1
|
Routh K, Kar A, Pradeep CP. Modulating the catalytic properties of decavanadate hybrids using a mixed counterion strategy for selective oxidation of thiophene-based sulfides and detoxification of mustard gas simulant. Dalton Trans 2025; 54:6195-6210. [PMID: 40125597 DOI: 10.1039/d5dt00102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Selective oxidation of sulfides to sulfoxides, especially thiophene-based sulfides, is a challenging task. Herein, we report a mixed counterion strategy in polyoxometalate (POM) chemistry to tune the selectivity of sulfoxidation reaction catalyzed by decavanadate cluster-based hybrids using H2O2 as the oxidant under ambient conditions. By employing two different aryl sulfonium counterions (ASCIs) bearing different organic functional groups (phenol/aldehyde/salicylaldehyde/2,6-diformyl phenol) in a 1 : 1 synthetic feed ratio, we have generated a series of decavanadate-based hybrids HY1-HY6. Different functional groups on the periphery of hybrids HY1-HY6 helped control the efficiency and selectivity of the sulfoxidation reaction by fine-tuning the electronic and supramolecular effects of these hybrids as catalysts. Further, these hybrids were also applied as catalysts for detoxifying 2-chloroethyl ethyl sulfide (CEES), a mustard gas simulant. The hybrid HY5, with a structural formula (DFHPDS)2(FPDS)2[H2V10O28](H2O)3 (DFHPDS = (3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium, and FPDS = (4-formylphenyl)dimethylsulfonium) showed the best catalytic properties in the series, with up to 99% conversion and 85% and 99% selectivity towards sulfoxide in the case of dibenzothiophene (DBT) and CEES, respectively. This study's findings open new avenues for tuning the catalytic properties of POM-based hybrids toward selective organic transformation reactions by using a mixed counterion strategy.
Collapse
Affiliation(s)
- Kousik Routh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand - 175005, Himachal Pradesh, India.
| | - Aranya Kar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand - 175005, Himachal Pradesh, India.
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand - 175005, Himachal Pradesh, India.
| |
Collapse
|
2
|
Zheng Z, Duan ZC, Hu XP. Tropos Diphenylmethane-Based Phosphine-Phosphoramidite Ligands: Design, Synthesis, and Application in Catalytic Asymmetric Hydrogenation. Org Lett 2025; 27:651-656. [PMID: 39781661 DOI: 10.1021/acs.orglett.4c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A series of chiral hybrid diphosphorus ligands incorporating a conformationally flexible tropos diphenylmethane-based phosphoramidite unit have been developed and evaluated in the Rh-catalyzed asymmetric hydrogenation of 2-(1-arylvinyl)anilides and α-enamides, leading to up to >99% yield and 99% enantiomeric excess. Preliminary results from comparative studies showcased the extraordinary catalytic performance of these chiral tropos phosphine-phosphoramidite ligands, with a competency essentially superior to those of well-established ligands with a regular rigid backbone.
Collapse
Affiliation(s)
- Zhong Zheng
- School of Chemical and Enviromental Engineering, Hubei Minzu University, Enshi 445000, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zheng-Chao Duan
- School of Chemical and Enviromental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
3
|
Li S, Zhang D, Purushothaman A, Lv H, Shilpa S, Sunoj RB, Li X, Zhang X. Chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes: access to chiral quaternary cyclopropanes. Nat Commun 2024; 15:6377. [PMID: 39075045 PMCID: PMC11286865 DOI: 10.1038/s41467-024-50689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Catalytic asymmetric synthesis of polysubstituted chiral cyclopropane presents a significant challenge in organic synthesis due to the difficulty in enantioselective control. Here we report a rhodium-catalyzed highly chemo-, regio- and enantioselective hydroformylation of trisubstituted cyclopropenes affording chiral quaternary cyclopropanes. Importantly, the easy made sterically bulky ligand L1 can effectively suppress hydrogenation and decomposition reactions and give quaternary cyclopropanes with high regio- and enantioselectivities for both aryl and alkyl functionalized substrates. Control experiments and computational studies reveal the sterically hindered well-defined chiral pocket instead of the substrates bearing electron-withdrawing diester groups is important for controlling the enantioselectivity and regioselectivity. Scale-up reaction and follow-up diverse transformations are also presented. Density Functional theory (DFT) computations suggest that the regio- and enantio-selectivities originate from the cyclopropene insertion to the Rh-H bond. The high regioselectivity is found to benefit from the presence of more efficient noncovalent interactions (NCIs) manifesting in the form of C-H···Cl, C-H···N, and l.p(Cl)···π contacts.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Dequan Zhang
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Aiswarya Purushothaman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | - Shilpa Shilpa
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Xiuxiu Li
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.
