1
|
Zhao S, Gong K, Song Z, Cassone G, Xie J. Exploring the Linear Energy Relationships between Activation Energy and Reaction Energy under an Electric Field. J Chem Theory Comput 2025; 21:4615-4625. [PMID: 40243030 DOI: 10.1021/acs.jctc.5c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Electric-field (EF)-mediated chemistry has recently garnered increasing attention partly owing to its capability to catalyze a broad range of chemical reactions. How the EF affects the kinetics and thermodynamics of target reactions is a critical question. Herein, both density functional theory (DFT) and MP2 calculations suggest that the change of activation energy ΔΔE‡ and the change of reaction energy ΔΔErxn under an EF display a linear energy relationship (LER) ΔΔE‡ = mΔΔErxn. This has been tested against several reactions such as SN2 and proton transfer reactions, including neutral and charged systems and endothermic and exothermic processes. The linear coefficient m approximates to the ratio of the dipole moment change, i.e., Δμ‡/Δμrxn, of the studied reactions. The LER holds well at EF strengths up to ≈1 V/nm but deviates from the DFT-calculated results at larger EFs. Such deviations are mainly caused by the molecular geometry changes under an EF. Systems with larger polarizability experience greater geometry changes under an EF, thus leading to larger deviations. In addition, we propose that the reaction barrier can be predicted by -Δμ‡F - 0.5Δα‡F2, while it is well approximated by -Δμ‡F for small EF strengths. The proposed LER and the field-dependent barrier estimation promise broad applicability in EF-mediated chemical reactions.
Collapse
Affiliation(s)
- Supin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Gong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhexuan Song
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, Italian National Research Council (CNR-IPCF), Messina 98158, Italy
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Kang TS, Morikawa MA, Singh M, Kimizuka N. Electric Field-Driven Long-Range Order and Enhanced Polarization Switching in High-Dipole Ionic Liquids. J Am Chem Soc 2025. [PMID: 40016219 DOI: 10.1021/jacs.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Ionic liquids (ILs) with significant dipole moments exhibit massive electric polarization (P) under an applied AC electric field (E) at room temperature. Among the various investigated ILs, the p-toluene sulfonate of 1-ethyl-3-methylimidazolium, [C2mim][Tos], which has a large dipole moment in the tosylate anion (∼10.99 D), shows large hysteresis in P-E curves with a high saturation polarization (Ps ∼ 92 μC cm-2) and a remanent polarization (Pr ∼ 68 μC cm-2) at a relatively low electric field E (1.75 kV cm-1). The mechanism of polarization and its switching in ILs are corroborated by the switching current peaks observed in current density (j) versus E (j-E) profiles and the change in fluorescence intensity of a cyanine dye doped in ILs. The reversible cyanine fluorescence intensity changes in response to the applied AC electric field reflect the dynamic orientational changes of the IL, synchronized with the polarization reversal. The dependence of Ps and Pr values on applied AC electric fields (E) is fitted by two straight lines with different slopes, below and above a threshold electric field Eth (∼1.25 kV cm-1). Long-range order is not obtained below the threshold potential of Eth. Under AC electric fields above Eth, more significant polarization and cyanine fluorescence responses to the electric field are observed. The present study indicates the presence of long-range ordering of molecular dipole moments over a distance of more than 1 μm from the interfacial adsorption layers through the transition zone to the bulk zone.
Collapse
Affiliation(s)
- Tejwant S Kang
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, UGC- Center for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Masa-Aki Morikawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Manpreet Singh
- Department of Chemistry, UGC- Center for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Belotti M, Hurtado C, Kelly S, MacGregor M, Darwish N, Ciampi S. Toward the Electrostatic Catalysis of Nucleophilic Substitutions: A Surface Chemistry Study of the Menshutkin Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26633-26639. [PMID: 39630487 DOI: 10.1021/acs.langmuir.4c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The catalysis of nonredox reactions by external electric fields is one of the most rapidly expanding areas of chemistry. The Menshutkin reaction, a classic example of bimolecular nucleophilic substitution (SN2), involves the conversion of a tertiary amine to a quaternary ammonium salt by coupling it with an alkyl halide. The reaction barrier of the Menshutkin reaction is theoretically predicted to be highly sensitive to the magnitude and direction of an external electric field experienced by the transition state. In this study, we investigate how near-surface electric fields can drive this prototypical nucleophilic substitution by examining the coupling of a diffusive redox-tagged tertiary amine with an electrode-tethered alkyl bromide under a variable external bias. Our findings reveal a competition between electrostatically assisted reactions, solvent effects, and electrochemically triggered side reactions involving radical intermediates. We estimate that only about 5% of the coupling events are attributable to the external field, while the majority of the reaction products originate from electrochemically generated radical intermediates.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Sophia Kelly
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
5
|
Tang C, Su M, Lu T, Zheng J, Wang J, Zhou Y, Zou YL, Liu W, Huang R, Xu W, Chen L, Zhang Y, Bai J, Yang Y, Shi J, Liu J, Hong W. Massive acceleration of S N2 reaction using the oriented external electric field. Chem Sci 2024; 15:13486-13494. [PMID: 39183916 PMCID: PMC11339978 DOI: 10.1039/d4sc03759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.
