1
|
Okamoto K, Yoo DE, Yoshioka R, Nakasato R, Ashikari Y, Kitayama K, Nagaki A. Sequence-Defined Synthesis Enabled by Fast and Living Anionic Monoaddition of Vinyl Monomers. Angew Chem Int Ed Engl 2025; 64:e202416875. [PMID: 39410667 DOI: 10.1002/anie.202416875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 11/17/2024]
Abstract
The selective monoaddition of polymerizable vinyl monomers like styrenes and methacrylates in a living manner has been achieved for the flash-flow preparation of molecules in a defined sequence with high selectivity. We demonstrated the sequence-defined synthesis of multifunctional molecules using an initiator, functionalized styrenes, diarylethylenes, various methacrylates, and an electrophilic trapping reagent at the living terminus (six-component sequential connection at maximum) without any intermediate purification steps. The anionic living terminus of the vinyl monomers in the flow system described herein is active for polymerization, such that the styrene or methacrylate sequence can be expanded to afford highly dispersed oligomers without affecting other single units, which means that the unequivocal sequences were successfully inserted into the internal or terminal positions. The methodology described herein provides an adaptable method for the construction of new molecular spaces based on unimolecular sequence control and pinpoint functionalization.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Dong-Eun Yoo
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Rikako Yoshioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Ryohei Nakasato
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Kenji Kitayama
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Miyagishi HV, Kimuro Y, Ashikari Y, Nagaki A. Expanding the Scope of C-Glycoside Synthesis from Unstable Organolithium Reagents Using Flow Microreactors. Org Lett 2024; 26:5032-5036. [PMID: 38819107 DOI: 10.1021/acs.orglett.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
C-glycosides are versatile scaffolds for drugs and bioactive compounds. The common organolithium-based synthesis of C-glycosides is limited by low reaction temperatures and a restricted substrate scope. To address these issues, a flow microreactor (FMR) was utilized for rapid mixing and precise temperature control, enabling C-glycoside synthesis at temperatures up to 40 °C and expanding the substrate scope. Continuous C-glycoside synthesis was achieved with a throughput of 21.9 g h-1, demonstrating the industrial potential of FMRs.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Yusuke Kimuro
- Research and Development Center, Juzen Chemical Corporation, 1-10 Kiba-cho, Toyama 930-0806, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Soutome H, Yamashita H, Shimizu Y, Takumi M, Ashikari Y, Nagaki A. Convergent approach for direct cross-coupling enabled by flash irreversible generation of cationic and anionic species. Nat Commun 2024; 15:4873. [PMID: 38871696 DOI: 10.1038/s41467-024-48723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In biosynthesis multiple kinds of reactive intermediates are generated, transported, and reacted across different parts of organisms, enabling highly sophisticated synthetic reactions. Herein we report a convergent synthetic approach, which utilizes dual intermediates of cationic and carbanionic species in a single step, hinted at by the ideal reaction conditions. By reactions of unsaturated precursors, such as enamines, with a superacid in a flow microreactor, cationic species, such as iminium ions, are generated rapidly and irreversibly, and before decomposition, they are transported to react with rapidly and independently generated carbanions, enabling direct C-C bond formation. Taking advantage of the reactivity of these double reactive intermediates, the reaction take place within a few seconds, enabling synthetic reactions which are not applicable in conventional reactions.
Collapse
Affiliation(s)
- Hiroki Soutome
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Yokohama Technical Center, AGC Inc, Yokohama, Kanagawa, Japan
| | - Hiroki Yamashita
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Shimizu
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiro Takumi
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
4
|
Kamio S, Okamoto K, Yamagishi T, Nagaki A. Synthesis of Deuterated Compounds by Flow Chemistry. Chempluschem 2024; 89:e202300744. [PMID: 38450881 DOI: 10.1002/cplu.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Development of the efficient and practical method for the synthesis of deuterated compounds which occupies the broadest area among stable isotopes is one of the most essential issues toward the industrial advance and building a sustainable society. This review describes recent advances in deuteration reactions, where the continuous flow chemistry plays pivotal roles for the successful installation of deuterium atom into diverse organic frameworks, opening new fields of isotope-based synthetic chemistry.
