1
|
Devkar HU, Juyal K, Thakur NL, Kaur P, Parmar K, Pullapanthula R, Narayanan S. Antimicrobial Potential of Marine Sponge-Associated Bacillus velezensis and Stutzerimonas stutzeri from the Indian Coast: A Genome Mining and Metabolite Profiling Approach. Curr Microbiol 2025; 82:280. [PMID: 40327113 DOI: 10.1007/s00284-025-04262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Antimicrobial resistance (AMR) is one of the leading health crises worldwide that demands new antimicrobials to enter the clinical pipeline. Marine sponges are a rich source of promising bioactive compounds. Due to their sessile nature and filter-feeding lifestyle, sponges are prone to attack by competitors, predators, and pathogens. To combat these threats, they produce a diverse array of bioactive compounds. Notably, the microbial communities residing within the sponges make many of these beneficial compounds. Twenty-one bacterial isolates from various marine sponges from the Indian coast were selected for this study. The bacterial isolates were fermented to obtain crude extracts, which were then screened against critical bacterial pathogens. Based on the MIC (minimum inhibitory concentration) results, two isolates, Bacillus velezensis NIO_002 and Stutzerimonas stutzeri NIO_003 showing good activity, were characterized by morphological, biochemical, and molecular methods. Genome mining predicted multiple antibiotic biosynthetic gene clusters, most of which showed a high degree of similarity to known gene clusters, and some with low or no similarity which may be indicative of novel gene clusters. LC-MS (liquid chromatography-mass spectrometry) data revealed the putative presence of certain antibacterial compounds previously reported in the literature. To our knowledge, this is the first study to report the antimicrobial activity of marine sponge-associated Bacillus velezensis and Stutzerimonas stutzeri strains characterized by whole genome sequencing, thereby indicating the novelty of our strains. This study emphasizes the potential of our bacterial isolates for further development as a source of promising antibiotics to address the escalating challenge of drug-resistant pathogens.
Collapse
Affiliation(s)
- Heena U Devkar
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kartik Juyal
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Narsinh L Thakur
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Bangalore, 561203, Karnataka, India
| | - Keyur Parmar
- National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | | | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Bangalore, 561203, Karnataka, India
| |
Collapse
|
2
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Otur Ç, Okay S, Konuksever Ö, Duyar O, Kaya Y, Kurt-Kızıldoğan A. Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19. World J Microbiol Biotechnol 2024; 40:347. [PMID: 39397126 DOI: 10.1007/s11274-024-04153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, 06230, Türkiye.
| | - Ömer Konuksever
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Oğuzhan Duyar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Yılmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye.
| |
Collapse
|
4
|
Ghosh AK, Gulliver JP. Total Syntheses of Strasseriolide A and Strasseriolide B, Potent Antimalarial Agents. J Org Chem 2024; 89:12331-12340. [PMID: 39120520 DOI: 10.1021/acs.joc.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We describe the convergent total syntheses of strasseriolides A and B, which are potent antimalarial agents recently isolated from an unnamed plant found in a remote region of New Zealand. Both natural products exhibited potent activity against malaria parasite, Plasmodium falciparum. The synthesis involved asymmetric syn-aldol, asymmetric alkylation, and asymmetric Johnson-Claisen rearrangement to set six of the seven chiral centers of strasseriolide B. The synthesis also highlights the formation of an 18-membered macrolactone from a diacid by using a Yamaguchi macrolactonization protocol. Other key transformations involved Grubbs' cross-metathesis, selective 1,4-reduction, hydrostannylation reaction, and NHK coupling reaction. The convergent synthesis of strasseriolide A required 27 total synthetic steps and 16 longest linear steps from known readily available intermediates.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John P Gulliver