Collapse
Affiliation(s)
- Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Meiling Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wenqing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| |
Collapse
|
6
|
Song Z, Zhu C, Gong K, Wang R, Zhang J, Zhao S, Li Z, Zhang X, Xie J. Deciphering the Microdroplet Acceleration Factors of Aza-Michael Addition Reactions. J Am Chem Soc 2024; 146:10963-10972. [PMID: 38567839 DOI: 10.1021/jacs.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Microdroplet chemistry is emerging as a great tool for accelerating reactions by several orders of magnitude. Several unique properties such as extreme pHs, interfacial electric fields (IEFs), and partial solvation have been reported to be responsible for the acceleration; however, which factor plays the key role remains elusive. Here, we performed quantum chemical calculations to explore the underlying mechanisms of an aza-Michael addition reaction between methylamine and acrylamide. We showed that the acceleration in methanol microdroplets results from the cumulative effects of several factors. The acidic surface of the microdroplet plays a dominating role, leading to a decrease of ∼9 kcal/mol in the activation barrier. We speculated that the dissociation of both methanol and trace water contributes to the surface acidity. An IEF of 0.1 V/Å can further decrease the barrier by ∼2 kcal/mol. Partial solvation has a negligible effect on lowering the activation barrier in microdroplets but can increase the collision frequency between reactants. With acidity revealed to be the major accelerating factor for methanol droplets, reactions on water microdroplets should have even higher rates because water is more acidic. Both theoretically and experimentally, we confirmed that water microdroplets significantly accelerate the aza-Michael reaction, achieving an acceleration factor that exceeds 107. This work elucidates the multifactorial influences on the microdroplet acceleration mechanism, and with such detailed mechanistic investigations, we anticipate that microdroplet chemistry will be an avenue rich in opportunities in the realm of green synthesis.
Collapse
Affiliation(s)
- Zhexuan Song
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chenghui Zhu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ke Gong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jianze Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Supin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Gopakumar K, Samantaray V, Prusty MK, Swain L, Ramanan R. Internal charge-transfer in a metal-catalyzed oxidative addition reaction turns an inhibitive electric field stimulus to catalytic. Chem Commun (Camb) 2023; 59:13054-13057. [PMID: 37846773 DOI: 10.1039/d3cc04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In a metal-catalyzed oxidative addition, an oriented external electric field (EEF) catalyzes the reaction along one direction and inhibits it when applied in the opposite direction. Beyond a threshold value, the inhibitory direction becomes catalyzing by swapping the metal-to-ligand charge transfer (MLCT) to ligand-to-metal charge-transfer (LMCT) or vice versa. The change in direction of the charge-transfer mechanism triggers the inversion of the dipole moment along the reaction axis, that results in the resurgence of catalysis. The charge-transfer mechanism in metal-catalyzed oxidative addition is tunable by EEF.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Vivekananda Samantaray
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Mithun Kumar Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Lopita Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Zhu C, Pham LN, Yuan X, Ouyang H, Coote ML, Zhang X. High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond Complexes. J Am Chem Soc 2023; 145:21207-21212. [PMID: 37724917 DOI: 10.1021/jacs.3c08818] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The use of external electric fields as green and efficient catalysts in synthetic chemistry has recently received significant attention for their ability to deliver remarkable control of reaction selectivity and acceleration of reaction rates. Technically, methods of generating high electric fields in the range of 1-10 V/nm are limited, as in-vacuo techniques have obvious scalability issues. The spontaneous high fields at various interfaces promise to solve this problem. In this study, we take advantage of the spontaneous high electric field at the air-water interface of sprayed water microdroplets in the reactions of several halogen bond systems: Nu:--X-X, where Nu: is pyridine or quinuclidine and X is bromine or iodine. The field facilitates ultrafast electron transfer from Nu:, yielding a Nu-X covalent bond and causing the X-X bond to cleave. This reaction occurs in microseconds in microdroplets but takes days to weeks in bulk solution. Density functional theory calculations predict that the reaction becomes barrier-free in the presence of oriented external electric fields, supporting the notion that the electric fields in the water droplets are responsible for the catalysis. We anticipate that microdroplet chemistry will be an avenue rich in opportunities in the reactions facilitated by high electric fields and provides an alternative way to tackle the scalability problem.
