1
|
Lakhanpal V, Guillén-Soler M, Vilà-Nadal L, Long DL, Cronin L. Compression of Molybdenum Blue Polyoxometalate Cluster Rings. J Am Chem Soc 2025; 147:10579-10586. [PMID: 40099841 PMCID: PMC11951155 DOI: 10.1021/jacs.5c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The self-assembly of polyoxometalate (POM) clusters remains challenging because they heavily depend on highly sensitive synthetic conditions that produce a vast library of potential building blocks and subunits such that explicit control is hard. This work reports new strategies to construct compressed molybdenum blue (MB) type cluster rings with a new range of giant MB POM clusters {Mo54}, {Mo58}, {Mo85}, and {Mo108}. These MB clusters prove the limits of the ring structure archetype, showing that it is possible to compress the ring by 100 metal atoms from 154 to 54 yet keep the electronic structure and ring shape. These structures comprise distorted pentagonal building blocks. The compression of the ring is achieved by using a {Mo3S} unit and {Mo5} bridging units. The {Mo85} and {Mo108} clusters exhibit a unique closed architecture, and redox studies demonstrate the reduced nature of these clusters.
Collapse
Affiliation(s)
- Vishal Lakhanpal
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Melanie Guillén-Soler
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Laia Vilà-Nadal
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - De-Liang Long
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University
of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
2
|
Zeng HM, Cheng M, Xuan W, Wei Y. Assembly of the Skirt-Like Giant Molybdenum Blue Cluster {Mo 158} from Dimerization of {Mo 79} Featuring an Octameric Skeleton. Inorg Chem 2025; 64:67-72. [PMID: 39714136 DOI: 10.1021/acs.inorgchem.4c04168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cyclic compounds are appealing owing to their intrinsic porous structures and facile accessibility as building blocks (BBs) for fabricating high-order assemblies. Nevertheless, the modular synthesis of such molecular entities and their subsequent controlled assembly are still very challenging. Herein, we report the synthesis of a gigantic molybdenum blue (MB) wheel {Mo158} (1), featuring a skirt-shaped structure dimerized from {Mo79}. {Mo79} exhibits an unprecedented octameric architecture built from eight sets of {Mo8} BBs, and the controlled assembly of this smallest member in the MB library is achieved by proper wheel contraction induced by {Mo1} and edge-sharing {Mo2} BBs. Moreover, {Mo158} can function as a 4-connected giant synthon, connecting with adjacent four clusters in a controlled manner via four Mo-O-Mo bridges, resulting in a high-order architecture with a 2D layer structure. In addition to single-crystal X-ray diffraction, {Mo158} is fully characterized by a variety of spectroscopies, allowing for the unambiguous determination of its structure and formula. This work not only enriches the family of gigantic clusters but also demonstrates their potential for constructing more complex assemblies.
Collapse
Affiliation(s)
- Hui-Min Zeng
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, No.30, Shuangqing Avenue, Beijing, Haidian 100084, China
| | - Mengyuan Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, PR China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, No.30, Shuangqing Avenue, Beijing, Haidian 100084, China
| |
Collapse
|
3
|
Wei Y, Du W, Wang H, Wang X, Shen K, Xiong M, Zhang D. A uranium-bridged dimeric Keggin-type polyoxometalate and its proton conductive properties. Dalton Trans 2024; 53:16826-16829. [PMID: 39397591 DOI: 10.1039/d4dt02077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A novel dimeric structure based on trilacunary Keggin-type [SbW9O33]9- was synthesized and comprehensively characterized. Different from the conventional dimeric structures, the compound (NH4)10[(SbW9O33)2(UO2)2(H2O)2(SbOH)2]·7H2O ({U2Sb4}) features two additional Sb3+ cations. The successful synthesis of {U2Sb4} reveals the significant role of heteroatoms in structural modulation. The dimer forms a hydrogen-bonded network with water molecules and NH4+ and is therefore expected to exhibit remarkable proton conductivity. Proton conduction studies revealed that {U2Sb4} was a temperature and humidity-dependent proton conductor with conductivity reaching up to 2.50 × 10-2 S cm-1 at 85 °C and 85% RH.