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Burcham ZM. Comparative genomic analysis of an emerging Pseudomonadaceae member, Thiopseudomonas alkaliphila. Microbiol Spectr 2024; 12:e0415723. [PMID: 38934605 PMCID: PMC11302033 DOI: 10.1128/spectrum.04157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Thiopseudomonas alkaliphila, an organism recently classified within the Pseudomonadaceae family, has been detected in diverse sources such as human tissues, animal guts, industrial fermenters, and decomposition environments, suggesting a diverse ecological role. However, a large knowledge gap exists in how T. alkaliphila functions. In this comparative genomic analysis, adaptations indicative of habitat specificity among strains and genomic similarity to known opportunistic pathogens are revealed. Genomic investigation reveals a core metabolic utilization of multiple oxidative and non-oxidative catabolic pathways, suggesting adaptability to varied environments and carbon sources. The genomic repertoire of T. alkaliphila includes secondary metabolites, such as antimicrobials and siderophores, indicative of its involvement in microbial competition and resource acquisition. Additionally, the presence of transposases, prophages, plasmids, and Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems in T. alkaliphila genomes suggests mechanisms for horizontal gene transfer and defense against viral predation. This comprehensive genomic analysis expands our understanding on the ecological functions, community interactions, and potential virulence of T. alkaliphila, while emphasizing its adaptability and diverse capabilities across environmental and host-associated ecosystems.IMPORTANCEAs the microbial world continues to be explored, new organisms will emerge with beneficial and/or pathogenetic impact. Thiopseudomonas alkaliphila is a species originally isolated from clinical human tissue and fluid samples but has not been attributed to disease. Since its classification, T. alkaliphila has been found in animal guts, animal waste, decomposing remains, and biogas fermentation reactors. This is the first study to provide an in-depth view of the metabolic potential of publicly available genomes belonging to this species through a comparative genomics and draft pangenome calculation approach. It was found that T. alkaliphila is metabolically versatile and likely adapts to diverse energy sources and environments, which may make it useful for bioremediation and in industrial settings. A range of virulence factors and antibiotic resistances were also detected, suggesting T. alkaliphila may operate as an undescribed opportunistic pathogen.
Collapse
Affiliation(s)
- Zachary M. Burcham
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Liao K, Wu J, Wang C, Li JZ, Wei HL. Pseudomonas beijingensis sp. nov., a novel species widely colonizing plant rhizosphere. Int J Syst Evol Microbiol 2024; 74:006473. [PMID: 39058535 PMCID: PMC11281800 DOI: 10.1099/ijsem.0.006473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
A polyphasic taxonomic approach was used to characterize the three bacterial strains (FP830T, FP2034, and FP2262) isolated from the rhizosphere soil of rice, corn, and highland barley in Beijing, Heilongjiang, and Tibet, respectively, in PR China. These strains were Gram-negative, rod-shaped, and have one or two polar flagella. They exhibited optimal growth at 28 °C and pH 7.0 in the presence of 1 % (w/v) NaCl and showed fluorescence under ultraviolet light when cultivated on King's B plates. The FP830T genome size is 6.4 Mbp with a G+C content of 61.0 mol%. FP830T has the potential to promote plant growth by producing various metabolites such as fengycin, pyoverdin, indole-3-acetic acid, and the volatile substance 2,3-butanediol. Phylogenetic analysis indicated that three isolates formed an independent branch, which most closely related to type strains Pseudomonas thivervalensis DSM 13194T and Pseudomonas zanjanensis SWRI12T. The values of average nucleotide identity and digital DNA-DNA hybridization between three isolates and closest relatives were not higher than 93.7 and 52.3 %, respectively. The dominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The predominant respiratory quinone was ubiquinone (Q-9). Based on polyphasic taxonomic analysis, it was concluded that strains FP830T, FP2034, and FP2262 represented a novel species within the genus Pseudomonas, and Pseudomonas beijingensis sp. nov. was proposed for the name of novel species. The type strain is FP830T (=ACCC 62448T=JCM 35689T).