Collapse
Affiliation(s)
- Chenghui Zhu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Haoran Ouyang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Gopakumar K, Shaik S, Ramanan R. Two-Way Catalysis in a Diels-Alder Reaction Limits Inhibition Induced by an External Electric Field. Angew Chem Int Ed Engl 2023; 62:e202307579. [PMID: 37530131 DOI: 10.1002/anie.202307579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Oriented external electric fields (EEFs) act as catalysts that can induce selectivity in chemical reactions. The responses of the Diels-Alder (DA) reaction between butadiene and ethylene (BDE-DA) as well as cyclopentadiene and ethylene (CPDE-DA) towards EEF stimuli are investigated here using density functional theory (B3LYP) calculations. EEF is a vector that catalyzes the reaction in one direction while inhibiting it in the opposite direction. Here we report that the inhibitive direction becomes rate-enhancing after some increase in the EEF. The EEF value that brings about the maximum possible inhibition for the reaction is defined as the electrostatic resistance point (ERP). The possibility of both normal and inverse electron-demand DA reactions causes catalytic activity in both directions of the EEF starting at a unique ERP value. The C5 substituents of cyclopentadiene control the ERP values depending upon the resistance power that the functional group provides against the EEF. The endo and exo diastereomeric transition states of the DA reaction have distinct ERP values and the difference (ΔERP) provides the through-space electrostatic contribution to the stereoselectivity on a relative scale. Thus, the ERP values can be used as a gauge for the electrostatic interactions between substituent groups and external stimuli.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407, Jerusalem, Israel
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
10
|
Carmona Esteva FJ, Zhang Y, Colón YJ, Maginn EJ. Molecular Dynamics Simulation of the Influence of External Electric Fields on the Glass Transition Temperature of the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J Phys Chem B 2023; 127:4623-4632. [PMID: 37192465 DOI: 10.1021/acs.jpcb.3c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present the results of molecular dynamics simulations of the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C2C1im][NTf2] in the presence of external electric fields (EEFs) of varying strengths to understand the effects of EEFs on the glass transition temperature Tg. We compute Tg with an automated and objective method and observe a depression in Tg when cooling the IL within an EEF above a critical strength. The effect is reversible, and glasses prepared with EEFs recover their original zero-field Tg when heated. By examining the dynamics and structure of the liquid phase, we find that the EEF lowers the activation energy for diffusion, reducing the energetic barrier for movement and consequently Tg. We show that the effect can be leveraged to drive an electrified nonvapor compression refrigeration cycle.
Collapse
Affiliation(s)
- Fernando J Carmona Esteva
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yamil J Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
11
|
Kalita S, Bergman H, Dubey KD, Shaik S. How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer's and Other Senile Plaques? J Am Chem Soc 2023; 145:3543-3553. [PMID: 36735972 PMCID: PMC9936589 DOI: 10.1021/jacs.2c12305] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is one of the most common neurodegenerative conditions, which are ascribed to extracellular accumulation of β-amyloid peptides into plaques. This phenomenon seems to typify other related neurodegenerative diseases. The present study uses classical molecular-dynamics simulations to decipher the aggregation-disintegration behavior of β-amyloid peptide plaques in the presence of static and oscillating oriented external electric fields (OEEFs). A long-term disintegration of such plaques is highly desirable since this may improve the prospects of therapeutic treatments of Alzheimer's disease and of other neurodegenerative diseases typified by senile plaques. Our study illustrates the spontaneous aggregation of the β-amyloid, its prevention and breakdown when OEEF is applied, and the fate of the broken aggregate when the OEEF is removed. Notably, we demonstrate that the usage of an oscillating OEEF on β-amyloid aggregates appears to lead to an irreversible disintegration. Insight is provided into the root causes of the various modes of aggregation, as well as into the different fates of OEEF-induced disintegration in oscillating vs static fields. Finally, our simulation results are compared to the well-established TTFields and the Deep Brain Stimulation (DBS) therapies, which are currently used options for treatments of Alzheimer's disease and other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), The Hebrew University of Jerusalem, Hadassah Medical Faculty, Jerusalem, Israel 91120
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Kempfer-Robertson EM, Avdic I, Haase MN, Pike TD, Thompson LM. Protonation state control of electric field induced molecular switching mechanisms. Phys Chem Chem Phys 2023; 25:5251-5261. [PMID: 36723228 DOI: 10.1039/d2cp04494c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Scanning tunneling microscopy tip-induced deprotonation has been demonstrated experimentally and can be used as an additional control mechanism in electric-field induced molecular switching. The goal of the current work is to establish whether (de)protonation can be used to inhibit or enhance the electric field controlled thermal and photoisomerization processes. Dihydroxyazobenzene is used as a model system, where protonation/deprotonation of the free hydroxyl moiety changes the azo bond order, and so modifies the rate of electric field induced isomerization. Through the combined action of deprotonation and applied field, it was found that the cis-to-trans thermal isomerization barrier could be completely removed, changing the isomerization half-life from the order of several months. In addition, due to the presence of multiple isomerization mechanisms, electric fields could modify the isomerization kinetics by increasing the number of energetically viable isomerization pathways, rather than reducing the activation barrier of the lowest energy pathway. Excited state calculations indicated that the protonation state and electric field could be used together to control the presence of electronic degeneracies along the rotation pathway between S0/S1, and along all three pathways between S1/S2. This work provides insight into the mechanisms that enable the use of protonation state, light, and electric fields in concert to control molecular switches.