Collapse
Affiliation(s)
- Yuting Wei
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Weixin Du
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Haiying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Xiaoyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Keqin Shen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Minghui Xiong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dongdi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Lu H, Li Z, Duan Z, Liao Y, Liu K, Zhang Y, Fan L, Xu T, Yang D, Wang S, Fu Y, Xiang H, Chen Y, Li G. Photothermal Catalytic Reduction and Bone Tissue Engineering Towards a Three-in-One Therapy Strategy for Osteosarcoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408016. [PMID: 39165073 DOI: 10.1002/adma.202408016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Osteosarcoma is one of the most dreadful bone neoplasms in young people, necessitating the development of innovative therapies that can effectively eliminate tumors while minimizing damage to limb function. An ideal therapeutic strategy should possess three essential capabilities: antitumor effects, tissue-protective properties, and the ability to enhance osteogenesis. In this study, self-assembled Ce-substituted molybdenum blue (CMB) nanowheel crystals are synthesized and loaded onto 3D-printed bioactive glass (CMB@BG) scaffolds to develop a unique three-in-one treatment approach for osteosarcoma. The CMB@BG scaffolds exhibit outstanding photothermally derived tumor ablation within the near-infrared-II window due to the surface plasmon resonance properties of the CMB nanowheel crystals. Furthermore, the photothermally synergistic catalytic effect of CMB promotes the rapid scavenging of reactive oxygen species caused by excessive heat, thereby suppressing inflammation and protecting surrounding tissues. The CMB@BG scaffolds possess pro-proliferation and pro-differentiation capabilities that efficiently accelerate bone regeneration within bone defects. Altogether, the CMB@BG scaffolds that combine highly efficient tumor ablation, tissue protection based on anti-inflammatory mechanisms, and enhanced osteogenic ability are likely to be a point-to-point solution for the comprehensive therapeutic needs of osteosarcoma.
Collapse
Affiliation(s)
- Hengli Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Zihua Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Zhengwei Duan
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yuxin Liao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200025, P. R. China
| | - Yiwei Zhang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Lin Fan
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Tianyang Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Dong Yang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Sen Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yuesong Fu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| | - Guodong Li
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
5
|
Cong YC, Zhu ZK, Sun C, Li XX, Zheng ST. Indium-Assisted Construction of {SiNb 18O 54}-Based Aggregates and Their Assembly into Extended Polyoxoniobate Architectures. Inorg Chem 2024. [PMID: 39259874 DOI: 10.1021/acs.inorgchem.4c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this research, indium ions were introduced into polyoxoniobates (PONbs) reaction systems to facilitate the construction of different {SiNb18O54}-based aggregates, including an {In(en)2{SiNb18O54}2} (en = ethylenediamine) dimer, an {[InO2][In2(en)O3]2{SiNb18O54}3} trimer, and an {[In(en)2][InO2][In7(en)5O9]{SiNb18O54}4} tetramer. Interestingly, these aggregates were further assembled into three uncommon extended PONb architectures in the presence of [Cu(en)2]2+ complexes, namely, H3[Cu(en)2(H2O)][Cu(en)2]6[Cu(en)2]2{[In(en)2][K2{SiNb18O54}(H2O)6]2}·1.5en·16H2O, H9{[Cu(en)2]6{[Cu(en)2]3[Cu(en)2(H2O)][In(H2O)2][In2(en)(H2O)2(OH)]2{SiNb18O54}3}·5en·29H2O, and H14[Cu(en)2]0.5[Cu(en)2(H2O)]{[Cu(en)2]2{[Cu(en)2]3[Cu(en)2(H2O)]5[K(H2O)2][In(H2O)2][In(en)2][In7(OH)9(en)5]{SiNb18O54}4}·7en·39H2O. In addition, all of them have good water vapor adsorption capacities and moderate proton transport capabilities. The above results indicate that introducing suitable heteroatoms to induce the aggregation PONb building blocks and further assembling them into new structures is an effective strategy to enrich the PONbs' structural diversity and develop new functional materials.
