1
|
Esteruelas MA, Moreno-Blázquez S, Oliván M, Oñate E. Competition between N, C, N-Pincer and N, N-Chelate Ligands in Platinum(II). Inorg Chem 2023; 62:10152-10170. [PMID: 37343120 PMCID: PMC11003652 DOI: 10.1021/acs.inorgchem.3c00694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/23/2023]
Abstract
Replacement of the chloride ligand of PtCl{κ3-N,C,N-[py-C6HR2-py]} (R = H (1), Me (2)) and PtCl{κ3-N,C,N-[py-O-C6H3-O-py]} (3) by hydroxido gives Pt(OH){κ3-N,C,N-[py-C6HR2-py]} (R = H (4), Me (5)) and Pt(OH){κ3-N,C,N-[py-O-C6H3-O-py]} (6). These compounds promote deprotonation of 3-(2-pyridyl)pyrazole, 3-(2-pyridyl)-5-methylpyrazole, 3-(2-pyridyl)-5-trifluoromethylpyrazole, and 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole. The coordination of the anions generates square-planar derivatives, which in solution exist as a unique species or equilibria between isomers. Reactions of 4 and 5 with 3-(2-pyridyl)pyrazole and 3-(2-pyridyl)-5-methylpyrazole provide Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[R'pz-py]} (R = H; R' = H (7), Me (8). R = Me; R' = H (9), Me (10)), displaying κ1-N1-pyridylpyrazolate coordination. A 5-trifluoromethyl substituent causes N1-to-N2 slide. Thus, 3-(2-pyridyl)-5-trifluoromethylpyrazole affords equilibria between Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[CF3pz-py]} (R = H (11a), Me (12a)) and Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N2-[CF3pz-py]} (R = H (11b), Me (12b)). 1,3-Bis(2-pyridyloxy)phenyl allows the chelating coordination of the incoming anions. Deprotonations of 3-(2-pyridyl)pyrazole and its substituted 5-methyl counterpart promoted by 6 lead to equilibria between Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[R'pz-py]} (R' = H (13a), Me (14a)) with a κ-N1-pyridylpyrazolate anion, keeping the pincer coordination of the di(pyridyloxy)aryl ligand, and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[R'pz-py]} (R' = H (13c), Me (14c)) with two chelates. Under the same conditions, 3-(2-pyridyl)-5-trifluoromethylpyrazole generates the three possible isomers: Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[CF3pz-py]} (15a), Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N2-[CF3pz-py]} (15b), and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[CF3pz-py]} (15c). The N1-pyrazolate atom produces a remote stabilizing effect on the chelating form, pyridylpyrazolates being better chelate ligands than pyridylpyrrolates. Accordingly, reactions of 4-6 with 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole yield Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[(CF3)2C4(py)HN]} (R = H (16), Me (17)) or Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[(CF3)2C4(py)HN]} (18), displaying κ1-N1-pyrrolate coordination. Complexes 7-10 are efficient green phosphorescent emitters (488-576 nm). In poly(methyl methacrylate) (PMMA) films and in dichloromethane, they experience self-quenching, due to molecular stacking. Aggregation occurs through aromatic π-π interactions, reinforced by weak platinum-platinum interactions.
Collapse
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
de las Heras L, Esteruelas MA, Oliván M, Oñate E. Rhodium-Promoted C-H Bond Activation of Quinoline, Methylquinolines, and Related Mono-Substituted Quinolines. Organometallics 2022; 41:2317-2326. [PMID: 36866062 PMCID: PMC9969481 DOI: 10.1021/acs.organomet.2c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The C-H bond activation of methylquinolines, quinoline, 3-methoxyquinoline, and 3-(trifluoromethyl)quinoline promoted by the square-planar rhodium(I) complex RhH{κ3-P,O,P-[xant(PiPr2)2]} [1; xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene] has been systematically studied. Results reveal that the activation of the heteroring is preferred over the activation of the carbocycle, and the activated position depends upon the position of the substituent in the substrate. Thus, 3-, 4-, and 5-methylquinoline reacts with 1 to quantitatively form square-planar rhodium(I)-(2-quinolinyl) derivatives, whereas 2-, 6-, and 7-methylquinoline quantitatively leads to rhodium(I)-(4-quinolinyl) species. By contrast, quinoline and 8-methylquinoline afford mixtures of the respective rhodium(I)-(2-quinolinyl) and -(4-quinolinyl) complexes. 3-Methoxyquinoline displays the same behavior as that of 3-methylquinoline, while 3-(trifluoromethyl)quinoline yields a mixture of rhodium(I)-(2-quinolinyl), -(4-quinolinyl), -(6-quinolinyl), and -(7-quinolinyl) isomers.