Collapse
Affiliation(s)
| | - Irma Avdic
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| | - Meagan N Haase
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| | - Thomas Dane Pike
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| |
Collapse
|
13
|
Blyth MT, Coote ML. Manipulation of N-heterocyclic carbene reactivity with practical oriented electric fields. Phys Chem Chem Phys 2023; 25:375-383. [DOI: 10.1039/d2cp04507a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electric fields can be used to tune the nucleophilicity and electrophilicity of N-heterocyclic carbenes and enhance their catalytic activity.
Collapse
Affiliation(s)
- Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L. Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
14
|
Dubey KD, Stuyver T, Shaik S. Local Electric Fields: From Enzyme Catalysis to Synthetic Catalyst Design. J Phys Chem B 2022; 126:10285-10294. [PMID: 36469939 DOI: 10.1021/acs.jpcb.2c06422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This Mini-Review Article outlines recent advances in the study of local electric field (LEF) governed enzyme catalysis and the application of the LEF principle in synthetic catalyst design. We start by discussing the electrostatics principles that drive enzyme catalysis, and its experimental verifications through vibrational Stark spectroscopy. Subsequently, we describe aspects of LEFs other than catalysis, i.e., induction of mechanistic crossovers, among others. Here, we focus on the early work done using computational tools, along with some recent contributions. Following an in-depth discussion of the role of LEFs in enzyme catalysis, we then highlight some recent works on designed local electric fields (D-LEF) and their applications in organic synthesis. Subsequently, we turn to D-LEFs in synthetic enzymes and supramolecular systems (cf. the work by the Head-Gordon group). We end by discussing some of the software packages that have been developed to analyze local electric fields computationally. Overall, the present Mini-Review Article paints an insightful picture of the current state of the art using LEF in enzyme catalysis and its application for further bioengineering and synthetic organic frameworks in a broad perspective.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Gautam Buddha Nagar, Uttar Pradesh201314, India
| | - Thijs Stuyver
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Sason Shaik
- The Hebrew University, Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, Jerusalem, 9190401Israel
| |
Collapse
|
15
|
Guo Y, Yang C, Zhou S, Liu Z, Guo X. A Single-Molecule Memristor based on an Electric-Field-Driven Dynamical Structure Reconfiguration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204827. [PMID: 35862243 DOI: 10.1002/adma.202204827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A robust single-molecule memristor is prepared by covalently integrating one phenol molecule with multiple binding sites into nanogapped graphene electrodes. Multilevel resistance switching is realized by the electric-field-manipulated reconfiguration of the acyl moiety on the phenol center, that is, the Fries rearrangement. In situ measurements of the reaction trajectories with an initial single substrate and an intermediate break through the limitation of macroscopic experiments, therefore unveiling both intramolecular and intermolecular mechanistic pathways (a long-term controversy) as well as comprehensive dynamic information. Based on this advance, high-performance single-molecule memristors in both the solution and solid states are achieved successively, providing a new understanding of memristive systems and neural network computing.
Collapse
Affiliation(s)
- Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| |
Collapse
|
16
|
Zheng C, Mao Y, Kozuch J, Atsango AO, Ji Z, Markland TE, Boxer SG. A two-directional vibrational probe reveals different electric field orientations in solution and an enzyme active site. Nat Chem 2022; 14:891-897. [PMID: 35513508 PMCID: PMC10082611 DOI: 10.1038/s41557-022-00937-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/25/2022] [Indexed: 12/26/2022]
Abstract
The catalytic power of an electric field depends on its magnitude and orientation with respect to the reactive chemical species. Understanding and designing new catalysts for electrostatic catalysis thus requires methods to measure the electric field orientation and magnitude at the molecular scale. We demonstrate that electric field orientations can be extracted using a two-directional vibrational probe by exploiting the vibrational Stark effect of both the C=O and C-D stretches of a deuterated aldehyde. Combining spectroscopy with molecular dynamics and electronic structure partitioning methods, we demonstrate that, despite distinct polarities, solvents act similarly in their preference for electrostatically stabilizing large bond dipoles at the expense of destabilizing small ones. In contrast, we find that for an active-site aldehyde inhibitor of liver alcohol dehydrogenase, the electric field orientation deviates markedly from that found in solvents, which provides direct evidence for the fundamental difference between the electrostatic environment of solvents and that of a preorganized enzyme active site.
