1
|
Liu S, Li B, Gao X, Wang F, Li X, Wang J, Kuang Y, Ji L, Gao L, Wang W, Chen Q, Qin Y, Song Z. Total Syntheses of Plocabulin and Its C2-Analogues. Org Lett 2025; 27:4788-4793. [PMID: 40307036 DOI: 10.1021/acs.orglett.5c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Plocabulin is a structurally unique marine natural product with potent antitumor activity, making it a promising candidate for the development of antibody-drug conjugates (ADCs). However, its extremely low natural abundance has limited further research and therapeutic exploration. In this study, we present a convergent synthetic strategy for plocabulin and its C2-analogues. Our approach enabled the synthesis of 1.23 g of plocabulin through a longest linear sequence of 12 steps and a total of 24 steps, achieving an overall yield of 19.7%.
Collapse
Affiliation(s)
- Shunfa Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xin Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Fenglin Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Juxi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuzhong Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Luai Ji
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qifeng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Kumar M, Subramanian P. Collective Total Synthesis of Aculeatin A, B, D, E, and F. J Org Chem 2025. [PMID: 39909844 DOI: 10.1021/acs.joc.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
A collective convergent approach for the enantioselective total synthesis of aculeatins A, B, D, E, and F is presented, featuring [3 + 2]-cycloaddition, iron-mediated reductive N-O bond cleavage, and cascade spirocyclization. Moreover, this short six-step strategy is supplemented in synthesizing unnatural analogs of aculeatins such as 6-epi-aculeatin D, 6-epi-aculeatin E, and 6-epi-aculeatin F.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
3
|
Singh S, Parammal A, Kumar M, X JS, Subramanian P. Iso-Pentadienyl Carbonate as a Five Carbon Synthon in Manganese(I)-Catalyzed Selective Linear 1,3-Dienylation. Chemistry 2023; 29:e202301632. [PMID: 37518839 DOI: 10.1002/chem.202301632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Selective linear 1,3-dienylations are essential transformations, and numerous synthetic efforts have been documented. However, a general method enabling access to electron-rich, -poor, and biologically relevant dienyl molecules is in high demand. Hence, we report a straightforward method of manganese(I)-catalyzed C-H dienylation of arenes by using iso-pentadienyl carbonate as a five carbon synthon. This is a highly unprecedented report for selective linear 1,3-dienylation using manganese C-H activation catalysis. Our method facilitates the synthesis of varieties of dienes, including those suitable for normal or inverse electron demand Diels-Alder reactions, dienyl glycoconjugates, and unnatural amino acids. Extensive mechanistic studies, including isolation of C-H activated organo-manganese complex and isotopic analyses, have supported the proposed mechanism of this dienylation. The synthetic applicability of this method eased to deliver a 6/6/5-fused tricyclic nagilactone scaffold.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Athira Parammal
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Manoj Kumar
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Joe Sam X
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| | - Parthasarathi Subramanian
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
| |
Collapse
|
4
|
Parammal A, Singh S, Kumar M, Xavier JS, Subramanian P. Robust Synthesis of Terpenoid Scaffolds under Mn(I)-Catalysis. J Org Chem 2023. [PMID: 37463248 DOI: 10.1021/acs.joc.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The 6/6/5-fused tricyclic scaffold is a central feature of structurally complex terpenoid natural products. A step-economical cascade transformation that leads to a complex molecular skeleton is regarded as a sustainable methodology. Therefore, we report the first Mn(I)-catalyzed C(sp2)-H chemoselective in situ dienylation and diastereoselective intramolecular Diels-Alder reaction using iso-pentadienyl carbonate to access 6/6/5-fused tricyclic scaffolds. To the best of our knowledge, there is no such report thus far to utilize iso-pentadienyl carbonate as a substrate in C-H activation catalysis. Extensive mechanistic studies, such as the isolation of catalytically active organo-manganese(I) complexes, 1,3-dienyl-intermediates, and isotopic labeling experiments have supported the proposed mechanism of this cascade reaction.