Collapse
|
3
|
Babón JC, Esteruelas MA, Oñate E, Paz S, Vélez A. Silyl-Osmium(IV)-Trihydride Complexes Stabilized by a Pincer Ether-Diphosphine: Formation and Reactions with Alkynes. Organometallics 2022; 41:2022-2034. [PMID: 36866234 PMCID: PMC9969874 DOI: 10.1021/acs.organomet.2c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Complex OsH4{κ3-P,O,P-[xant(PiPr2)2]} (1) activates the Si-H bond of triethylsilane, triphenylsilane, and 1,1,1,3,5,5,5-heptamethyltrisiloxane to give the silyl-osmium(IV)-trihydride derivatives OsH3(SiR3){κ3-P,O,P-[xant(PiPr2)2]} [SiR3 = SiEt3 (2), SiPh3 (3), SiMe(OSiMe3)2 (4)] and H2. The activation takes place via an unsaturated tetrahydride intermediate, resulting from the dissociation of the oxygen atom of the pincer ligand 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(PiPr2)2). This intermediate, which has been trapped to form OsH4{κ2-P,P-[xant(PiPr2)2]}(PiPr3) (5), coordinates the Si-H bond of the silanes to subsequently undergo a homolytic cleavage. Kinetics of the reaction along with the observed primary isotope effect demonstrates that the Si-H rupture is the rate-determining step of the activation. Complex 2 reacts with 1,1-diphenyl-2-propyn-1-ol and 1-phenyl-1-propyne. The reaction with the former affords Os{C≡CC(OH)Ph2}2{=C=CHC(OH)Ph2}{κ3-P,O,P-[xant(PiPr2)2]} (6), which catalyzes the conversion of the propargylic alcohol into (E)-2-(5,5-diphenylfuran-2(5H)-ylidene)-1,1-diphenylethan-1-ol, via (Z)-enynediol. In methanol, the hydroxyvinylidene ligand of 6 dehydrates to allenylidene, generating Os{C≡CC(OH)Ph2}2{=C=C=CPh2}{κ3-P,O,P-[xant(PiPr2)2]} (7). The reaction of 2 with 1-phenyl-1-propyne leads to OsH{κ1-C,η2-[C6H4CH2CH=CH2]}{κ3-P,O,P-[xant(PiPr2)2]} (8) and PhCH2CH=CH(SiEt3).
Collapse
|
4
|
Esteruelas MA, López AM, Oñate E, Raga E. Metathesis between E-C(sp n ) and H-C(sp 3 ) σ-Bonds (E=Si, Ge; n=2, 3) on an Osmium-Polyhydride. Angew Chem Int Ed Engl 2022; 61:e202204081. [PMID: 35544362 PMCID: PMC9401005 DOI: 10.1002/anie.202204081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 01/12/2023]
Abstract
The silylation of a phosphine of OsH6 (Pi Pr3 )2 is performed via net-metathesis between Si-C(spn ) and H-C(sp3 ) σ-bonds (n=2, 3). Complex OsH6 (Pi Pr3 )2 activates the Si-H bond of Et3 SiH and Ph3 SiH to give OsH5 (SiR3 )(Pi Pr3 )2 , which yield OsH4 {κ1 -P,η2 -SiH-[i Pr2 PCH(Me)CH2 SiR2 H]}(Pi Pr3 ) and R-H (R=Et, Ph), by displacement of a silyl substituent with a methyl group of a phosphine. Such displacement is a first-order process, with activation entropy consistent with a rate determining step occurring via a highly ordered transition state. It displays selectivity, releasing the hydrocarbon resulting from the rupture of the weakest Si-substituent bond, when the silyl ligand bears different substituents. Accordingly, reactions of OsH6 (Pi Pr3 )2 with dimethylphenylsilane, and 1,1,1,3,5,5,5-heptamethyltrisiloxane afford OsH5 (SiR2 R')(Pi Pr3 )2 , which evolve into OsH4 {κ1 -P,η2 -GeH-[i Pr2 PCH(Me)CH2 SiR2 H]}(Pi Pr3 ) (R=Me, OSiMe3 ) and R'-H (R'=Ph, Me). Exchange reaction is extended to Et3 GeH. The latter reacts with OsH6 (Pi Pr3 )2 to give OsH5 (GeEt3 )(Pi Pr3 )2 , which loses ethane to form OsH4 {κ1 -P,η2 -GeH-[i Pr2 PCH(Me)CH2 GeEt2 H]}(Pi Pr3 ).