Collapse
Affiliation(s)
- Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jingyi Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Can Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jun-Zhou Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
7
|
Hou J, Liao K, Zhang YJ, Li JZ, Wei HL. Phenotypic and Genomic Characterization of Pseudomonas wuhanensis sp. nov., a Novel Species with Promising Features as a Potential Plant Growth-Promoting and Biocontrol Agent. Microorganisms 2024; 12:944. [PMID: 38792773 PMCID: PMC11124405 DOI: 10.3390/microorganisms12050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Plant growth-promoting rhizobacterial strain FP607T was isolated from the rhizosphere of beets in Wuhan, China. Strain FP607T exhibited significant antagonism toward several phytopathogenic bacteria, indicating that FP607T may produce antimicrobial metabolites and has a stronger biocontrol efficacy against plant pathogens. Growth-promoting tests showed that FP607T produced indole-3-acetic acid (IAA), NH3, and ferritin. The genome sequence of strain FP607T was 6,590,972 bp long with 59.0% G + C content. The optimum temperature range was 25-30 °C, and the optimum pH was 7. The cells of strain FP607T were Gram-negative, short, and rod-shaped, with polar flagella. The colonies on the King's B (KB) agar plates were light yellow, smooth, and circular, with regular edges. A phylogenetic analysis of the 16S rRNA sequence and a multilocus sequence analysis (MLSA) showed that strain FP607T was most closely related to the type of strain Pseudomonas farris SWRI79T. Based on a polyphasic taxonomic approach, strain FP607T was identified as a novel species within the genus Pseudomonas, for which the name Pseudomonas wuhanensis sp. nov. was proposed. The type of strain used was FP607T (JCM 35688, CGMCC 27743, and ACCC 62446).
Collapse
Affiliation(s)
- Jiawei Hou
- School of Life Science, Shanxi University, Taiyuan 030006, China; (J.H.); (Y.-J.Z.)
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (J.H.); (Y.-J.Z.)
| | - Jun-Zhou Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
8
|
Liao K, Li Q, Li JZ, Wei HL. Pseudomonas hefeiensis sp. nov., isolated from the rhizosphere of multiple cash crops in China. Int J Syst Evol Microbiol 2024; 74:006303. [PMID: 38536209 PMCID: PMC10995727 DOI: 10.1099/ijsem.0.006303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Three bacterial strains, FP250T, FP821, and FP53, were isolated from the rhizosphere soil of oilseed rape, licorice, and habanero pepper in Anhui Province, Xinjiang Uygur Autonomous Region, and Jiangsu Province, PR China, respectively. All strains were shown to grow at 4-37 °C and pH 6.0-9.0, and in the presence of 0-4.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences or housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) and phylogenomic analysis showed that strains FP250T, FP821, and FP53 belong to the genus Pseudomonas, and are closely related to Pseudomonas kilonensis DSM 13647T, Pseudomonas brassicacearum JCM 11938T, Pseudomonas viciae 11K1T, and Pseudomonas thivervalensis DSM 13194T. The DNA G+C content of strain FP205T was 59.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values of strain FP205T with the most closely related strain were 93.2 % and 51.4 %, respectively, which is well below the threshold for species differentiation. Strain FP205T contained summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids, and diphosphatidylglycerol along with phosphatidylethanolamine and aminophospholipid as major polar lipids. The predominant isoprenoid quinone was ubiquinone-9. Based on these phenotypic, phylogenetic, and chemotaxonomic results, strain FP205T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas hefeiensis sp. nov. is proposed. The type strain is FP205T (=ACCC 62447T=JCM 35687T).