Collapse
Affiliation(s)
- Yu-Chen Cong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
6
|
Felton DE, Smith KR, Poole NA, Cronberger K, Burns PC. A New Molybdenum Blue Structure Type: How Uranium Expands this Family of Polyoxometalates. Chemistry 2024; 30:e202400678. [PMID: 38412002 DOI: 10.1002/chem.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
The assembly of molybdenum polyoxometalates (POMs) has afforded large discrete nanoclusters with varied degrees of reduction such as the ~20 % reduced molybdenum blues. While many heterometals have been incorporated into these clusters to afford new properties, uranium has yet to be reported. Here we report the first uranium containing molybdenum blue clusters and the unique properties exhibited by this incorporation. The uranyl ion (UO2 2+) directs formation of Mo72U8, a square POM comprised of two faces connected by eight edge-sharing molybdenum dimers. Mo72U8, a chiral cluster, crystallizes as a racemic mixture and, in the solid state, has a 'negative' charge localized on one face of the cluster opposite the 'positively' charged face of another cluster. Using U(IV) as both heterometal and molybdenum reductant afforded crystals of Mo97U10, a wheel cluster with a heptamolybdate cap on one face. Mo97U10 dissociates in solution, losing the heptamolybdate, to form Mo90U10. Using more solvent during synthesis afforded crystals of Mo90U10S4 which, instead of heptamolybdate, contains four sulfate ions. Crystals of Mo90U10S4 undergo a dehydration induced phase change where clusters form a sheet through oxide bridges. Half of the bridges are cation-cation interactions between the uranyl oxygen atom and molybdenum, the first reported of this kind.
Collapse
Affiliation(s)
- Daniel E Felton
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyson R Smith
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nicholas A Poole
- Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karl Cronberger
- Analytical Science and Engineering at Notre Dame Core Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Li K, Zhu KL, Cui LP, Chen JJ. Insights into the self-assembly of giant polyoxomolybdates from building blocks to supramolecular structures. Dalton Trans 2023; 52:15168-15177. [PMID: 36861841 DOI: 10.1039/d3dt00105a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Giant polyoxomolybdates are a special class of polyoxometalate clusters which can bridge the gap between small molecule clusters and large polymeric entities. Besides, giant polyoxomolybdates also show interesting applications in catalysis, biochemistry, photovoltaic and electronic devices, and other fields. Revealing the evolution route of the reducing species into the final cluster structure and also their further hierarchical self-assembly behaviour is undoubtedly fascinating, aiming to guide the design and synthesis. Herein, we reviewed the self-assembly mechanism study of giant polyoxomolybdate clusters, and the exploration of a new structure and new synthesis methodology is also summarized. Finally, we emphasize the importance of in-operando characterization in revealing the self-assembly mechanism of giant polyoxomolybdates, and especially for the further reconstruction of intermediates into the designable synthesis of new structures.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Kai-Ling Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Li-Ping Cui
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Jia-Jia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
8
|
Li XX, Li CH, Hou MJ, Zhu B, Chen WC, Sun CY, Yuan Y, Guan W, Qin C, Shao KZ, Wang XL, Su ZM. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo 132} into half-closed {Ce 11Mo 96} for high proton conduction. Nat Commun 2023; 14:5025. [PMID: 37596263 PMCID: PMC10439156 DOI: 10.1038/s41467-023-40685-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Precise synthesis of polyoxometalates (POMs) is important for the fundamental understanding of the relationship between the structure and function of each building motif. However, it is a great challenge to realize the atomic-level tailoring of specific sites in POMs without altering the major framework. Herein, we report the case of Ce-mediated molecular tailoring on gigantic {Mo132}, which has a closed structural motif involving a never seen {Mo110} decamer. Such capped wheel {Mo132} undergoes a quasi-isomerism with known {Mo132} ball displaying different optical behaviors. Experiencing an 'Inner-On-Outer' binding process with the substituent of {Mo2} reactive sites in {Mo132}, the site-specific Ce ions drive the dissociation of {Mo2*} clipping sites and finally give rise to a predictable half-closed product {Ce11Mo96}. By virtue of the tailor-made open cavity, the {Ce11Mo96} achieves high proton conduction, nearly two orders of magnitude than that of {Mo132}. This work offers a significant step toward the controllable assembly of POM clusters through a Ce-mediated molecular tailoring process for desirable properties.