Collapse
Affiliation(s)
- Shintaro Kamio
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 006-8585, Sapporo, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| | - Takehiro Yamagishi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 006-8585, Sapporo, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| |
Collapse
|
5
|
Ashikari Y, Yoshioka R, Yonekura Y, Yoo DE, Okamoto K, Nagaki A. Flowmicro In-Line Analysis-Driven Design of Reactions mediated by Unstable Intermediates: Flash Monitoring Approach. Chemistry 2024:e202303774. [PMID: 38216535 DOI: 10.1002/chem.202303774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
The direct observation of reactive intermediates is an important issue for organic synthesis. However, intermediates with an extreme instability are hard to be monitored by common spectroscopic methods such as FTIR. We have developed synthetic method utilizing flow microreactors, which enables a generation and reactions of unstable intermediates. Herein we report that, based on our flowmicro techniques, we developed an in-line analysis method for reactive intermediates in increments of milliseconds. We demonstrated the direct observation of the living and dead species of the anionic polymerization of alkyl methacrylates. The direct information of the living species enabled the anionic polymerization and copolymerization of oligo(ethylene glycol) methyl ether methacrylates, which is the important but difficult reaction in the conventional method.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Rikako Yoshioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuya Yonekura
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
- TOHO Chemical Industry Co., Ltd., 5-2931 Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Dong-Eun Yoo
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
6
|
Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. External Flash Generation of Carbenoids Enables Monodeuteration of Dihalomethanes. Chemistry 2023; 29:e202301738. [PMID: 37300319 DOI: 10.1002/chem.202301738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, incorporation of one deuterium atom was achieved by H-D exchange of one of the two identical methylene protons in various dihalomethanes (halogen=Cl, Br, and I) through a rapid-mixing microflow reaction of lithium diisopropylamide as a strong base and deuterated methanol as a deuteration reagent. Generation of highly unstable carbenoid intermediate and suppression of its decomposition were successfully controlled under high flow-rate conditions. Monofunctionalization of diiodomethane afforded various building blocks composed of boryl, stannyl, and silyl groups. The monodeuterated diiodomethane, which served as a deuterated C1 source, was subsequently subjected to diverted functionalization methods to afford various products including biologically important molecules bearing isotope labelling at specific positions and homologation products with monodeuteration.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kensuke Muta
- Fundamental Chemical Research Center, Central Glass Co., Ltd., 17-5, Nakadai 2-chome, Kawagoe City, Saitama, 350-1159, Japan
| | - Keita Fukumoto
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Taiyo Nippon Sanso Corp., 10 Okubo, Tsukuba-shi, Ibaraki, 300-2611, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
7
|
Usutani H, Yamamoto K, Hashimoto K. Process Intensification of a Napabucasin Manufacturing Method Utilizing Microflow Chemistry. ACS OMEGA 2023; 8:10373-10382. [PMID: 36969467 PMCID: PMC10034843 DOI: 10.1021/acsomega.2c07997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Microflow chemistry is one of the newest and most efficient technologies used today for the safe and effective production of medicines. In this paper, we show the use of this technology in the development of a manufacturing method for napabucasin, which has potential in the treatment of colorectal and pancreatic cancers. In conventional "batch-type" reactor systems, the generation of side products can be controlled with traditional techniques such as reagent reverse-addition and temperature control. However, there is a limitation to which the yield and purity can be improved by these methods, as both are constrained by the efficiency of heat/mass transfer. Applying microflow chemistry technology alters the parameters of the constraint through the use of precise mixing in a microchannel, which offers increased possibility for improving yields and process intensification of the napabucasin process. Reported herein is a proof-of-concept study for the scale-up production of napabucasin using microflow chemistry techniques for manufacturing at the kilogram scale.