Collapse
Affiliation(s)
- Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- College of Life Science and Technology of Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qiang Li
- Shandong Tudacu Fertilizer Co. Ltd, Jining 272000, PR China
| | - Jun-Zhou Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
9
|
Liao K, Liu J, Gu YL, Wang C, Wei HL. Pseudomonas cucumis sp. nov., isolated from the rhizosphere of crop plants. Int J Syst Evol Microbiol 2023; 73. [PMID: 38117210 DOI: 10.1099/ijsem.0.006208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Two bacterial strains, FP1935T and FP1962, were isolated from the rhizosphere soil of cucumber and Chieh-qua plants, respectively, in Jilin Province, PR China. These strains were Gram-stain-negative, aerobic, rod-shaped and motile with one or two polar flagella. Analysis of the 16S rRNA gene sequences revealed that they represented members of the genus Pseudomonas, with the highest similarity to Pseudomonas silesiensis A3T (99.45 %), Pseudomonas frederiksbergensis JAJ28T (99.45 %), Pseudomonas mandelii NBRC 103147T (99.38 %), Pseudomonas piscium P50T (99.27 %) and Pseudomonas meliae CFBP 3225T (99.18 %). The DNA G+C contents of FP1935T and FP1962 were 58.99 mol% and 58.98 mol%, respectively. The results of in silico genome-based analyses indicated that these strains were distinct from other species in the genus Pseudomonas, as the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the recommended thresholds of 95 % (ANI) and 70 % (dDDH) for prokaryotic species delineation, with no values exceeding 94.1 and 55.8 %, respectively, compared with any other related species. The results of phenotypic and chemotaxonomic tests confirmed their differentiation from their closest relatives. The fatty acid profiles of both strains mainly consisted of summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C12 : 0 and C16 : 0. The predominant respiratory quinone was Q-9. Polar lipids include phosphatidylethanolamine, unidentified aminophospholipids, unidentified lipids and an unidentified phospholipid. On the basis of these phenotypic and genotypic results, we propose the name Pseudomonas cucumis sp. nov. for these novel strains. The type strain is FP1935T (=ACCC 62445T=JCM 35690T).
Collapse
Affiliation(s)
- Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- College of Life Science and Technology of Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianying Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yi-Lin Gu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Can Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
10
|
Mushtaq A, Zahoor AF. Mukaiyama aldol reaction: an effective asymmetric approach to access chiral natural products and their derivatives/analogues. RSC Adv 2023; 13:32975-33027. [PMID: 38025859 PMCID: PMC10631541 DOI: 10.1039/d3ra05058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The Mukaiyama aldol reaction is generally a Lewis-acid catalyzed cross-aldol reaction between an aldehyde or ketone and silyl enol ether. It was first described by Mukaiyama in 1973, almost 5 decades ago, to achieve the enantioselective synthesis of β-hydroxy carbonyl compounds in high percentage yields. Mukaiyama aldol adducts play a pivotal role in the synthesis of various naturally occurring and medicinally important organic compounds such as polyketides, alkaloids, macrolides, etc. This review highlights the significance of the Mukaiyama aldol reaction towards the asymmetric synthesis of a wide range of biologically active natural products reported recently (since 2020).
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| |
Collapse
|
11
|
Friend or Foe: Whole-Genome Sequence of Pseudomonas aeruginosa TG523, Isolated from the Gut of a Healthy Nile Tilapia (Oreochromis niloticus). Microbiol Resour Announc 2023; 12:e0113322. [PMID: 36598220 PMCID: PMC9872575 DOI: 10.1128/mra.01133-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Here, we present the genomic features of Pseudomonas aeruginosa TG523, which was isolated from the gut of a healthy Nile tilapia (Oreochromis niloticus). With a genome size of 6,381,902 bp with 5,931 open reading frames, the genome harbored genes predicted to have antibacterial activity and those which are implicated in virulence.