Collapse
Affiliation(s)
- Xue-Xin Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Cai-Hong Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ming-Jun Hou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Bo Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei-Chao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei Guan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
9
|
McNamara L, Waldron A, Thomas M, Jones W, O'Rourke P, Darrell S, Strange Fessler KA. Investigating the hydrolysis of cryogenically layered molybdenum hexafluoride through a disordered hydrogen-bonded network. Phys Chem Chem Phys 2023; 25:2990-2998. [PMID: 36606495 DOI: 10.1039/d2cp04147b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molybdenum hexafluoride (MoF6) is used as a non-radioactive substitute for uranium to study the hydrolysis of metal hexafluorides. Molybdenum hexafluoride gas and water vapor, from the air, were sequentially layered onto a diamond substrate kept at liquid nitrogen temperature using a custom designed cryogenic cell with a copper cold finger. Reaction progress was monitored by transmission Fourier Transform Infrared Spectroscopy (FTIR) through the layers and diamond substrate over several hours while allowing the substrate to warm. Changes in the modes in the 500-1000 cm-1 region are tracked as the reaction progresses in order to identify intermediate species. Strong absorption features are also observed in the 1000-3000 cm-1 range, suggesting the presence of ionic dissociation intermediates trapped in a disordered H-bonded network of cryogenic hydrofluoric acid. A possible reaction pathway is proposed and the final hydrolysis product is characterized by FTIR, UV-vis, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS).
Collapse
Affiliation(s)
- Louis McNamara
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, 29803, SC, USA.
| | - Abigail Waldron
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, 29803, SC, USA.
| | - Michael Thomas
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, 29803, SC, USA.
| | - Willis Jones
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, 29803, SC, USA. .,University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Patrick O'Rourke
- Savannah River National Laboratory, 301 Gateway Drive, Aiken, 29803, SC, USA.
| | - Simmons Darrell
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37830, TN, USA
| | | |
Collapse
|
10
|
Zhou XY, Wang F, Zhang J. Syntheses of new high-symmetric polyoxometalates with Mo4O4 cubane core. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Lai RD, Zhu ZK, Wu YL, Sun YQ, Sun C, Li XX, Zheng ST. Proton-Conductive Polyoxometalate Architectures Constructed from Lanthanide-Incorporated Polyoxoniobate Cages. Inorg Chem 2022; 61:21047-21054. [PMID: 36512697 DOI: 10.1021/acs.inorgchem.2c03576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new extended polyoxometalate (POM) architectures based on lanthanide-incorporated polyoxoniobate (Ln-incorporated PONb) cages, namely, H4[CuII(en)2]4{K4(H2O)2[CuII(en)2]5[CuII5(trz)2(en)4(OH)2][Dy2CuII2(en)2(CO3)3(H2O)2(OH)3][Dy(H2O)4][DyNb23O68(H2O)4]2}·60H2O (1, en = ethylenediamine) and H20[CuII(en)2]4{[CuII(en)2]4[Dy2(C2O4)(H2O)4]2[(Nb32(OH)4(H2O)3O89]2}·54H2O (2), have been successfully synthesized and structurally characterized, demonstrating a feasible strategy to develop functional POM materials. In addition, the proton conductivity and magnetic behaviors of both 1 and 2 were studied.
Collapse
Affiliation(s)
- Rong-Da Lai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Lan Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
|
13
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
14
|
Kuznetsova AA, Volchek VV, Yanshole VV, Fedorenko AD, Kompankov NB, Kokovkin VV, Gushchin AL, Abramov PA, Sokolov MN. Coordination of Pt(IV) by {P 8W 48} Macrocyclic Inorganic Cavitand: Structural, Solution, and Electrochemical Studies. Inorg Chem 2022; 61:14560-14567. [PMID: 36067043 DOI: 10.1021/acs.inorgchem.2c01362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrothermal reaction of a macrocyclic inorganic POM cavitand Li17(NH4)21H2[P8W48O184] with [Pt(H2O)2(OH)4] results in coordination of up to six {Pt(H2O)x(OH)4-x} fragments to the internal surface of the polyoxoanion. The product was isolated as K22(NH4)9H3[{Pt(OH)3(H2O)}6P8W48O184]·79H2O (1) and characterized by multiple techniques in the solid state (SCXRD, XRPD, XPS, FTIR, and TGA) and in solution (NMR, ESI-MS, and HPLC-ICP-AES). Electrochemical properties were studied both in solution and as components of the paste electrode. The complex shows electrocatalytic activity in water oxidation.
