1
|
Sharma P, Gupta S, Kumar R, Charisiadis A, Sauvan M, Velasco L, Saini A, Moonshiram D, Draksharapu A. Structural and reactivity insights into high-valent Co(III)-(μ-peroxo)-Co(IV) and its electromer Co(III)-(μ-superoxo)-Co(III). Chem Commun (Camb) 2024; 60:14846-14849. [PMID: 39585175 DOI: 10.1039/d4cc04658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Various metalloenzymes employ O2 for oxidative reactions, which is crucial in catalysis and biological processes involving high-valent metal-oxygen species. This study introduces novel high-valent Co(III)-(μ-1,2-O2)-Co(IV) and Co(III)-(μ-1,2-O2˙-)-Co(III) complexes, stabilized by an electron-donating TPA* ligand. This study advances our understanding of Co-oxygen intermediates, which are key for water oxidation catalysis.
Collapse
Affiliation(s)
- Parkhi Sharma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Rakesh Kumar
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Asterios Charisiadis
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain.
| | - Maxime Sauvan
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain.
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain.
| | - Abhishek Saini
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400 076, India
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain.
| | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
2
|
Xiong J, Reed C, Lavina B, Hu MY, Zhao J, Alp EE, Agapie T, Guo Y. 57Fe nuclear resonance vibrational spectroscopic studies of tetranuclear iron clusters bearing terminal iron(iii)-oxido/hydroxido moieties. Chem Sci 2024; 15:d4sc03396e. [PMID: 39296996 PMCID: PMC11403573 DOI: 10.1039/d4sc03396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/21/2024] Open
Abstract
57Fe nuclear resonance vibrational spectroscopy (NRVS) has been applied to study a series of tetranuclear iron ([Fe4]) clusters based on a multidentate ligand platform (L3-) anchored by a 1,3,5-triarylbenzene linker and pyrazolate or (tertbutylamino)pyrazolate ligand (PzNH t Bu-). These clusters bear a terminal Fe(iii)-O/OH moiety at the apical position and three additional iron centers forming the basal positions. The three basal irons are connected with the apical iron center via a μ4-oxido ligand. Detailed vibrational analysis via density functional theory calculations revealed that strong NRVS spectral features below 400 cm-1 can be used as an oxidation state marker for the overall [Fe4] cluster core. The terminal Fe(iii)-O/OH stretching frequencies, which were observed in the range of 500-700 cm-1, can be strongly modulated (energy shifts of 20-40 cm-1 were observed) upon redox events at the three remote basal iron centers of the [Fe4] cluster without the change of the terminal Fe(iii) oxidation state and its coordination environment. Therefore, the current study provides a quantitative vibrational analysis of how the remote iron centers within the same iron cluster exert exquisite control of the chemical reactivities and thermodynamic properties of the specific iron site that is responsible for small molecule activation.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Christopher Reed
- Division of Chemistry and Chemical Engineering, California Institute of Technology CA 91125 USA
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
- Center for Advanced Radiation Source, University of Chicago Chicago Illinois 60439 USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology CA 91125 USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
3
|
Kayne M, Murphy PS, Kwon YM, Lee Y, Jackson TA, Wang D. Generation, Characterization and Reactivity of a High-Valent Mononuclear Cobalt(IV)-Diazide Complex. Chemistry 2024; 30:e202401218. [PMID: 38644346 DOI: 10.1002/chem.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/23/2024]
Abstract
High-valent Fe(IV)=O intermediates of metalloenzymes have inspired numerous efforts to generate synthetic analogs to mimic and understand their substrate oxidation reactivities. However, high-valent M(IV) complexes of late transition metals are rare. We have recently reported a novel Co(IV)-dinitrate complex (1-NO3) that activates sp3 C-H bonds up to 87 kcal/mol. In this work, we have shown that the nitrate ligands in 1-NO3 can be replaced by azide, a more basic coordinating base, resulting in the formation of a more potent Co(IV)-diazide species (1-N3) that reacts with substrates (hydrocarbons and phenols) at faster rate constants and activates stronger C-H bonds than the parent complex 1-NO3. We have characterized 1-N3 employing a combination of spectroscopic and computational approaches. Our results clearly show that the coordination of azide leads to the modulation of the Co(IV) electronic structure and the Co(IV/III) redox potential. Together with the higher basicity of azide, these thermodynamic parameters contribute to the higher driving forces of 1-N3 than 1-NO3 for C-H bond activation. Our discoveries are thus insightful for designing more reactive bio-inspired high-valent late transition metal complexes for activating inert aliphatic hydrocarbons.