| | - Xumu Zhang
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, University of Science and Technology, Southern, 1088 Xueyuan Road, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Garhwal S, Dong Y, Mai BK, Liu P, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Formal Hydroformylation of Vinyl Arenes. J Am Chem Soc 2024; 146:13733-13740. [PMID: 38723265 PMCID: PMC11439487 DOI: 10.1021/jacs.4c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A highly enantioselective formal hydroformylation of vinyl arenes enabled by copper hydride (CuH) catalysis is reported. Key to the success of the method was the use of the mild Lewis acid zinc triflate to promote the formation of oxocarbenium electrophiles through the activation of diethoxymethyl acetate. Using the newly developed protocol, a broad range of vinyl arene substrates underwent efficient hydroacetalization reactions to provide access to highly enantioenriched α-aryl acetal products in good yields with exclusively branched regioselectivity. The acetal products could be converted to the corresponding aldehydes, alcohols, and amines with full preservation of the enantiomeric purity. Density functional theory studies support that the key C-C bond-forming event between the alkyl copper intermediate and the oxocarbenium electrophile takes place with inversion of configuration of the Cu-C bond in a backside SE2-type mechanism.
Collapse
Affiliation(s)
- Subhash Garhwal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuyang Dong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Jin Y, Ramadoss B, Asako S, Ilies L. Noncovalent interaction with a spirobipyridine ligand enables efficient iridium-catalyzed C-H activation. Nat Commun 2024; 15:2886. [PMID: 38632241 PMCID: PMC11024094 DOI: 10.1038/s41467-024-46893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Exploitation of noncovalent interactions for recognition of an organic substrate has received much attention for the design of metal catalysts in organic synthesis. The CH-π interaction is especially of interest for molecular recognition because both the C-H bonds and the π electrons are fundamental properties of organic molecules. However, because of their weak nature, these interactions have been less utilized for the control of organic reactions. We show here that the CH-π interaction can be used to kinetically accelerate catalytic C-H activation of arenes by directly recognizing the π-electrons of the arene substrates with a spirobipyridine ligand. Computation and a ligand kinetic isotope effect study provide evidence for the CH-π interaction between the ligand backbone and the arene substrate. The rational exploitation of weak noncovalent interactions between the ligand and the substrate will open new avenues for ligand design in catalysis.
Collapse
Affiliation(s)
- Yushu Jin
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| |
Collapse
|
6
|
Linnebank PR, Kluwer AM, Reek JNH. Substrate scope driven optimization of an encapsulated hydroformylation catalyst. Catal Sci Technol 2024; 14:1837-1847. [PMID: 38571547 PMCID: PMC10987017 DOI: 10.1039/d4cy00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Caged complexes can provide impressive selective catalysts. Due to the complex shapes of such caged catalysts, however, the level of selectivity control of a single substrate cannot be extrapolated to other substrates. Herein, the substrate scope using 41 terminal alkene substrates is investigated in the hydroformylation reaction with an encapsulated rhodium catalyst [Rh(H)(CO)3(P(mPy3(ZnTPP)3))] (CAT1). For all substrates, the amount of branched products formed was higher with CAT1 than with the unencapsulated reference catalyst [Rh(H)(CO)2(P(mPy3))2] (CAT2) (linear/branched ratio between 2.14 and 0.12 for CAT1 and linear/branched ratio between 6.22 and 0.59 for CAT2). Interestingly, the level of cage induced selectivity depends strongly on the substrate structure that is converted. Analysis of the substrate scope combined with DFT calculations suggests that noncovalent interactions between the substrate moieties and cage walls play a key role in controlling the regioselectivity. Consequently, these supramolecular interactions were further optimized by replacing the ZnTPP building block with a zinc porphyrin analog that contained OiPr substituents on the meta position of the aryl rings. The resulting caged catalyst, CAT4, converted substrates with even higher branched selectivity.