Collapse
Affiliation(s)
- Anna A Kuznetsova
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Victoria V Volchek
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center, Institutskaya str. 3a, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia
| | - Anastasiya D Fedorenko
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Nikolay B Kompankov
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasily V Kokovkin
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Artem L Gushchin
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel A Abramov
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim N Sokolov
- SB RAS, Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Ren W, Li B, Li S, Li Y, Gao Z, Chen X, Zang H. Synthesis and Proton Conductivity of Two Molybdate Polymers Based on [Mo
8
O
26
]
4−
Anions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Bo Ren
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Bo Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Siqi Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Ying Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Zhixin Gao
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Xinyu Chen
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Hong‐Ying Zang
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| |
Collapse
|
16
|
Al-Sayed E, Rompel A. Lanthanides Singing the Blues: Their Fascinating Role in the Assembly of Gigantic Molybdenum Blue Wheels. ACS NANOSCIENCE AU 2022; 2:179-197. [PMID: 35726275 PMCID: PMC9204829 DOI: 10.1021/acsnanoscienceau.1c00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/16/2023]
Abstract
![]()
Molybdenum blues
(MBs) are a distinct class of polyoxometalates,
exhibiting versatile/impressive architectures and high structural
flexibility. In acidified and reduced aqueous environments, isopolymolybdates
generate precisely organizable building blocks, which enable unique
nanoscopic molecular systems (MBs) to be constructed and further fine-tuned
by hetero elements such as lanthanide (Ln) ions. This Review discusses
wheel-shaped MB-based structure types with strong emphasis on the
∼30 Ln-containing MBs as of August 2021, which include both
organically hybridized and nonhybridized structures synthesized to
date. The spotlight is thereby put on the lanthanide ions and ligand
types, which are crucial for the resulting Ln-patterns and alterations
in the gigantic structures. Several critical steps and reaction conditions
in their synthesis are highlighted, as well as appropriate methods
to investigate them both in solid state and in solution. The final
section addresses the homogeneous/heterogeneous catalytic, molecular
recognition and separation properties of wheel-shaped Ln-MBs, emphasizing
their inimitable behavior and encouraging their application in these
areas.
Collapse
Affiliation(s)
- Emir Al-Sayed
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
17
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
18
|
Ribó EG, Bell NL, Long D, Cronin L. Engineering Highly Reduced Molybdenum Polyoxometalates via the Incorporation of d and f Block Metal Ions. Angew Chem Int Ed Engl 2022; 61:e202201672. [PMID: 35257462 PMCID: PMC9401863 DOI: 10.1002/anie.202201672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/21/2022]
Abstract
The assembly of nanoscale polyoxometalate (POM) clusters has been dominated by the highly reduced icosahedral {Mo132 } "browns" and the toroidal {Mo154 } "blues" which are 45 % and 18 % reduced, respectively. We hypothesised that there is space for a greater diversity of structures in this immediate reduction zone. Here we show it is possible to make highly reduced mix-valence POMs by presenting new classes of polyoxomolybdates: [MoV 52 MoVI 12 H26 O200 ]42- {Mo64 } and [MoV 40 MoVI 30 H30 O215 ]20- {Mo70 }, 81 % and 57 % reduced, respectively. The {Mo64 } cluster archetype has a super-cube structure and is composed of five different types of building blocks, each arranged in overlayed Archimedean or Platonic polyhedra. The {Mo70 } cluster comprises five tripodal {MoV 6 } and five tetrahedral {MoV 2 MoVI 2 } building blocks alternatively linked to form a loop with a pentagonal star topology. We also show how the reaction yielding the {Mo64 } super-cube can be used in the enrichment of lanthanides which exploit the differences in selectivity in the self-assembly of the polyoxometalates.
