hexahydrate. The twisting force stems from competition between the condensation reaction and stacking process, different from the previously reported twisting mechanisms. The resulting distinct nanohelices give rise to unusual structure elasticity, as reflected in the reversible change of crystal lattice parameters and the mutual transformation between the nanowires and nanohelices. This study proposes a fresh concept for designing reversible processes and brings a new perspective in crystallography.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Science, Nanjing University, 210023, Nanjing, P. R. China.
| | - Peng Cui
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China
| | - Zhiwu Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Jihao Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Zhuang Ren
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Chuang Song
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Science, Nanjing University, 210023, Nanjing, P. R. China
| | - Jiaying Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Haifeng Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Liyun Dang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Di Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China
| | - Qingyou Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China.
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China.
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China.
| | - Li Pi
- Hefei National Laboratory for Physical Sciences at Microscale and Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, 230026, Hefei, AnHui, P. R. China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Zhigao Sheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences, 230031, Hefei, Anhui, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, 210023, Nanjing, P. R. China.
| |
Collapse
|
7
|
Tanjeem N, Minnis MB, Hayward RC, Shields CW. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105758. [PMID: 34741359 PMCID: PMC9579005 DOI: 10.1002/adma.202105758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Indexed: 05/05/2023]
Abstract
Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale. Consequently, shape-morphing particles are rapidly emerging in a variety of contexts, including photonics, microfluidics, microrobotics, and biomedicine. Herein, the key mechanisms and materials that facilitate shape changes of microscale and nanoscale particles are discussed. Recent progress in the applications made possible by these particles is summarized, and perspectives on their promise and key open challenges in the field are discussed.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Montana B Minnis
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Ryan C Hayward
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Charles Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
8
|
Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W, Liu Y, Li Y, Cheng J, Xu X. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021; 11:9262-9295. [PMID: 34646370 PMCID: PMC8490512 DOI: 10.7150/thno.64511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid development of chiral inorganic nanostructures has greatly expanded from intrinsically chiral nanoparticles to more sophisticated assemblies made by organics, metals, semiconductors, and their hybrids. Among them, lots of studies concerning on hybrid complex of chiral molecules with achiral nanoparticles (NPs) and superstructures with chiral configurations were accordingly conducted due to the great advances such as highly enhanced biocompatibility with low cytotoxicity and enhanced penetration and retention capability, programmable surface functionality with engineerable building blocks, and more importantly tunable chirality in a controlled manner, leading to revolutionary designs of new biomaterials for synergistic cancer therapy, control of enantiomeric enzymatic reactions, integration of metabolism and pathology via bio-to nano or structural chirality. Herein, in this review our objective is to emphasize current research state and clinical applications of chiral nanomaterials in biological systems with special attentions to chiral metal- or semiconductor-based nanostructures in terms of the basic synthesis, related circular dichroism effects at optical frequencies, mechanisms of induced optical chirality and their performances in biomedical applications such as phototherapy, bio-imaging, neurodegenerative diseases, gene editing, cellular activity and sensing of biomarkers so as to provide insights into this fascinating field for peer researchers.
Collapse
Affiliation(s)
- Yining Shao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guilin Yang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiaying Lin
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaofeng Fan
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yue Guo
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wentao Zhu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ying Cai
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huiyu Huang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wei Pang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|