Collapse
|
12
|
Nagamalla S, Mague JT, Sathyamoorthi S. Progress towards the syntheses of Bactobolin A and C4- epi-Bactobolin A using a sulfamate-tethered aza-Wacker cyclization strategy. Tetrahedron 2022; 128:133112. [PMID: 37719878 PMCID: PMC10503945 DOI: 10.1016/j.tet.2022.133112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a progress report towards Bactobolin A and C4-epi-Bactobolin A. Sulfamate-tethered aza-Wacker cyclization followed by a Tsuji-Wacker ketone synthesis furnishes a key tricyclic intermediate which we hypothesize can be elaborated into C4-epi-Bactobolin A. Epimerization of one of the stereocenters of this compound furnishes an intermediate which we hypothesize can be elaborated into Bactobolin A.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- University of Kansas, Department of Medicinal Chemistry, Lawrence, KS, 66047, USA
| | - Joel T. Mague
- Tulane University, Department of Chemistry, New Orleans, LA, 70118, USA
| | - Shyam Sathyamoorthi
- University of Kansas, Department of Medicinal Chemistry, Lawrence, KS, 66047, USA
| |
Collapse
|
13
|
Abstract
Natural products are constructed by organisms in impressive ways through various highly selective enzyme-catalyzed chemical reactions. Over the past century, there has been considerable interest in understanding and emulating the underlying biosynthetic logic for the target molecule. The successful implementation of a biomimetic strategy usually has some uniquely valuable benefits over other abiotic routes in total synthesis by (1) corroborating the chemical feasibility of a given biogenetic hypothesis and further unraveling some insightful implications for future biosynthetic studies and (2) providing remarkably more concise access to not only the original synthetic target but also diversified biogenetically related congeners, which may result in either the structural reassignment of previously disclosed natural products or the anticipation of undiscovered natural products. However, for the devised essential biomimetic transformation, fine-tuning the optimization of the substrates and the reaction conditions can sometimes be painstakingly challenging. Turning to nature for inspiration can provide additional impetus for methodological innovations.Previously used as oral veterinary drugs, lankacidins have potential as next-generation antibiotics to tackle the problems caused by multidrug-resistant bacteria with novel modes of action (MoAs). The hypersensitive and densely functionalized lactonic core within this family of macrocyclic polyketides poses a formidable challenge for chemical total synthesis and derivatization. In this account, we summarized the evolution of a unified biomimetic approach toward 10 lankacidin antibiotics and their linear biosynthetic intermediates in the longest linear 7-12 steps from readily available starting materials. Our endeavor commenced with an intermolecular bioinspired amido sulfone-based Mannich reaction approach to assemble 2 advanced fragments under mild biphasic organocatalytic conditions. It successfully gave rise to stereodivergent access to 4 C2/C18-isomeric lankacyclinols but failed to efficiently deliver lactone-containing congeners through Stille macrocyclization. Facilitated by the thermolysis chemistry of N,O-acetal to generate the requisite N-acyl-1-azahexatriene species, we realized the projected Mannich macrocyclization and eight macrocyclic lankacidins can be produced by orchestrated desilylative manipulations. In this process, we were able to perform structural reassignments of isolankacidinol (7 to 50) and isolankacyclinol (104 to 83) and, for the first time, elucidate the natural occurrence of 2,18-bis-epi-lankacyclinol (84). Moreover, the inability of the current biomimetic route to cofurnish the reported structure of 2,18-seco-lankacidinol A (15) triggered a proposed structural revision that is rooted in reconsidered biogenesis and was confirmed by a divergent synthesis that enabled us to identify the correct isomer (116). Finally, the modular, diversity-oriented design also provided streamlined entries to acyclic 2,18-seco-lankacidinol B (120) and the biosynthetic intermediate LC-KA05 (17) together with its C7-O-deacetylated congeners in all C4/C5-stereochemical variations (18, 127-129), culminating in a need for structural revision to the six-membered lactonic segment in LC-KA05-2. The selection and execution of biomimetic strategies in lankacidin total synthesis give rise to all the previously mentioned advantages at the current stage. The modular-based, late-stage diversified complex construction offers an exceptionally high level of synthetic flexibility for future synthetic forays toward newly isolated or chemically modified congeners within the lankacidin family.