Collapse
|
8
|
Ashikari Y, Guan K, Nagaki A. Flash functional group-tolerant biaryl-synthesis based on integration of lithiation, zincation and negishi coupling in flow. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.964767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We achieved an integration of a lithiation of aryl bromides, a zincation of thus-generated aryllithiums, and a Negishi coupling of the arylzinc with an aryl halide in one flow. Taking advantages of flow microreactors, biaryls bearing a wide range of functional groups, especially biaryls bearing multiple electrophilic-functionalities were synthesized.
Collapse
|
9
|
Zheng Y, Wills M. Asymmetric transfer hydrogenation of boronic acid pinacol ester (Bpin)-containing acetophenones. Org Biomol Chem 2022; 20:3742-3746. [PMID: 35438123 DOI: 10.1039/d2ob00569g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Bpin-containing acetophenone derivatives were reduced by asymmetric transfer hydrogenation (ATH), using Noyori-Ikariya catalysts, with formic acid/triethylamine, to alcohols in high ee when the Bpin is in the para- or meta-position. Substrates containing ortho-Bpin groups were reduced in lower ee, with formation of a cyclic boron-containing group. The products were converted to substituted derivatives using Pd-catalysed coupling reactions. The results represent the first examples of ATH of Bpin-containing ketones.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
10
|
Scattolin T, Simoens A, Stevens CV, Nolan SP. Flow chemistry of main group and transition metal complexes. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Dong G, Chen B, Liu B, Hounjet LJ, Cao Y, Stoyanov SR, Yang M, Zhang B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. WATER RESEARCH 2022; 211:118047. [PMID: 35033742 DOI: 10.1016/j.watres.2022.118047] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The miniaturization of reaction processes by microreactors offers many significant advantages over the use of larger, conventional reactors. Microreactors' interior structures exhibit comparatively higher surface area-to-volume ratios, which reduce reactant diffusion distances, enable faster and more efficient heat and mass transfer, and better control over process conditions. These advantages can be exploited to significantly enhance the performance of advanced oxidation processes (AOPs) commonly used for the removal of water pollutants. This comprehensive review of the rapidly emerging area of environmental microfluidics describes recent advances in the development and application of microreactors to AOPs for water and wastewater treatment. Consideration is given to the hydrodynamic properties, construction materials, fabrication techniques, designs, process features, and upscaling of microreactors used for AOPs. The use of microreactors for various AOP types, including photocatalytic, electrochemical, Fenton, ozonation, and plasma-phase processes, showcases how microfluidic technology enhances mass transfer, improves treatment efficiency, and decreases the consumption of energy and chemicals. Despite significant advancements of microreactor technology, organic pollutant degradation mechanisms that operate during microscale AOPs remain poorly understood. Moreover, limited throughput capacity of microreactor systems significantly restrains their industrial-scale applicability. Since large microreactor-inspired AOP systems are needed to meet the high-throughput requirements of the water treatment sector, scale-up strategies and recommendations are suggested as priority research opportunities. While microstructured reactor technology remains in an early stage of development, this work offers valuable insight for future research and development of AOPs in microreactors for environmental purposes.
Collapse
Affiliation(s)
- Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
12
|
Medina-Mercado I, Porcel S. Biaryl Coupling of Aryldiazonium Salts and Arylboronic Acids Catalysed by Gold. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA gold-catalysed coupling of aryldiazonium salts with arylboronic acids is described. The reactions proceed in satisfactory yields under irradiation with blue LEDs in the presence of KF and a catalytic amount of ascorbic acid. Notably, 4-nitrobenzendiazonium tetrafluoroborate is sufficiently reactive to undergo the coupling with a variety of arylboronic acids in the absence of aryl radical initiators. The coupling is applicable for electron-donating and electron-withdrawing groups present at the para, ortho, and meta positions of both substrates.