Collapse
Affiliation(s)
| | - Nicola L. Bell
- School of ChemistryThe University of GlasgowGlasgowG12 8QQUK
| | - De‐Liang Long
- School of ChemistryThe University of GlasgowGlasgowG12 8QQUK
| | - Leroy Cronin
- School of ChemistryThe University of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
19
|
Krebs B. Comment on molybdenum polyoxo clusters: from the `Blues' to the `Reds'. Acta Crystallogr C 2022; 78:322-323. [PMID: 35662130 PMCID: PMC9167631 DOI: 10.1107/s2053229622004491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Molybdenum ‘Blues’, ‘Browns’ and the recently discovered ‘Reds’ are unquestionably some of the most impressive nanoscale architectures in POM chemistry. In this context, Al-Sayed et al. (2022) recently made a significant contribution, reporting a new binding mode of an organic hybridization reagent in mixed-valence polyoxomolybdates.
Collapse
|
20
|
Ribó EG, Bell NL, Long D, Cronin L. Engineering Highly Reduced Molybdenum Polyoxometalates via the Incorporation of
d
and
f
Block Metal Ions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Nicola L. Bell
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - De‐Liang Long
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - Leroy Cronin
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
21
|
Du MH, Chen LQ, Jiang LP, Liu WD, Long LS, Zheng L, Kong XJ. Counterintuitive Lanthanide Hydrolysis-Induced Assembly Mechanism. J Am Chem Soc 2022; 144:5653-5660. [PMID: 35315276 DOI: 10.1021/jacs.2c01502] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The understanding of the hydrolysis mechanism of lanthanide ions is limited by their elusive coordination configuration and undeveloped technology. A potential solution by high-resolution mass spectroscopy studies is hindered by the lack of a stable model under electrospray ionization (ESI) conditions and the complexity of the spectra. Herein, it is demonstrated that diketonate ligands can efficiently stabilize the hydrolyzed intermediate cluster of Ln3+ under ESI conditions, and an effective mass difference fingerprint of isomorphism (MDFI) method is proposed, which can allow the determination of the nuclearity-number of the species without depth resolution. Thus, the hydrolysis of Ln3+ into an atomically precise hydroxide cluster is observed at the level of precise formulae. The species evolution upon hydrolysis is along the dominant path of {Eu3}-{Eu4}-{Eu9}-{Eu10}-{Eu11}-{Eu15}-{Eu16} and a nondominant path of {Eu3}-{Eu4}-{Eu8-1}-{Eu8-2} under the investigated conditions. The crystal of the {Eu16} species was obtained via low-temperature crystallization, and single-crystal X-ray diffraction studies show that its structure contains three octahedral {o-Ln6} units. The contradiction between multiple {o-Ln6} units in the structure and the absence in the formation process indicates that the repetitive subunit observed in the structure does not necessarily correspond to the construction units of high-nuclearity clusters. Photophysical measurements indicate that Eu16 cluster has a high total emission quantum efficacy of 12.8% in the solid state. This study provides fundamental insights into the formation, evolution, and assembly of small lanthanide hydroxide units upon hydrolysis, which is vital for the goal of directional synthesis of lanthanide hydroxide clusters.