Collapse
Affiliation(s)
- Chu Zheng
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jacek Kozuch
- Experimental Molecular Biophysics, Department of Physics, Freie Univeresität Berlin, Berlin, Germany
| | | | - Zhe Ji
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Kelty ML, McNeece AJ, Kurutz JW, Filatov AS, Anderson JS. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chem Sci 2022; 13:4377-4387. [PMID: 35509471 PMCID: PMC9007067 DOI: 10.1039/d1sc04277g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Enhanced rates and selectivity in enzymes are enabled in part by precisely tuned electric fields within active sites. Analogously, the use of charged groups to leverage electrostatics in molecular systems is a promising strategy to tune reactivity. However, separation of the through space and through bond effects of charged functional groups is a long standing challenge that limits the rational application of electric fields in molecular systems. To address this challenge we developed a method using the phosphorus selenium coupling value (J P-Se) of anionic phosphine selenides to quantify the electrostatic contribution of the borate moiety to donor strength. In this analysis we report the synthesis of a novel anionic phosphine, PPh2CH2BF3K, the corresponding tetraphenyl phosphonium and tetraethyl ammonium selenides [PPh4][SePPh2CH2BF3] and [TEA][SePPh2CH2BF3], and the Rh carbonyl complex [PPh4][Rh(acac)(CO)(PPh2(CH2BF3))]. Solvent-dependent changes in J P-Se were fit using Coulomb's law and support up to an 80% electrostatic contribution to the increase in donor strength of [PPh4][SePPh2CH2BF3] relative to SePPh2Et, while controls with [TEA][SePPh2CH2BF3] exclude convoluting ion pairing effects. Calculations using explicit solvation or point charges effectively replicate the experimental data. This J P-Se method was extended to [PPh4][SePPh2(2-BF3Ph)] and likewise estimates up to a 70% electrostatic contribution to the increase in donor strength relative to SePPh3. The use of PPh2CH2BF3K also accelerates C-F oxidative addition reactivity with Ni(COD)2 by an order of magnitude in comparison to the comparatively donating neutral phosphines PEt3 and PCy3. This enhanced reactivity prompted the investigation of catalytic fluoroarene C-F borylation, with improved yields observed for less fluorinated arenes. These results demonstrate that covalently bound charged functionalities can exert a significant electrostatic influence under common solution phase reaction conditions and experimentally validate theoretical predictions regarding electrostatic effects in reactivity.
Collapse
Affiliation(s)
- Margaret L Kelty
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Josh W Kurutz
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| |
Collapse
|
18
|
Zhang J, Lin S, Wang ZL. Electrostatic Charges Regulate Chemiluminescence by Electron Transfer at the Liquid-Solid Interface. J Phys Chem B 2022; 126:2754-2760. [PMID: 35362971 DOI: 10.1021/acs.jpcb.1c09402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the electrostatic environment in chemical reactions has long been an important research field, but most studies have focused on the influence of external electric fields on chemical processes, while the effect from the intrinsic electrostatic charges on the solution itself has been ignored. How an electrostatic field generated by contact electrification affects the solvent environment in a chemical reaction and then the chemical reactivity is still ambiguous. Here, based on the inspiration of the droplet triboelectric nanogenerator, electrostatic interactions between a statically charged luminol droplet and the surrounding directional electrostatic field were analyzed, and we demonstrate a relationship between the sign of the luminol sample (negatively or positively charged) and its effect on the reaction reactivity. Our results show that the increased reaction activity and the enhanced chemiluminescence (CL) only occurred when the luminol droplet yields positive charges, while a negatively charged luminol, on the contrary, tends to inhibit the CL, which brings direct evidence of the charge carriers of triboelectricity being electrons at the liquid-solid interface. This work provides a strategy for electrostatically regulating CL by simply statically charging a reaction solution with a dielectric solid and also carries a cautionary message on what to consider when preparing a sample for a chemical reaction.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
19
|
Kirchner B, Blasius J, Alizadeh V, Gansäuer A, Hollóczki O. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. J Phys Chem B 2022; 126:766-777. [PMID: 35034453 DOI: 10.1021/acs.jpcb.1c09092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The theoretical treatment of ionic liquids must focus now on more realistic models while at the same time keeping an accurate methodology when following recent ionic liquids research trends or allowing predictability to come to the foreground. In this Perspective, we summarize in three cases of advanced ionic liquid research what methodological progress has been made and point out difficulties that need to be overcome. As particular examples to discuss we choose reactions, chirality, and radicals in ionic liquids. All these topics have in common that an explicit or accurate treatment of the electronic structure and/or intermolecular interactions is required (accurate methodology), while at the same time system size and complexity as well as simulation time (realistic model) play an important role and must be covered as well.