Collapse
Affiliation(s)
- Pim R Linnebank
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- InCatT B.V Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
7
|
Liang P, Yang H, Wang Y. Elucidating the mechanism and origin of stereoselectivity in the activation/transformation of an acetic ester catalyzed by an N-heterocyclic carbene. Phys Chem Chem Phys 2024; 26:4320-4328. [PMID: 38234281 DOI: 10.1039/d3cp05581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The activation of an ester by N-heterocyclic carbene (NHC) organocatalysis is an efficient and important approach for generating an NHC-bound enolate intermediate, an important active intermediate in the transformation of carbonyl compounds. Herein, we perform a theoretical study on the NHC-catalyzed activation and transformation reaction of an acetic ester in which the NHC-bound enolate intermediate is a key intermediate. Multiple activation and transformation pathways are proposed and analyzed to identify an energetically favorable pathway. The use of different substrates for the reaction is considered. When a chalcone substrate is used, [4+2] cycloaddition between the enolate intermediate and the chalcone is identified to be both the rate- and stereoselectivity-determining step for the reaction, with the R-configured product being generated as the major isomer. Noncovalent interaction (NCI) and atoms-in-molecules (AIM) analyses are performed to identify the origin of the stereoselectivity of the reaction, and a local reactivity analysis is conducted to explore substrate and catalyst effects on the reaction.
Collapse
Affiliation(s)
- Pingxin Liang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| | - Haoran Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| |
Collapse
|
8
|
Mendieta A, Álvarez-Idaboy JR, Ugalde-Saldívar VM, Flores-Álamo M, Armenta A, Ferrer-Sueta G, Gasque L. Role of Imidazole and Chelate Ring Size in Copper Oxidation Catalysts: An Experimental and Theoretical Study. Inorg Chem 2023; 62:16677-16690. [PMID: 37792328 DOI: 10.1021/acs.inorgchem.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, the structural, solution, electrochemical, and catalytic properties of the complexes with ligands derived from imidazole and pyridines were studied. A comparative study of five bioinspired copper catalysts with or without coordinated imidazole and with different chelate ring sizes is presented. Catalytic efficiency on the oxidation of 3,5-di-tert-butylcatechol (DTBC) and ortho-aminophenol (OAP) in a MeOH/H2O medium was assessed by means of the Michaelis-Menten model. Catalysts comprising imidazole-containing ligands and/or a six-membered chelate ring proved to be more efficient in both oxidation reactions. Determination of stability constants and electrochemical parameters of the copper complexes supported the explanation of the catalytic behavior. A catalytic cycle similar for both reactions has been proposed. The results of density functional theory (DFT) free energy calculations for all five complexes and both catalytic reactions agree with the experimental results.
Collapse
Affiliation(s)
- Alan Mendieta
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Juan Raúl Álvarez-Idaboy
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Víctor M Ugalde-Saldívar
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Marcos Flores-Álamo
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Alfonso Armenta
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, UY 11400, Uruguay
| | - Laura Gasque
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| |
Collapse
|
9
|
Yao C, Xiong W, Sun H, Li C, Wu Y, Zhang Z, Hu X. Iridium-phosphine ligand complexes as an alternative to rhodium-based catalysts for the efficient hydroformylation of propene. Org Biomol Chem 2023; 21:6410-6418. [PMID: 37505192 DOI: 10.1039/d3ob00935a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Expensive rhodium (Rh)-based catalysts have been widely used for the hydroformylation of propene. To find a cheaper and effective alternative to these Rh-based catalysts, herein, a series of phosphine ligands were used to coordinate with iridium, and their catalytic reactivities for the hydroformylation of propene were systematically investigated in this study. The effects of different phosphine ligands, pressures, temperatures, and catalyst dosages on the hydroformylation of propene were investigated. Tripyridyl phosphine iridium Ir2(cod)2Cl2-P(3-py)3 (Ir(I)-L5) and its derivatives exhibit the highest catalytic reactivity. Surprisingly, the catalytic reactivity of Ir(I)-L5 is higher than that of Rh2(cod)2Cl2-P(3-py)3 (Rh(I)-L5). When the Ir(I)-L5 complex is used as the catalyst, reactions performed in a polar solvent gave higher turnover number (TON) values than those in a non-polar solvent. Up to a TON of 503 can be obtained. Different n-butyraldehyde/iso-butyraldehyde (n/i) ratios can be obtained by adjusting the phosphine ligands or the proportion of gas pressure. The catalyst showed good reusability in five recycling experiments. Furthermore, based on DFT theoretical calculations, a probable reaction mechanism was proposed. It is reliable that an Ir-based catalyst can be considered as a highly effective catalyst for the hydroformylation of propylene with CO.