Collapse
Affiliation(s)
- Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
14
|
Zheng K, Hong R. Total synthesis of LC-KA05, the proposed structure of LC-KA05-2, and 2,18-seco-lankacidinol B: A quest to revisit lankacidin biosynthesis. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Cai L, Seiple IB, Li Q. Modular Chemical Synthesis of Streptogramin and Lankacidin Antibiotics. Acc Chem Res 2021; 54:1891-1908. [PMID: 33792282 DOI: 10.1021/acs.accounts.0c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continued, rapid development of antimicrobial resistance has become worldwide health crisis and a burden on the global economy. Decisive and comprehensive action is required to slow down the spread of antibiotic resistance, including increased investment in antibiotic discovery, sustainable policies that provide returns on investment for newly launched antibiotics, and public education to reduce the overusage of antibiotics, especially in livestock and agriculture. Without significant changes in the current antibiotic pipeline, we are in danger of entering a post-antibiotic era.In this Account, we summarize our recent efforts to develop next-generation streptogramin and lankacidin antibiotics that overcome bacterial resistance by means of modular chemical synthesis. First, we describe our highly modular, scalable route to four natural group A streptogramins antibiotics in 6-8 steps from seven simple chemical building blocks. We next describe the application of this route to the synthesis of a novel library of streptogramin antibiotics informed by in vitro and in vivo biological evaluation and high-resolution cryo-electron microscopy. One lead compound showed excellent inhibitory activity in vitro and in vivo against a longstanding streptogramin-resistance mechanism, virginiamycin acetyltransferase. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.Second, we recount our modular approaches toward lankacidin antibiotics. Lankacidins are a group of polyketide natural products with activity against several strains of Gram-positive bacteria but have not been deployed as therapeutics due to their chemical instability. We describe a route to several diastereomers of 2,18-seco-lankacidinol B in a linear sequence of ≤8 steps from simple building blocks, resulting in a revision of the C4 stereochemistry. We next detail our modular synthesis of several diastereoisomers of iso-lankacidinol that resulted in the structural reassignment of this natural product. These structural revisions raise interesting questions about the biosynthetic origin of lankacidins, all of which possessed uniform stereochemistry prior to these findings. Finally, we summarize the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro, providing important insights into structure-function relationships for the class.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, Jiangsu China
| | - Ian B. Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Qi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
16
|
Zheng K, Shen D, Zhang B, Hong R. Stereodivergent Synthesis of Lankacyclinol and Its C2/C18-Congeners Enabled by a Bioinspired Mannich Reaction. J Org Chem 2020; 86:10991-11005. [DOI: 10.1021/acs.joc.0c02443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Defeng Shen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Bingbing Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People’s Republic of China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
17
|
Zheng K, Shen D, Zhang B, Hong R. Landscape of Lankacidin Biomimetic Synthesis: Structural Revisions and Biogenetic Implications. J Org Chem 2020; 85:13818-13836. [PMID: 32985194 DOI: 10.1021/acs.joc.0c01930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this report, a unified biomimetic approach to all known macrocyclic lankacidins is presented. By taking advantage of the thermolysis of N,O-acetal to generate the requisite N-acyl-1-azahexatriene species, we eventually realized the biomimetic Mannich macrocyclization, from which all of the macrocyclic lankacidins can be conquered by orchestrated desilylation. The reassignments of the reported structures of isolankacidinol (7 to 10) and the discovery of a recently isolated "lankacyclinol" found to be in fact 2,18-bis-epi-lankacyclinol (72) unraveled the previously underappreciated chemical diversity exhibited by the enzymatic macrocyclization. In addition, the facile elimination/decarboxylation/protonation process for the depletion of C1 under basic conditions resembling a physiological environment may implicate more undiscovered natural products with variable C2/C18 stereochemistries (i.e., 62, 73, and 75). The notable aspect provided by a biomimetic strategy is significantly reducing the step count compared with the two previous entries to macrocyclic lankacidins.
Collapse
Affiliation(s)
- Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Defeng Shen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bingbing Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|