Collapse
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Ana M. López
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Enrique Oñate
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Esther Raga
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| |
Collapse
|
5
|
Esteruelas MA, López AM, Oñate E, Raga E. Metathesis between E−C(sp
n
) and H−C(sp
3
) σ‐Bonds (E=Si, Ge;
n
=2, 3) on an Osmium‐Polyhydride. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Ana M. López
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Esther Raga
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| |
Collapse
|
6
|
de las Heras L, Esteruelas MA, Oliván M, Oñate E. C-Cl Oxidative Addition and C-C Reductive Elimination Reactions in the Context of the Rhodium-Promoted Direct Arylation. Organometallics 2022; 41:716-732. [PMID: 35368715 PMCID: PMC8966374 DOI: 10.1021/acs.organomet.1c00643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/09/2023]
Abstract
A cycle of stoichiometric elemental reactions defining the direct arylation promoted by a redox-pair Rh(I)-Rh(III) is reported. Starting from the rhodium(I)-aryl complex RhPh{κ3-P,O,P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene), the reactions include C-Cl oxidative addition of organic chlorides, halide abstraction from the resulting six-coordinate rhodium(III) derivatives, C-C reductive coupling between the initial aryl ligand and the added organic group, oxidative addition of a C-H bond of a new arene, and deprotonation of the generated hydride-rhodium(III)-aryl species to form a new rhodium(I)-aryl derivative. In this context, the kinetics of the oxidative additions of 2-chloropyridine, chlorobenzene, benzyl chloride, and dichloromethane to RhPh{κ3-P,O,P-[xant(PiPr2)2]} and the C-C reductive eliminations of biphenyl and benzylbenzene from [RhPh2{κ3-P,O,P-[xant(PiPr2)2]}]BF4 and [RhPh(CH2Ph){κ3-P,O,P-[xant(PiPr2)2]}]BF4, respectively, have been studied. The oxidative additions generally involve the cis addition of the C-Cl bond of the organic chloride to the rhodium(I) complex, being kinetically controlled by the C-Cl bond dissociation energy; the weakest C-Cl bond is faster added. The C-C reductive elimination is kinetically governed by the dissociation energy of the formed bond. The C(sp3)-C(sp2) coupling to give benzylbenzene is faster than the C(sp2)-C(sp2) bond formation to afford biphenyl. In spite of that a most demanding orientation requirement is needed for the C(sp3)-C(sp2) coupling than for the C(sp2)-C(sp2) bond formation, the energetic effort for the pregeneration of the C(sp3)-C(sp2) bond is lower. As a result, the weakest C-C bond is formed faster.
Collapse
Affiliation(s)
- Laura
A. de las Heras
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H. Nat Commun 2022; 13:847. [PMID: 35165278 PMCID: PMC8844420 DOI: 10.1038/s41467-022-28439-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The tremendous success of stereogenic carbon compounds has never ceased to inspire researchers to explore the potentials of stereogenic silicon compounds. Intermolecular C–H silylation thus represents the most versatile and straightforward strategy to construct C–Si bonds, however, its enantioselective variant has been scarcely reported to date. Herein we report a protocol that allows for the enantioselective intermolecular C–H bond silylation, leading to the construction of a wide array of acyclic stereogenic Si–H compounds under simple and mild reaction conditions. Key to the success is (1) a substrate design that prevents the self-reaction of prochiral silane and (2) the employment of a more reactive rhodium hydride ([Rh]-H) catalyst as opposed to the commonly used rhodium chloride ([Rh]-Cl) catalyst. This work unveils opportunities in converting simple arenes into value-added stereogenic silicon compounds. Construction of chiral organosilicon compounds could have implications in photophysical, biological, and chemical fields, as silicon is isoelectronic with carbon, and can mimic carbon atoms while providing slightly different properties. Here the authors present an intermolecular, enantioselective C–H silylation of heterocycles via rhodium catalysis.
Collapse
|
8
|
Babón JC, Esteruelas MA, López AM. Homogeneous catalysis with polyhydride complexes. Chem Soc Rev 2022; 51:9717-9758. [DOI: 10.1039/d2cs00399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review analyzes the role of transition metal polyhydrides as homogeneous catalysts for organic reactions. Discussed reactions involve nearly every main organic functional group.
