1
|
Herrero‐Alfonso P, Pejenaute A, Millet O, Ortega‐Quintanilla G. Electrostatics introduce a trade-off between mesophilic stability and adaptation in halophilic proteins. Protein Sci 2024; 33:e5003. [PMID: 38747380 PMCID: PMC11094771 DOI: 10.1002/pro.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Extremophile organisms have adapted to extreme physicochemical conditions. Halophilic organisms, in particular, survive at very high salt concentrations. To achieve this, they have engineered the surface of their proteins to increase the number of short, polar and acidic amino acids, while decreasing large, hydrophobic and basic residues. While these adaptations initially decrease protein stability in the absence of salt, they grant halophilic proteins remarkable stability in environments with extremely high salt concentrations, where non-adapted proteins unfold and aggregate. The molecular mechanisms by which halophilic proteins achieve this, however, are not yet clear. Here, we test the hypothesis that the halophilic amino acid composition destabilizes the surface of the protein, but in exchange improves the stability in the presence of salts. To do that, we have measured the folding thermodynamics of various protein variants with different degrees of halophilicity in the absence and presence of different salts, and at different pH values to tune the ionization state of the acidic amino acids. Our results show that halophilic amino acids decrease the stability of halophilic proteins under mesophilic conditions, but in exchange improve salt-induced stabilization and solubility. We also find that, in contrast to traditional assumptions, contributions arising from hydrophobic effect and preferential ion exclusion are more relevant for haloadaptation than electrostatics. Overall, our findings suggest a trade-off between folding thermodynamics and halophilic adaptation to optimize proteins for hypersaline environments.
Collapse
Affiliation(s)
- Pablo Herrero‐Alfonso
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
| | - Alba Pejenaute
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
- Tekniker, Basque Research and Technology Alliance (BRTA)EibarSpain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
| | - Gabriel Ortega‐Quintanilla
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
2
|
Du J, Yin H, Lu Y, Lu T, Chen T. Effects of Surface Tethering on the Thermodynamics and Kinetics of Frustrated Protein Folding. J Phys Chem B 2022; 126:4776-4786. [PMID: 35731862 DOI: 10.1021/acs.jpcb.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between the protein and surface plays an important role in biology and biotechnology. To understand how surface tethering influences the folding behavior of frustrated proteins, in this work, we systematically study the thermodynamics and folding kinetics of the bacterial immunity protein Im7 and Fyn SH3 domain tethered to a surface using Langevin dynamics simulations. Upon surface tethering, the stabilization often results from the entropic effect, whereas the destabilization is usually caused by either an energetic or entropic effect. For the Fyn SH3 domain with a two-state folding manner, the influence of nonnative interactions on thermodynamic stability is not significant, while nonnative interactions can weaken the effect of surface tethering on the change in the folding rate. By contrast, for the frustrated protein Im7, depending on where the protein is tethered, the surface tethering can promote or suppress misfolding by modulating specific nonnative contacts, thereby altering the folding rate and folding mechanism. Because surface tethering can change the intrachain diffusivity of unfolding, the kinetic stability cannot be well captured by the thermodynamic stability at some tether points. This study should be helpful in general to understand how surface tethering affects the folding energy landscape of frustrated proteins.
Collapse
Affiliation(s)
- Jiang Du
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hongmei Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yanfang Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Teng Lu
- Computer Network Information Center of the Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Tao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.,Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
3
|
Zheng Y, Qi Y, Tang Z, Tan J, Koel BE, Podkolzin SG. Spectroscopic observation and structure-insensitivity of hydroxyls on gold. Chem Commun (Camb) 2022; 58:4036-4039. [PMID: 35258054 DOI: 10.1039/d2cc00283c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The O-H stretching vibration of surface hydroxyls remained at 3691 cm-1 for gold structures ranging in size from clusters to nanoparticles, to non-flat bulk surfaces. In contrast, this vibration was not observed on flat gold surfaces. Therefore, this vibration can serve as an indicator of the roughness of the gold surface and associated functional properties, such as catalytic activity.
Collapse
Affiliation(s)
- Yiteng Zheng
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | - Yue Qi
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Ziyu Tang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Junzhi Tan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | - Bruce E Koel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | - Simon G Podkolzin
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| |
Collapse
|
4
|
Ortega G, Aguilar MA, Gautam BK, Plaxco KW. The effect of charged residue substitutions on the thermodynamics of protein-surface interactions. Protein Sci 2021; 30:2408-2417. [PMID: 34719069 DOI: 10.1002/pro.4215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
The interactions of proteins with surfaces are important in both biological processes and biotechnologies. In contrast to decades of study regarding the biophysics of proteins in bulk solution, however, our mechanistic understanding of the biophysics of proteins interacting with surfaces remains largely qualitative. In response, we have set to explore quantitatively the thermodynamics of protein-surface interactions. In this work, we explore systematically the role of electrostatics in modulating the interaction between proteins and charged surfaces. In particular, we use electrochemistry to explore the extent to which a macroscopic, hydroxyl-coated surface held at a slightly negative potential affects the folding thermodynamics of surface-attached protein variants with different composition of charged amino acids. Doing so, we find that attachment to the surface generally leads to a net stabilization, presumably due to excluded volume effects that reduce the entropy of the unfolded state. The magnitude of this stabilization, however, is strongly correlated with the charged-residue content of the protein. In particular, we find statistically significant correlations with both the net charge of the protein, with greater negative charge leading to less stabilization by the surface, and with the number of arginines, with more arginines leading to greater stabilization. Such findings refine our understanding of protein-surface interactions, providing in turn a guiding rationale to achieve the functional deposition of proteins on artificial surfaces for implementation in, for example, protein-based biotechnologies.
Collapse
Affiliation(s)
- Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California, USA.,Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Miguel A Aguilar
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Bishal K Gautam
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|