Collapse
|
13
|
Ashikari Y, Tamaki T, Takahashi Y, Yao Y, Atobe M, Nagaki A. Investigation of Parameter Control for Electrocatalytic Semihydrogenation in a Proton-Exchange Membrane Reactor Utilizing Bayesian Optimization. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.819752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Owing to its applicability in sustainable engineering, flow electrochemical synthesis in a proton-exchange membrane (PEM) reactor has attracted considerable attention. Because the reactions in PEM reactors are performed under electro-organic and flow-synthetic conditions, a higher number of reaction parameters exist compared to ordinary reactions. Thus, the optimization of such reactions requires significant amounts of energy, time, chemical and human resources. Herein, we show that the optimization of alkyne semihydrogenation in PEM reactors can be facilitated by means of Bayesian optimization, an applied mathematics strategy. Applying the optimized conditions, we also demonstrate the generation of a deuterated Z-alkene.
Collapse
|
14
|
Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Takumi M, Sakaue H, Nagaki A. Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2021; 61:e202116177. [PMID: 34931424 DOI: 10.1002/anie.202116177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
A novel flow electrochemical reactor that accomplishes electrolysis within a few seconds in a single passage was developed. By using the flow reactor system, the flash electrochemical generation of short-lived carbocations, including oxocarbenium ions, N -acyliminium ions, glycosyl cations, and Ferrier cations was achieved within a few seconds, enabling the subsequent reaction with nucleophiles before their decomposition. Moreover, continuous operation based on the present system enabled the rapid synthesis of pharmaceutical precursors on demand.
Collapse
Affiliation(s)
- Masahiro Takumi
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Hodaka Sakaue
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Aiichiro Nagaki
- Kyoto University, Graduate School of Engineering, Department of Synthetic Chemistry & Biological Chemistry, Katsura, 615-8510, Kyoto, JAPAN
| |
Collapse
|
16
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|
17
|
Wong JYF, Thomson CG, Vilela F, Barker G. Flash chemistry enables high productivity metalation-substitution of 5-alkyltetrazoles. Chem Sci 2021; 12:13413-13424. [PMID: 34777760 PMCID: PMC8528014 DOI: 10.1039/d1sc04176b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tetrazoles play a prominent role in medicinal chemistry due to their role as carboxylate bioisosteres but have largely been overlooked as C-H functionalisation substrates. We herein report the development of a high-yielding and general procedure for the heterobenzylic C-H functionalisation of 5-alkyltetrazoles in up to 97% yield under batch conditions using a metalation/electrophilic trapping strategy. Through the use of thermal imaging to identify potentially unsafe exotherms, a continuous flow procedure using a flash chemistry strategy has also been developed, allowing products to be accessed in up to 95% yield. This enabled an extremely high productivity rate of 141 g h-1 to be achieved on an entry-level flow system.
Collapse
Affiliation(s)
- Jeff Y F Wong
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Christopher G Thomson
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Filipe Vilela
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| |
Collapse
|
18
|
Telescoped lithiation, C-arylation and methoxylation in flow-batch hybrid toward the synthesis of canagliflozin. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021; 60:14296-14301. [PMID: 33826212 PMCID: PMC8252725 DOI: 10.1002/anie.202103031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alexander J. Wiegand
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Carla A. Hoefer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | | | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
20
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2‐Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Na‐Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexander J. Wiegand
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Carla A. Hoefer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Rajasekar Reddy Annapureddy
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
21
|
Tamaki T, Nagaki A. Reaction Selectivity Control in Flash Synthetic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| |
Collapse
|
22
|
Nagaki A, Ashikari Y, Takumi M, Tamaki T. Flash Chemistry Makes Impossible Organolithium Chemistry Possible. CHEM LETT 2021. [DOI: 10.1246/cl.200837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Takumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|