Collapse
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.,Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| |
Collapse
|
20
|
Sieling T, Petersen T, Alpers T, Christoffers J, Klüner T, Brand I. CD Stretching Modes are Sensitive to the Microenvironment in Ionic Liquids. Chemistry 2021; 27:17808-17817. [PMID: 34510599 PMCID: PMC9298891 DOI: 10.1002/chem.202102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/26/2022]
Abstract
Knowledge of the structure of the electrical double layer in ionic liquids (IL) is crucial for their applications in electrochemical technologies. We report the synthesis and applicability of an imidazolium-based amphiphilic ionic liquid with a perdeuterated alkyl chain for studies of electric potential-dependent rearrangements, and changes in the microenvironment in a monolayer on a Au(111) surface. Electrochemical measurements show two states of the organization of ions on the electrode surface. In situ IR spectroscopy shows that the alkyl chains in imidazolium cations change their orientation depending on the adsorption state. The methylene-d2 stretching modes in the perdeuterated IL display a reversible, potential-dependent appearance of a new band. The presence of this mode also depends on the anion in the IL. Supported by quantum chemical calculations, this new mode is assigned to a second νas (CD2 ) band in alkyl-chain fragments embedded in a polar environment of the anions/solvent present in the vicinity of the imidazolium cation and electrode. It is a measure of the potential-dependent segregation between polar and nonpolar environments in the layers of an IL closest to the electrode.
Collapse
Affiliation(s)
- Thorben Sieling
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Thorben Petersen
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Torben Alpers
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | | | - Thorsten Klüner
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Izabella Brand
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| |
Collapse
|
21
|
Kim M, Gould T, Izgorodina EI, Rocca D, Lebègue S. Establishing the accuracy of density functional approaches for the description of noncovalent interactions in ionic liquids. Phys Chem Chem Phys 2021; 23:25558-25564. [PMID: 34782901 DOI: 10.1039/d1cp03888e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We test a number of dispersion corrected versatile Generalized Gradient Approximation (GGA) and meta-GGA functionals for their ability to predict the interactions of ionic liquids, and show that most can achieve energies within 1 kcal mol-1 of benchmarks. This compares favorably with an accurate dispersion corrected hybrid, ωB97X-V. Our tests also reveal that PBE (Perdew-Burke-Ernzerhof GGA) calculations using the plane-wave projector augmented wave method and Gaussian Type Orbitals (GTOs) differ by less than 0.6 kJ mol-1 for ionic liquids, despite ions being difficult to evaluate in periodic cells - thus revealing that GTO benchmarks may be used also for plane-wave codes. Finally, the relatively high success of explicit van der Waals density functionals, compared to elemental and ionic dispersion models, suggests that improvements are required for low-cost dispersion correction models of ions.
Collapse
Affiliation(s)
- Minho Kim
- Université de Lorraine and CNRS, LPCT, UMR 7019, Vandoeuvre-lès-Nancy 54506, France.
| | - Tim Gould
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | | | - Dario Rocca
- Université de Lorraine and CNRS, LPCT, UMR 7019, Vandoeuvre-lès-Nancy 54506, France.
| | - Sébastien Lebègue
- Université de Lorraine and CNRS, LPCT, UMR 7019, Vandoeuvre-lès-Nancy 54506, France.
| |
Collapse
|
22
|
Pei Z, Qiao Q, Gong C, Wei D, Coote ML. Electrostatic effects in N-heterocyclic carbene catalysis: revealing the nature of catalysed decarboxylation. Phys Chem Chem Phys 2021; 23:24627-24633. [PMID: 34719698 DOI: 10.1039/d1cp04444c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemistry is used to investigate the nature of protonated N-heterocyclic carbene (NHC·H+) catalysed decarboxylation recently reported by Zhang et al. (ACS Catal., 2021, 11, 3443-3454). Our results show that there are strong electrostatic effects within the NHC·H+ catalysed decarboxylation, and these dominate hydrogen bonding. At the same time, energy decomposition analyses and comparison between the original NHC·H+ catalyst and a truncated form reveal that stabilizing dispersion interactions are also critical, as is induction. We also show that the electrostatic effects and their associated catalytic effects can be further enhanced using charged functional groups.
Collapse
Affiliation(s)
- Zhipeng Pei
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Qinyu Qiao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Cunxi Gong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Donghui Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
23
|
Belotti M, Lyu X, Xu L, Halat P, Darwish N, Silvester DS, Goh C, Izgorodina EI, Coote ML, Ciampi S. Experimental Evidence of Long-Lived Electric Fields of Ionic Liquid Bilayers. J Am Chem Soc 2021; 143:17431-17440. [PMID: 34657417 DOI: 10.1021/jacs.1c06385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein we demonstrate that ionic liquids can form long-lived double layers, generating electric fields detectable by straightforward open circuit potential (OCP) measurements. In imidazolium-based ionic liquids an external negative voltage pulse leads to an exceedingly stable near-surface dipolar layer, whose field manifests as long-lived (∼1-100 h) discrete plateaus in OCP versus time traces. These plateaus occur within an ionic liquid-specific and sharp potential window, defining a simple experimental method to probe the onset of interfacial ordering phenomena, such as overscreening and crowding. Molecular dynamics modeling reveals that the OCP arises from the alignment of the individual ion dipoles to the external electric field pulse, with the magnitude of the resulting OCP correlating with the product of the projected dipole moment of the cation and the ratio between the cation diffusion coefficient and its volume. Our findings also reveal that a stable overscreened structure is more likely to form if the interface is first forced through crowding, possibly accounting for the scattered literature data on relaxation kinetics of near-surface structures in ionic liquids.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Xin Lyu
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Longkun Xu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Peter Halat
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ching Goh
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | | | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
24
|
Abstract
Chemical reactions that occur at nanostructured electrodes have garnered widespread interest because of their potential applications in fields including nanotechnology, green chemistry and fundamental physical organic chemistry. Much of our present understanding of these reactions comes from probes that interrogate ensembles of molecules undergoing various stages of the transformation concurrently. Exquisite control over single-molecule reactivity lets us construct new molecules and further our understanding of nanoscale chemical phenomena. We can study single molecules using instruments such as the scanning tunnelling microscope, which can additionally be part of a mechanically controlled break junction. These are unique tools that can offer a high level of detail. They probe the electronic conductance of individual molecules and catalyse chemical reactions by establishing environments with reactive metal sites on nanoscale electrodes. This Review describes how chemical reactions involving bond cleavage and formation can be triggered at nanoscale electrodes and studied one molecule at a time.