Collapse
Affiliation(s)
- Athira Parammal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shubham Singh
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manoj Kumar
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Joe Sam Xavier
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
5
|
Bold CP, Lucena-Agell D, Oliva MÁ, Díaz JF, Altmann KH. Synthesis and Biological Evaluation of C(13)/C(13')-Bis(desmethyl)disorazole Z. Angew Chem Int Ed Engl 2023; 62:e202212190. [PMID: 36281761 PMCID: PMC10107878 DOI: 10.1002/anie.202212190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
We describe the total synthesis of the macrodiolide C(13)/C(13')-bis(desmethyl)disorazole Z through double inter-/intramolecular Stille cross-coupling of a monomeric vinyl stannane/vinyl iodide precursor to form the macrocycle. The key step in the synthesis of this precursor was a stereoselective aldol reaction of a formal Evans acetate aldol product with crotonaldehyde. As demonstrated by X-ray crystallography, the binding mode of C(13)/C(13')-bis(desmethyl)disorazole Z to tubulin is virtually identical with that of the natural product disorazole Z. Likewise, C(13)/C(13')-bis(desmethyl)disorazole Z inhibits tubulin assembly with at least the same potency as disorazole Z and it appears to be a more potent cell growth inhibitor.
Collapse
Affiliation(s)
- Christian Paul Bold
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Ángela Oliva
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
6
|
Lizzadro L, Spieß O, Collisi W, Stadler M, Schinzer D. Extending the Structure-Activity Relationship of Disorazole C 1 : Exchanging the Oxazole Ring by Thiazole and Influence of Chiral Centers within the Disorazole Core on Cytotoxicity. Chembiochem 2022; 23:e202200458. [PMID: 35998215 PMCID: PMC9826379 DOI: 10.1002/cbic.202200458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Indexed: 01/11/2023]
Abstract
The synthesis of novel disorazole C1 analogues is described and their biological activity as cytotoxic compounds is reported. Based on our convergent entry to the disorazole core we present a flexible and robust strategy to construct a variety of interesting new analogues. In particular, two regions of the molecules were examined for structural modification: 1. Replacement of the heterocyclic moiety by an exchange of the oxazole ring by a thiazole; and 2. Evaluation of the influence of the absolute configuration of the chiral centers of the molecule. Predicated on our flexible strategy we were able to construct all analogues in an efficient way and could perform an exciting SAR (structure-activity-relationship) study to obtain insight in the cytotoxic activity influenced by the chiral centers of the disorazole core.
Collapse
Affiliation(s)
- Luca Lizzadro
- Chemisches InstitutOtto-von-Guericke-UniversitätUniversitätsplatz 239106MagdeburgGermany
| | - Oliver Spieß
- Chemisches InstitutOtto-von-Guericke-UniversitätUniversitätsplatz 239106MagdeburgGermany
| | - Wera Collisi
- Helmholtz-Zentrum für Infektionsforschung GmbHInhoffenstraβe 738124BraunschweigGermany
| | - Marc Stadler
- Helmholtz-Zentrum für Infektionsforschung GmbHInhoffenstraβe 738124BraunschweigGermany
| | - Dieter Schinzer
- Chemisches InstitutOtto-von-Guericke-UniversitätUniversitätsplatz 239106MagdeburgGermany
| |
Collapse
|
7
|
Nakazato K, Oda M, Fuwa H. Total Synthesis of (+)-Neopeltolide by the Macrocyclization/Transannular Pyran Cyclization Strategy. Org Lett 2022; 24:4003-4008. [PMID: 35649194 DOI: 10.1021/acs.orglett.2c01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An 11-step synthesis of (+)-neopeltolide was developed. The C1-C7 carboxylic acid and the C8-C16 alcohol were prepared, each in six steps, from (R)- and (S)-epichlorohydrin, respectively. After esterification, our tandem macrocyclization/transannular pyran cyclization strategy was applied to a stereocontrolled construction of the neopeltolide macrolactone. The side chain was synthesized in six steps from ethyl 4-oxazolecarboxylate through palladium-catalyzed cross-couplings. A Mitsunobu reaction of the neopeltolide macrolactone and the side chain completed the synthesis.
Collapse
Affiliation(s)
- Kazuki Nakazato
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mami Oda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
8
|
Abstract
Disorazoles represent a powerful class of highly potent antitubulin natural products isolated from myxobacteria. Herein, we describe a scalable and robust synthesis of (-)-disorazole C1 with high stereoselectivity, featuring quite simple reaction conditions that can be used to produce large quantities of this remarkable biologically active compound.
Collapse
Affiliation(s)
- Luca Lizzadro
- Chemisches Institut, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Oliver Spieß
- Chemisches Institut, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Dieter Schinzer
- Chemisches Institut, Otto-von-Guericke-Universität, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|