Collapse
Affiliation(s)
- Juan C. Babón
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M. López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Shi Y, Bai W, Mu W, Li J, Yu J, Lian B. Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Cancela L, Esteruelas MA, Oliván M, Oñate E. Azolium Control of the Osmium-Promoted Aromatic C-H Bond Activation in 1,3-Disubstituted Substrates. Organometallics 2021; 40:3979-3991. [PMID: 34924674 PMCID: PMC8672810 DOI: 10.1021/acs.organomet.1c00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/29/2022]
Abstract
The hexahydride complex OsH6(PiPr3)2 promotes the C-H bond activation of the 1,3-disubstituted phenyl group of the [BF4]- and [BPh4]- salts of the cations 1-(3-(isoquinolin-1-yl)phenyl)-3-methylimidazolium and 1-(3-(isoquinolin-1-yl)phenyl)-3-methylbenzimidazolium. The reactions selectively afford neutral and cationic trihydride-osmium(IV) derivatives bearing κ2-C,N- or κ2-C,C-chelating ligands, a cationic dihydride-osmium(IV) complex stabilized by a κ3-C,C,N-pincer group, and a bimetallic hexahydride formed by two trihydride-osmium(IV) fragments. The metal centers of the hexahydride are separated by a bridging ligand, composed of κ2-C,N- and κ2-C,C-chelating moieties, which allows electronic communication between the metal centers. The wide variety of obtained compounds and the high selectivity observed in their formation is a consequence of the main role of the azolium group during the activation and of the existence of significant differences in behavior between the azolium groups. The azolium role is governed by the anion of the salt, whereas the azolium behavior depends upon its imidazolium or benzimidazolium nature. While [BF4]- inhibits the azolium reactions, [BPh4]- favors the azolium participation in the activation process. In contrast to benzimidazolylidene, the imidazolylidene resulting from the deprotonation of the imidazolium substituent coordinates in an abnormal fashion to direct the phenyl C-H bond activation to the 2-position. The hydride ligands of the cationic dihydride-osmium(IV) pincer complex display intense quantum mechanical exchange coupling. Furthermore, this salt is a red phosphorescent emitter upon photoexcitation and displays a noticeable catalytic activity for the dehydrogenation of 1-phenylethanol to acetophenone and of 1,2-phenylenedimethanol to 1-isobenzofuranone. The bimetallic hexahydride shows catalytic synergism between the metals, in the dehydrogenation of 1,2,3,4-tetrahydroisoquinoline and alcohols.
Collapse
Affiliation(s)
- Lara Cancela
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A Esteruelas
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
11
|
Esteruelas MA, Oñate E, Paz S, Vélez A. Repercussion of a 1,3-Hydrogen Shift in a Hydride-Osmium-Allenylidene Complex. Organometallics 2021; 40:1523-1537. [PMID: 35693112 PMCID: PMC9180373 DOI: 10.1021/acs.organomet.1c00176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/16/2022]
Abstract
![]()
An unusual 1,3-hydrogen shift from the metal center to the Cβ atom of the C3-chain of the allenylidene
ligand in a hydride-osmium(II)-allenylidene complex is the beginning
of several interesting transformations in the cumulene. The hydride-osmium(II)-allenylidene
complex was prepared in two steps, starting from the tetrahydride
dimer [(Os(H···H){κ3-P,O,P-[xant(PiPr2)2]})2(μ-Cl)2][BF4]2 (1). Complex 1 reacts with 1,1-diphenyl-2-propyn-1-ol to give the hydride-osmium(II)-alkenylcarbyne
[OsHCl(≡CCH=CPh2){κ3-P,O,P-[xant(PiPr2)2]}]BF4 (2), which yields OsHCl(=C=C=CPh2){κ3-P,O,P-[xant(PiPr2)2]} (3) by selective abstraction of the Cβ–H hydrogen atom of the alkenylcarbyne ligand
with KtBuO. Complex 3 is
metastable. According to results of DFT calculations, the migration
of the hydride ligand to the Cβ atom of the cumulene
has an activation energy too high to occur in a concerted manner.
However, the migration can be catalyzed by water, alcohols, and aldehydes.