Collapse
|
25
|
Behrens DM, Hartke B. Globally Optimized Molecular Embeddings for Dynamic Reaction Solvate Shell Optimization and Active Site Design. Top Catal 2021. [DOI: 10.1007/s11244-021-01486-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWe demonstrate how a full QM/MM derivatization of the recently developed GOCAT model can be utilized in the global optimization of molecular embeddings. To this end, we provide two distinct examples: An $$\text {S}_\text {N}2$$
S
N
2
reaction, and one enzymatic example of recent interest, the ketosteroid isomerase. These serve us to highlight the advantages of such an approach and sketch the roadmap for further improvements.
Collapse
|
26
|
Abstract
Density functional theory (DFT) has been employed in predicting the enantioselectivity of the aldol reaction between acetone and p-nitrobenzaldehyde catalyzed by proline and its derivatives Me2bdc-Pro (bdc = 1,4-benzenedicarboxylate) and Me2bpdc-Pro (bpdc = 4,4'-biphenyldicarboxylate). For each catalyst, our computationally predicted values at the M062X/6-31+G(d) level of theory with the SMD solvent model are in excellent agreement with experimental results reported in the literature. Electron-donating and electron-withdrawing groups (viz., SO3-, NMe2, SO3H, and NMe3+) were installed at the C4 position of the proline-based catalysts to study the impact of electrostatic effects on stereoselectivity. The electron-donating groups decrease and even invert the enantioselectivity, while the electron-withdrawing ones increase it. Enantiomeric excesses in the range of 49-71 and 59-68% are predicted for Me2bdc-Pro and Me2bpdc-Pro catalysts with the electron-withdrawing SO3H and NMe3+ installed respectively, values much higher than those of the corresponding unmodified catalysts. More interestingly, enantiomeric excesses decrease and, in the case of SO3-, are even inverted in favor of the other enantiomer when the electron-donating groups are installed. These results highlight the importance of electrostatic effects, and polar effects more generally, in optimal organocatalyst design for stereoselective C-C bond-forming reactions.
Collapse
Affiliation(s)
- Li-Juan Yu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
27
|
Varona M, Eor P, Ferreira Neto LC, Merib J, Anderson JL. Metal-containing and magnetic ionic liquids in analytical extractions and gas separations. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Greco R, Lloret V, Rivero-Crespo MÁ, Hirsch A, Doménech-Carbó A, Abellán G, Leyva-Pérez A. Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. JACS AU 2021; 1:786-794. [PMID: 34240079 PMCID: PMC8243323 DOI: 10.1021/jacsau.1c00107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather than Lewis acid reactions. These results open new avenues not only in the use of ionic liquids as acid catalysts/solvents but also in the preparation of surfactant-free, well-defined ionic liquid microemulsions.
Collapse
Affiliation(s)
- Rossella Greco
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicent Lloret
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Miguel Ángel Rivero-Crespo
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
| | - Andreas Hirsch
- Department
of Chemistry and Pharmacy, Friedrich−Alexander−Universität
Erlangen−Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint
Institute of Advanced Materials and Processes (ZMP), Friedrich−Alexander−Universität Erlangen−Nürnberg
(FAU), Dr.-Mack Strasse 81, 90762 Fürth, Germany
| | - Antonio Doménech-Carbó
- Departament
de Química Analítica, Universitat
de València, Dr.
Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Abellán
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Valencia, Spain
- . Phone: +34963544074. Fax: +34963543273
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química, Universidad
Politècnica de València−Consejo Superior de Investigaciones
Científicas, Avda.
de los Naranjos s/n, 46022 Valencia, Spain
- . Phone: +34963877800. Fax: +349638 77809
| |
Collapse
|
29
|
Wang DY, Si Y, Guo W, Fu Y. Electrosynthesis of 1,4-bis(diphenylphosphanyl) tetrasulfide via sulfur radical addition as cathode material for rechargeable lithium battery. Nat Commun 2021; 12:3220. [PMID: 34050159 PMCID: PMC8163837 DOI: 10.1038/s41467-021-23521-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Organic electrodes are promising as next generation energy storage materials originating from their enormous chemical diversity and electrochemical specificity. Although organic synthesis methods have been extended to a broad range, facile and selective methods are still needed to expose the corners of chemical space. Herein, we report the organopolysulfide, 1,4-bis(diphenylphosphanyl)tetrasulfide, which is synthesized by electrochemical oxidation of diphenyl dithiophosphinic acid featuring the cleavage of a P-S single bond and a sulfur radical addition reaction. Density functional theory proves that the external electric field triggers the intramolecular rearrangement of diphenyl dithiophosphinic acid through dehydrogenation and sulfur migration along the P-S bond axis. Impressively, the Li/bis(diphenylphosphanyl)tetrasulfide cell exhibits the high discharge voltage of 2.9 V and stable cycling performance of 500 cycles with the capacity retention of 74.8%. Detailed characterizations confirm the reversible lithiation/delithiation process. This work demonstrates that electrochemical synthesis offers the approach for the preparation of advanced functional materials.
Collapse
Affiliation(s)
- Dan-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China.
| |
Collapse
|
30
|
Chen H, Jiang F, Hu C, Jiao Y, Chen S, Qiu Y, Zhou P, Zhang L, Cai K, Song B, Chen XY, Zhao X, Wasielewski MR, Guo H, Hong W, Stoddart JF. Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. J Am Chem Soc 2021; 143:8476-8487. [PMID: 34043344 DOI: 10.1021/jacs.1c03141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Feng Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Hu
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Su Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hong Guo
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
31
|
Qin J, Wang M, Wang Y, Wang C, Lu Y, Huo F, He H. Understanding Electric Field‐Dependent Structure Variation of Functional Ionic Liquids at the Electrode Interface. ChemElectroChem 2021. [DOI: 10.1002/celc.202100135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingyu Qin
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Yumiao Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
32
|
Laconsay CJ, Mallick D, Shaik S. External Electric Fields Interrupt the Concerted Cope Rearrangement of Semibullvalene. J Org Chem 2020; 86:731-738. [PMID: 33280381 DOI: 10.1021/acs.joc.0c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The topic of this paper is whether the mechanism of the degenerate Cope rearrangement of semibullvalene can be affected by the presence of electrostatic fields. Herein, we report that the shape of the energy surface, as demonstrated by an "interrupted" (stepwise) mechanism, is altered in the presence of a copper cation, Cu+. Natural bond-orbital and block-localized wave-function energy decomposition analyses suggest that orbital and electrostatic interactions play a major role in altering the shape of the energy surface. Applying additional external electric fields (EEFs) induces a significant change to the energy surface with Cu+ present but negligible effects in the absence of Cu+. These findings are consistent with recent studies that demonstrate that EEFs more readily stabilize/destabilize systems with larger, more polarizable, dipole moments.
Collapse
Affiliation(s)
- Croix J Laconsay
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Dibyendu Mallick
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
33
|
Climent C, Feist J. On the S N2 reactions modified in vibrational strong coupling experiments: reaction mechanisms and vibrational mode assignments. Phys Chem Chem Phys 2020; 22:23545-23552. [PMID: 33063807 DOI: 10.1039/d0cp04154h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experiments have reported modified chemical reactivity under vibrational strong coupling (VSC) in microfluidic Fabry-Pérot cavities. In particular, the reaction rate of nucleophilic substitution reactions at silicon centers (SN2@Si) has been altered when a vibrational mode of the reactant was coupled to a confined light mode in the strong coupling regime. In this situation, hybrid light-matter states known as polaritons are formed and seem to be responsible for the modified chemical kinetics. These results are very encouraging for future applications of polaritonic chemistry to catalyze chemical reactions, with the ability to manipulate chemical phenomena without any external excitation of the system. Still, there is no theory capable of explaining the mechanism behind these results. In this work we address two points that are crucial for the interpretation of these experiments. Firstly, by means of electronic structure calculations we report the reaction mechanism in normal conditions of the two recently modified SN2@Si reactions, obtaining in both cases a triple-well PES where the rate-determining step is due to the Si-C and Si-O bond cleavage. Secondly, we characterize in detail the normal modes of vibration of the reactants. In the VSC experiments, reaction rates were modified only when specific vibrations of the reactants were coupled to a cavity mode. We find that these vibrations are highly mixed among the different fragments of the reactants leading to a completely new assignment of the IR peaks coupled to cavity modes in the original experimental works. Our results are fundamental for the interpretation of the VSC experiments given that in the absence of a theory explaining these results, the current phenomenological understanding relies on the assignment of the character of the vibrational IR peaks.
Collapse
Affiliation(s)
- Clàudia Climent
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| |
Collapse
|