Collapse
Affiliation(s)
- Chenfei Yao
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, PR China.
| | - Wenjie Xiong
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, PR China.
| | - Haining Sun
- Nanjing Institute of Microinterface Technology, Nanjing 210047, PR China
| | - Chenzhou Li
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, PR China.
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, PR China.
| | - Zhibing Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, PR China.
- Nanjing Institute of Microinterface Technology, Nanjing 210047, PR China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing 210023, PR China.
- Nanjing Institute of Microinterface Technology, Nanjing 210047, PR China
- Institute of Chemistry and Engineering, Nanjing University, Suzhou 215163, PR China
| |
Collapse
|
10
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
11
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
Abe R, Nagashima Y, Tanaka J, Tanaka K. Room Temperature Fluoranthene Synthesis through Cationic Rh(I)/H 8-BINAP-Catalyzed [2 + 2 + 2] Cycloaddition: Unexpected Acceleration due to Noncovalent Interactions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryota Abe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jin Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
13
|
Athira C, Sreenithya A, Hadad CM, Sunoj RB. Cooperative Asymmetric Dual Catalysis Involving a Chiral N-Heterocyclic Carbene Organocatalyst and Palladium in an Annulation Reaction: Mechanism and Origin of Stereoselectivity. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- C. Athira
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - A. Sreenithya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
15
|
Linnebank PR, Kluwer AM, Reek J. Unraveling the Origin of the Regioselectivity of a Supramolecular Hydroformylation Catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pim R. Linnebank
- University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica HIMS NETHERLANDS
| | - Alexander M. Kluwer
- University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica InCatT NETHERLANDS
| | - Joost Reek
- van 't Hoff Institute for moleculer science supramolecular catalysis Postbus 94720 1090 GS Amsterdam NETHERLANDS
| |
Collapse
|
16
|
Sigrist M, Zhang Y, Antheaume C, Dydio P. Isoselective Hydroformylation of Propylene by Iodide-Assisted Palladium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202116406. [PMID: 35170175 DOI: 10.1002/anie.202116406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/10/2022]
Abstract
Isobutanal is a high value bulk material that, in principle, could be produced with 100 % atom-economy by isoselective hydroformylation of propylene with syngas. However, leading industrial Rh- and Co-catalyzed hydroformylation methods preferentially form n-butanal over the iso-product, and methods offering isoselectivity remain underdeveloped. Here we report an iodide-assisted Pd-catalyzed hydroformylation of propylene that produces isobutanal with unprecedented levels of selectivity. The method involves PdI2 , simple alkyl monophosphines, such as tricyclohexylphosphine, and common green solvents, enabling the title reaction to occur with isoselectivity in up to 50 : 1 iso/n product ratios under industrially relevant conditions (80-120 °C). The catalytic and preliminary mechanistic experiments indicate a key role of the iodide anions in both the catalytic activity and the isoselectivity.