Collapse
Affiliation(s)
- Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liu-Qing Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin-Peng Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lansun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Zhu Z, Zhang J, Cong Y, Ge R, Li Z, Li X, Zheng S. Two Giant
Calixarene‐Like
Polyoxoniobate Nanocups {Cu
12
Nb
120
} and {Cd
16
Nb
128
} Built from Mixed Macrocyclic Cluster Motifs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng‐Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yu‐Chen Cong
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
23
|
Zhu ZK, Zhang J, Cong YC, Ge R, Li Z, Li XX, Zheng ST. Two Giant Calixarene-Like Polyoxoniobate Nanocups {Cu 12 Nb 120 } and {Cd 16 Nb 128 } Built from Mixed Macrocyclic Cluster Motifs. Angew Chem Int Ed Engl 2021; 61:e202113381. [PMID: 34919310 DOI: 10.1002/anie.202113381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/10/2022]
Abstract
Cup-shaped molecules are of great interest due to their appealing architectures and properties. Compared with widely studied calixarenes, polyoxometalate-based cup-shaped molecules currently remain a virgin land waiting for exploration. In this work, we report the first discovery of two giant cup-shaped inorganic-organic hybrid polyoxoniobates (PONbs) of {Cu12 Nb120 } and {Cd16 Nb128 }. The former integrates three tricyclic Nb24 clusters and a hexacyclic Nb48 cluster into a cup-shaped molecule via a Cu12 metallacalixarene, while the latter unifies two tricyclic Nb24 clusters and a brand-new pentacyclic Nb40 cluster into another cup-shaped molecule via a hybrid Cd16 unit. With 132 and 144 metal centers, {Cu12 Nb120 } and {Cd16 Nb128 } show the largest two inorganic-organic hybrid PONbs known to date.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yu-Chen Cong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Rui Ge
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
24
|
Han LZ, Jiao CQ, Chen WC, Shao KZ, Jin LY, Su ZM. Assembly of tetra-nuclear Yb III-containing selenotungstate clusters: synthesis, structures, and magnetic properties. Dalton Trans 2021; 50:11535-11541. [PMID: 34350926 DOI: 10.1039/d1dt01282g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two tetra-nuclear YbIII-incorporated selenotungstate clusters, Keggin (C2H8N)6Na14[Yb4Se6W44O160(H2O)12]·40H2O (1) and Wells-Dawson (C2H8N)4Na14[Yb4Se6W45O159(OH)6(H2O)11]·38H2O (2), have been isolated through a pH-controlled assembly, which exhibit the first YbIII-containing polyoxotungstates with selenium heteroatoms. Their assemblies rely on the structure-directing effects of SeO32- anion templates to give rise to available Se-containing Keggin-/Wells-Dawson-type motifs. Both compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, power X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) as well as electrospray ionization mass spectrometry (ESI-MS). Furthermore, systematic magnetic studies revealed that 1 exhibits field-induced single-molecule magnetic behavior with a pre-exponential factor of τ0 = 6.60(7) × 10-8 s and a relaxation energy barrier of ΔE/kB = 39.44(2) K, while 2 only displays antiferromagnetic interactions between the ytterbium centers.
Collapse
Affiliation(s)
- Li-Zhi Han
- Department of Chemistry, College of Science, Yanbian University, Yanji 133002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
25
|
Petrus E, Bo C. Unlocking Phase Diagrams for Molybdenum and Tungsten Nanoclusters and Prediction of their Formation Constants. J Phys Chem A 2021; 125:5212-5219. [PMID: 34086467 DOI: 10.1021/acs.jpca.1c03292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Understanding and controlling aqueous speciation of metal oxides are key for the discovery and development of novel materials, and challenge both experimental and computational approaches. Here we present a computational method, called POMSimulator, which is able to predict speciation phase diagrams (Conc. vs pH) for multispecies chemical equilibria in solution, and which we apply to molybdenum and tungsten isopolyoxoanions (IPAs). Starting from the MO4 monomers, and considering dimers, trimers, and larger species, the chemical reaction networks involved in the formation of [H32Mo36O128]8- and [W12O42]12- are sampled in an automatic manner. This information is used for setting up ∼105 speciation models, and from there, we generate the speciation phase diagrams, which show an insightful picture of the behavior of IPAs in aqueous solution. Furthermore, we predict the values of 107 formation constants for a diversity of molybdenum and tungsten molecular oxides. Among these species, we could include several pentagonal-shaped species and very reactive tungsten intermediates as well. Last but not least, the calibration employed for correcting the density functional theory (DFT) Gibbs energies is remarkably similar for both metals, which suggests that a general rule might exist for correcting computed free energies for other metals.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
26
|
Traustason H, Lobeck HL, Julien PA, Xu M, Dembowski M, Burns PC. Prediction of Solution Behavior via Calorimetric Measurements Allows for Detailed Elucidation of Polyoxometalate Transformation. Inorg Chem 2021; 60:6753-6763. [PMID: 33856789 DOI: 10.1021/acs.inorgchem.1c00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution behavior of a polyoxometalate cluster, LiNa-U24Pp12 (Li24Na24[(UO2O2)24(P2O7)12]) that consists of 24 uranyl ions, peroxide groups, and 12 pyrophosphate linkers, was successfully predicted based on new thermodynamic results using a calorimetric method recently described for uranyl peroxide nanoclusters (UPCs), molybdenum blues, and molybdenum browns. The breakdown of LiNa-U24Pp12 and formation of U24 (Li24[UO2O2OH]24) was monitored in situ via Raman spectroscopy using a custom heating apparatus. A combination of analytical techniques confirmed the simultaneous existence of U24Pp12 and U24 midway through the conversion process and U24 as the single end product. The application of a molecular weight filter resulted in a complete and successful separation of UPCs from solution and, in conjunction with DOSY results, confirmed the presence of large intermediate cluster building blocks.