Collapse
Affiliation(s)
- Michael Kayne
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Patrick S Murphy
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas, 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, 59812, United States
| |
Collapse
|
4
|
Carter S, Tao W, Majumder R, Sokolov AY, Zhang S. Two-State Hydrogen Atom Transfer Reactivity of Unsymmetric [Cu 2(O)(NO)] 2+ Complexes. J Am Chem Soc 2023; 145:17779-17785. [PMID: 37540110 DOI: 10.1021/jacs.3c04510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report the temperature-dependent spin switching of dicopper oxo nitrosyl [Cu2(O)(NO)]2+ complexes and their influence on hydrogen atom transfer (HAT) reactivity. Electron paramagnetic resonance (EPR) and Evans method analysis suggest that [Cu2(O)(NO)]2+ complexes transition from the S = 1/2 to the S = 3/2 state around ca. 202 K. At low temperatures (198 K) where S = 3/2 dominates, a strong correlation between the rate of HAT (kHAT) and the population of the S = 1/2 state was identified (R2 = 0.988), suggesting that the HAT by [Cu2(O)(NO)]2+ complexes proceeds by the S = 1/2 isomer. Installation of functional groups that introduce an unsymmetric secondary coordination environment accelerates the HAT rates through perturbation of the spin equilibria. Given the often unsymmetric coordination sphere of bimetallic active sites in natural proteins, we anticipate that similar strategies could be employed by metalloenzymes to control HAT reactions.
Collapse
Affiliation(s)
- Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Rajat Majumder
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Li Y, Handunneththige S, Xiong J, Guo Y, Talipov MR, Wang D. Direct Activation of the C(sp 3)-NH 2 Bond of Primary Aliphatic Alkylamines by a High-Valent Co III,IV2(μ-O) 2 Diamond Core Complex. J Am Chem Soc 2023; 145:2690-2697. [PMID: 36689463 PMCID: PMC9976198 DOI: 10.1021/jacs.2c13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aliphatic alkylamines are abundant feedstock and versatile building blocks for many organic transformations. While remarkable progress has been made to construct C-N bonds on aliphatic and aromatic carbon centers, the activation and functionalization of C(sp3)-NH2 bonds in primary alkylamines remain a challenging process. In the present work, we discovered an unprecedented method to directly activate the C(sp3)-NH2 bond of primary alkylamines by a high-valent dinuclear CoIII,IV2(μ-O)2 diamond core complex. This reaction results in the installation of other functional groups such as halides and alkenes onto the α-carbon center concomitant with the 2-e- oxidation of the nitrogen atom on the amino group to form NH2OH. These results shed light on future development enabling versatile functionalization of primary alkylamines based on the dinuclear cobalt system. Moreover, our work suggests that a related high-valent copper-oxo intermediate is likely generated in the ammonia monooxygenase catalytic cycle to affect the oxidation of NH3 to NH2OH.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana; Missoula, MT 59812, United States
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry, New Mexico State University; Las Cruces, NM 88003, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University; Pittsburgh, PA 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University; Pittsburgh, PA 15213, United States,Corresponding Author:; ;
| | - Marat R. Talipov
- Department of Chemistry and Biochemistry, New Mexico State University; Las Cruces, NM 88003, United States,Corresponding Author:; ;
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana; Missoula, MT 59812, United States,Corresponding Author:; ;
| |
Collapse
|
6
|
Amtawong J, Nguyen AI, Tilley TD. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. J Am Chem Soc 2022; 144:1475-1492. [DOI: 10.1021/jacs.1c11445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- Department of Chemistry, University of Illinois, Chicago, Chicago, Illinois 60607, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|