Collapse
Affiliation(s)
- Michel Sigrist
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Yang Zhang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Cyril Antheaume
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
17
|
Sigrist M, Zhang Y, Antheaume C, Dydio P. Isoselective Hydroformylation of Propylene by Iodide‐Assisted Palladium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michel Sigrist
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Yang Zhang
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
18
|
Nan LF, Chen XS, Chen H, Hu XH, Wang XH, Hu XP. Development of spirocyclic phosphoramidite-based hybrid diphosphorus ligands for enantioselective iridium-catalyzed hydrogenation of imines. Org Biomol Chem 2022; 20:8420-8424. [DOI: 10.1039/d2ob01801b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel spirocyclic phosphine–phosphoramidite ligands for highly efficient and enantioselective Ir-catalyzed hydrogenation of various imines.
Collapse
Affiliation(s)
- Long-Fei Nan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiu-Shuai Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hao Chen
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xin-Hu Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xin-Hong Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
19
|
Zhang D, Wen J, Zhang X. Construction of a quaternary stereogenic center by asymmetric hydroformylation: a straightforward method to prepare chiral α-quaternary amino acids. Chem Sci 2022; 13:7215-7223. [PMID: 35799829 PMCID: PMC9214857 DOI: 10.1039/d2sc02139k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The construction of chiral quaternary carbon stereocenters has been a long-standing challenge in organic chemistry. Particularly, α-quaternary amino acids that are of high importance in biochemistry still lack a straightforward synthetic method. We here reported a hydroformylation approach to access chiral quaternary stereogenic centers, which has been a long-standing challenge in transition metal catalysis. α,β-Unsaturated carboxylic acid derivatives undergo hydroformylation with a rhodium catalyst to generate an α-quaternary stereocenter under mild conditions. By using this method, a variety of chiral α-quaternary amino acids could be synthesized with satisfactory enantioselectivity. In-depth investigation revealed that the regioselectivity is dramatically influenced by the electronic properties of the substituents attached to the target C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond. By applying NMR and DFT analyses, the chiral environment of a rhodium/Yanphos complex was depicted, based on which a substrate-catalyst interaction model was proposed. A rhodium-catalyzed asymmetric hydroformylation reaction was reported to construct chiral α-quaternary amino acid derivatives. High chemo-, regio- and enantioselectivity were realized in one step.![]()
Collapse
Affiliation(s)
- Dequan Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Unnikrishnan A, Sunoj RB. Iridium-Catalyzed Regioselective Borylation through C-H Activation and the Origin of Ligand-Dependent Regioselectivity Switching. J Org Chem 2021; 86:15618-15630. [PMID: 34598435 DOI: 10.1021/acs.joc.1c02126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research efforts in catalytic regioselective borylation using C-H bond activation of arenes have gained considerable recent attention. The ligand-enabled regiocontrol, such as in the borylation of benzaldehyde, the selectivity could be switched from the ortho to meta position, under identical conditions, by just changing the external ligand (L) from 8-aminoquinoline (8-AQ) to tetramethylphenanthroline (TMP). The DFT(B3LYP-D3) computations helped us learn that the energetically preferred catalytic pathway includes the formation of an Ir-π-complex between the active catalyst [Ir(L)(Bpin)3] and benzaldimine, a C-H bond oxidative addition (OA) to form an Ir(V)aryl-hydride intermediate, and a reductive elimination to furnish the borylated benzaldehyde as the final product. The lowest energetic span (δEortho = 26 kcal/mol with 8-AQ) is noted in the ortho borylation pathway, with the OA transition state (TS) as the turnover-determining TS. The change in regiochemical preference to the meta borylation (δEmeta = 26) with TMP is identified. A hemilabile mode of 8-AQ participation is found to exhibit a δEortho of 24 kcal/mol for the ortho borylation, relative to that in the chelate mode (δEortho = 26 kcal/mol). The predicted regioselectivity switching is in good agreement with the earlier experimental observations.