Collapse
Affiliation(s)
- Hrafn Traustason
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haylie L Lobeck
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patrick A Julien
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mengyu Xu
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mateusz Dembowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
27
|
Guo XQ, Zhou LP, Hu SJ, Cai LX, Cheng PM, Sun QF. Hexameric Lanthanide-Organic Capsules with Tertiary Structure and Emergent Functions. J Am Chem Soc 2021; 143:6202-6210. [PMID: 33871254 DOI: 10.1021/jacs.1c01168] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological macromolecules always function through a collective behavior of the aggregated constituents, which usually are self-assembled together via noncovalent interactions. Likewise, artificial supramolecular assemblies, whose properties and functions are mainly derived from their primary and secondary structures, may also aggregate into high-order architectures with emergent functions not available on the individual components. Here we report the first example of an insulin-like hexamerization of lanthanide triple helicates toward a 4 nm diameter hexameric capsule via consecutive metal-directed and anion-directed assembly processes. Hierarchical chiral-sorting self-assembly endows hexamers with aggregation-induced stability and emission enhancement. Furthermore, emergent guest-encapsulation function and enantioselectivity toward terpene drugs have been realized in the late-formed central cavity of the hexamers. This study not only provides a feasible strategy for constructing sophisticated and multifunctional lanthanide-organic materials but also sheds some light on the self-assembly processes in nature.
Collapse
Affiliation(s)
- Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
28
|
Sturm L, Göb CR, Oppel IM. Anion Directed Selective Synthesis of Supramolecular Metallocycles and Related Coordination Dimers. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lisa Sturm
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christian R. Göb
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Iris M. Oppel
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
29
|
Yao S, Fang WH, Sun Y, Wang ST, Zhang J. Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture. J Am Chem Soc 2021; 143:2325-2330. [DOI: 10.1021/jacs.0c11778] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuyang Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
30
|
Ren C, Lu Z, Luo B, Yi X, Lin L, Xu L. Deeply reduced empty Keggin clusters [MoIVxMVI12−xO 40−xpy x] ( x = 3, 6; M = Mo, W; py = pyridine): synthesis, structures, and Lewis field catalysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01080h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
First MoIV3-Keggin anions [MoIVxMVI12−xO40−xpyx]8− (M = Mo, W; x = 3, 6) display unprecedented empty Keggin structure caused by the weak u3-O coordinating capability of the [MoIV3O4] triads and LCF-dependent hydrogen transfer catalysis.
Collapse
Affiliation(s)
- Cuiming Ren
- School of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhihao Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benlong Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaofeng Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lifang Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
31
|
Zhu Y, Li Q, Li D, Zhang J, Zhang L. Functional ligand directed assembly and electronic structure of Sn18-oxo wheel nanoclusters. Chem Commun (Camb) 2021; 57:5159-5162. [DOI: 10.1039/d1cc00651g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bilayer hexagonal Sn18-oxo cluster, as the largest tin-oxo wheel, was constructed by a ligand templating method. Moreover, the ligands also show important effects on electronic structure and third-order nonlinear optical property of the wheel.
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Dongsheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|