The resulting alkenylcarbyne-osmium(0) intermediate is unstable and
evolves into a 7:3 mixture of the hydride-osmium(II)-indenylidene
OsHCl(=CIndPh){κ3-P,O,P-[xant(PiPr2)2]} (4) and the osmanaphthalene
OsCl(C9H6Ph){κ3-P,O,P-[xant(PiPr2)2]} (5). Protonation
of 4 with HBF4 leads to the elongated dihydrogen
complex [OsCl(η2-H2)(=CIndPh){κ3-P,O,P-[xant(PiPr2)2]}]BF4 (6), while the protonation
of 5 regenerates 2. In contrast to 4, complex 6 evolves to a half-sandwich indenyl
derivative, [Os(η5-IndPh)H{κ3-P,O,P-[xant(PiPr2)2]}][BF4]Cl
(7). Phenylacetylene also provokes the 1,3-hydrogen shift
in 3. However, it does not participate in the migration.
In contrast to water, alcohols, and aldehydes, it stabilizes the resulting
alkenylcarbyne to afford [Os(≡CCH=CPh2)(η2-HC≡CPh){κ3-P,O,P-[xant(PiPr2)2]}]Cl (8).
Collapse
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINCA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINCA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Sonia Paz
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINCA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| | - Andrea Vélez
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) − Centro de Innovación en Química Avanzada (ORFEO−CINCA), Universidad de Zaragoza − CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Chapp SM, Schley ND. Reversible C(sp 3)-Si Oxidative Addition of Unsupported Organosilanes: Effects of Silicon Substituents on Kinetics and Thermodynamics. J Am Chem Soc 2021; 143:5534-5539. [PMID: 33784087 DOI: 10.1021/jacs.1c01564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermolecular oxidative addition of unactivated C(sp3)-Si bonds is reported for a family of organosilanes at a cationic pincer-supported iridium complex. To our knowledge, no examples of oxidative addition to give analogous unsupported (alkyl)metal silyl complexes have been previously reported. The generality of this transformation is excellent, with successful examples demonstrated for tetraorganosilanes, mono- and poly alkoxysilanes, and two siloxysilanes. Oxidative addition is found to be completely reversible, with the product of reductive elimination being subject to trapping by triethylsilane. The successful isolation of these metal silyl complexes has allowed for an in-depth kinetic analysis of C(sp3)-Si reductive elimination, a process with strong implications in both catalytic C-H silylation and olefin hydrosilylation. The apparent order of reactivity is SiMe3 > SiMe2(CF3) > SiMe2OSiMe3 > SiMe2OSiMe2OSiMe3 > SiMe2(OMe) > SiMe2(OEt) > SiMe(OMe)2. A DFT analysis of the oxidative addition products shows that the thermodynamic stability of the (alkyl)metal silyl complexes span a range of ca. 10 kcal·mol-1, which relate closely with the experimentally determined rates of C(sp3)-Si reductive elimination and trapping, though a clear kinetic distinction exists between methoxy- and siloxysilyl complexes.
Collapse
Affiliation(s)
- Scott M Chapp
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235 United States
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235 United States
| |
Collapse
|
13
|
Zhang L, An K, Wang Y, Wu YD, Zhang X, Yu ZX, He W. A Combined Computational and Experimental Study of Rh-Catalyzed C-H Silylation with Silacyclobutanes: Insights Leading to a More Efficient Catalyst System. J Am Chem Soc 2021; 143:3571-3582. [PMID: 33621095 DOI: 10.1021/jacs.0c13335] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The study of new C-H silylation reagents and reactions remains an important topic. We reported that under Rh catalysis, silacyclobutanes (SCBs) for the first time were able to react with C(sp2)-H and C(sp3)-H bonds, however the underlying reasons for such a new reactivity were not understood. Through this combined computational and experimental study on C-H silylation with SCBs, we not only depict a reaction pathway that fully accounts for the reactivity and all the experimental findings but also streamline a more efficient catalyst that significantly improves the reaction rates and yields. Our key findings include: (1) the active catalytic species is a [Rh]-H as opposed to the previously proposed [Rh]-Cl; (2) the [Rh]-H is generated via a reductive elimination/β-hydride (β-H) elimination sequence, as opposed to previously proposed endocyclic β-H elimination; (3) the regio- and enantio-determining steps are identified; (4) and of the same importance, the discretely synthesized [Rh]-H is shown to be a more efficient catalyst. This work suggests that the [Rh]-H/diphosphine system should find further applications in C-H silylations involving SCBs.
Collapse
Affiliation(s)
- Linxing Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kun An
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology and School of Pharmaceutical Sciences and Tsinghua-Peking Joint Centers for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology and School of Pharmaceutical Sciences and Tsinghua-Peking Joint Centers for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|