Collapse
Affiliation(s)
- Anju Unnikrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
21
|
Ru T, Liang G, Zhang L, Ning Y, Chen F. Linear Selective Hydroformylation of 2‐Arylpropenes Using Water‐Soluble Rh‐PNP Complex: Straightforward Access to 3‐Aryl‐Butyraldehydes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Guanfeng Liang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Luyun Zhang
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| |
Collapse
|
22
|
Omosun NN, Smith GS. Monometallic and bimetallic sulfonated Rh(I) complexes: Synthesis and evaluation as recyclable hydroformylation catalysts. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Du HQ, Hu XP. Bicyclic Bridgehead Phosphoramidite-Based Hybrid Diphosphorus Ligands: Design, Synthesis, and Application in Catalytic Asymmetric Hydrogenation. Org Lett 2021; 23:7678-7682. [PMID: 34546065 DOI: 10.1021/acs.orglett.1c02978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strategy for chiral ligand design has been developed that allows for incorporation of an achiral bicyclic bridgehead phosphoramidite to generate a class of hybrid diphosphorus ligands for high activity and asymmetric control. Using this concept, a series of chiral phosphine-phosphoramidite ligands bearing the sole chirality at the ligand backbone have been prepared and successfully employed in the Rh-catalyzed asymmetric hydrogenation of 2-vinylanilides for the synthesis of optically active anilines bearing an ortho-tertiary benzylic stereocenter.
Collapse
Affiliation(s)
- Hong-Quan Du
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
24
|
Zhang R, Xia Y, Dong G. Intermolecular [5+2] Annulation between 1‐Indanones and Internal Alkynes by Rhodium‐Catalyzed C–C Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Zhang
- Department of Chemistry The University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
| | - Ying Xia
- Department of Chemistry The University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
| | - Guangbin Dong
- Department of Chemistry The University of Chicago 5735 S Ellis Ave Chicago IL 60637 USA
| |
Collapse
|
25
|
Zhang R, Xia Y, Dong G. Intermolecular [5+2] Annulation between 1-Indanones and Internal Alkynes by Rhodium-Catalyzed C-C Activation. Angew Chem Int Ed Engl 2021; 60:20476-20482. [PMID: 34216095 PMCID: PMC8405584 DOI: 10.1002/anie.202106007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Herein, we report a [5+2] cycloaddition between readily accessible 1-indanones and internal alkynes through Rh-catalyzed activation of less strained C-C bonds. The reaction is enabled by a strongly σ-donating NHC ligand and a carefully modified temporary directing group. A wide range of functional groups is tolerated, and the method provides straightforward access to diverse benzocycloheptenones that are hard to access otherwise. DFT studies of the reaction mechanism imply the migration insertion as the turnover-limiting step and suggest beneficial π-π interactions in the transition states.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, Illinois 60637
| | - Ying Xia
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, Illinois 60637
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, Illinois 60637
| |
Collapse
|
26
|
Yang HY, Yao YH, Chen M, Ren ZH, Guan ZH. Palladium-Catalyzed Markovnikov Hydroaminocarbonylation of 1,1-Disubstituted and 1,1,2-Trisubstituted Alkenes for Formation of Amides with Quaternary Carbon. J Am Chem Soc 2021; 143:7298-7305. [PMID: 33970621 DOI: 10.1021/jacs.1c03454] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroaminocarbonylation of alkenes is one of the most promising yet challenging methods for the synthesis of amides. Herein, we reported the development of a novel and effective Pd-catalyzed Markovnikov hydroaminocarbonylation of 1,1-disubstituted or 1,1,2-trisubstituted alkenes with aniline hydrochloride salts to afford amides bearing an α quaternary carbon. The reaction makes use of readily available starting materials, tolerates a wide range of functional groups, and provides a facile and straightforward approach to a diverse array of amides bearing an α quaternary carbon. Mechanistic investigations suggested that the reaction proceeded through a palladium hydride pathway. The hydropalladation and CO insertion are reversible, and the aminolysis is probably the rate-limiting step.
Collapse
Affiliation(s)
- Hui-Yi Yang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ya-Hong Yao
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
27
|
Margalef J, Langlois J, Garcia G, Godard C, Diéguez M. Evolution in the metal-catalyzed asymmetric hydroformylation of 1,1′-disubstituted alkenes. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Chakrabortty S, Almasalma AA, de Vries JG. Recent developments in asymmetric hydroformylation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00737h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the recent developments in the field of asymmetric hydroformylation. A large variety of ligands is now available, some of which are extremely effective in inducing high enantio- and regioselectivity.
Collapse
|