1
|
Ohno Y, Ehara T, Sato K, Hifumi R, Tomita I, Inagi S. Orthogonal Synthesis of Cationic Azatriphenylene Derivatives for Aggregation-Induced Emission (AIE) and Aggregation-Caused Quenching (ACQ) Property Switching. Org Lett 2025; 27:4964-4968. [PMID: 40320658 PMCID: PMC12090212 DOI: 10.1021/acs.orglett.5c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Abstract
Herein, we report a divergent synthesis of cationic azatriphenylene derivatives using orthogonal control of thermal and electro-oxidative pyridination, which transforms the single precursor into controlled products with perfect selectivity. Simultaneously, two switchable reactions afford the corresponding pyridinium salts with different optical properties such as aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) effects.
Collapse
Affiliation(s)
- Yushi Ohno
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tsukasa Ehara
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Sato
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryoyu Hifumi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ikuyoshi Tomita
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shinsuke Inagi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Cao Y, Perry JSM, Zhang E, Trinh A, Kacker A, Cruz S, Ceballos H, Pan A, Huang W, Kou KGM. Synthesis of Protoberberine Alkaloids by C-H Functionalization and Anionic Aza-6π-Electrocyclization: Dual Activity as AMPK Activators and Inhibitors. JACS AU 2025; 5:1429-1438. [PMID: 40151253 PMCID: PMC11937996 DOI: 10.1021/jacsau.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in maintaining cellular energy homeostasis, and its activation has garnered attention for treating chronic metabolic diseases. Inhibitors of AMPK are underdeveloped but bear implications in treating cancers, controlling autophagy, and elderly wasting. Protoberberine alkaloids are typically regarded as AMPK activators. Herein, we report a modular synthesis strategy to access a collection of oxyberberine alkaloids, including the first synthesis of stepharotudine. In vitro assays reveal how subtle structural modifications can negate AMPK activation while conferring unprecedented inhibitory properties within the same class of compounds, which was previously unknown. Key steps in the synthesis include an oxidative Rh(III)-catalyzed C-H functionalization using electron-rich alkenes, NaH-mediated reductive N-O bond cleavage, and a rare example of an anionic aza-6π-electrocyclization. Additionally, we provide mechanistic support for nucleophilic hydride transfer reactivity with NaH in DMF.
Collapse
Affiliation(s)
- Yujie Cao
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Justin S. M. Perry
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Eryun Zhang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Andy Trinh
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Arnav Kacker
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Shayne Cruz
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Hannah Ceballos
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Aaron Pan
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Wendong Huang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Kevin G. M. Kou
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
3
|
Bhowmick S, Awasthi A, Tiwari K, Yadav P, Tiwari DK. Rhenium-Catalyzed C(sp 2)-H Silylalkenylation of Arenes: An Anti-Markovnikov Linchpin Strategy. Org Lett 2025; 27:2289-2294. [PMID: 40021471 DOI: 10.1021/acs.orglett.4c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Re-catalyzed highly regio- and stereoselective o-C(sp2)-H silylalkenylation of arenes is reported using a directing group approach under ligand-, additive-, and base-free conditions. A series of imine directing groups (DGs) have been exploited on aromatic aldehydes to overcome de novo synthesis. This unique protocol allows us to access o-C-H activation of various heterocyclic moieties, including N-aryl 2-pyridones and arylpyridines. Sequential difunctionalization experiments have been performed. A series of mechanistic experiments have been carried out to gain mechanistic insight.
Collapse
Affiliation(s)
- Suman Bhowmick
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Annapurna Awasthi
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Khushboo Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Pushpendra Yadav
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dharmendra Kumar Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
González JA, Arribas A, Tian P, Díaz-Alonso S, Mascareñas JL, López F, Nevado C. Gold(III) Auracycles Featuring C(sp 3)-Au-C(sp 2) Bonds: Synthesis and Mechanistic Insights into the Cycloauration Step. Angew Chem Int Ed Engl 2024; 63:e202402798. [PMID: 38776235 DOI: 10.1002/anie.202402798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The direct auration of arenes is a key step in numerous gold-catalyzed reactions. Although reported more than 100 years ago, understanding of its underlying mechanism has been hampered by the difficulties in the isolation of relevant intermediates given the propensity of gold(III) species to undergo reductive elimination. Here, we report the synthesis and isolation of a new family of intriguing zwitterionic [C(sp3)^C(sp2)]-auracyclopentanes, as well as of their alkyl-gold(III) precursors and demonstrate their value as mechanistic probes to study the C(sp2)-Au bond-forming event. Experimental investigations employing Kinetic Isotope Effects (KIE), Hammett plot, and Eyring analysis provided important insights into the formation of the auracycle. The data suggest a SEAr mechanism wherein the slowest step might be the π-coordination between the arene and the gold(III) center, en route to the Wheland intermediate. We also show that these auracyclopentanes can work as catalysts in several gold-promoted transformations.
Collapse
Affiliation(s)
- Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Puyang Tian
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sergio Díaz-Alonso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
5
|
Wang EB, Fan Q, Lu X, Sun B, Zhang FL. Visible light-induced reductive aza-6π electrocyclization access to phenanthridines. Org Biomol Chem 2024; 22:4968-4972. [PMID: 38825973 DOI: 10.1039/d4ob00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Visible light-induced aza-6π electrocyclization was developed for the synthesis of aza-arenes from nitroarenes with diverse aldehydes. This protocol allows the reduction of nitroarenes by B2nep2 and subsequent 6π-electrocyclization of the in situ formed imine under visible light. An array of 6- and multi-substituted phenanthridines were constructed in moderate to good yields under purple LEDs at room temperature. A wide scope of substrates with diverse functional groups were well tolerated. In addition, the synthetic utility of this methodology was further demonstrated in the late-stage functionalization of celecoxib.
Collapse
Affiliation(s)
- Er-Bin Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Qingtian Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen 518057, P. R. China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
6
|
Niu ZX, Wang YT, Wang JF. Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids. Nat Prod Rep 2024. [PMID: 38712365 DOI: 10.1039/d4np00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Shangqiu 476000, Henan Province, China.
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jun-Feng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA.
| |
Collapse
|
7
|
Hamatani S, Kitagawa D, Kobatake S. Diarylethene Photoswitches Undergoing 6π Azaelectrocyclic Reaction: Disrotatory Thermal Cycloreversion of the Closed-Ring Isomer. J Phys Chem Lett 2023; 14:8277-8280. [PMID: 37676689 DOI: 10.1021/acs.jpclett.3c02207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gaining insight into the dynamics of electrocyclic reactions is very important from both fundamental and application perspectives. In this study, we developed novel diarylethene photoswitches that undergo 6π azaelectrocyclic reaction. We found that they exhibit fast thermally reversible type (T-type) photochromism, in contrast to the fact that common diarylethenes exhibit photochemically reversible type (P-type) photochromism. The quantum chemical calculations revealed that the fast T-type photochromism originates from the unprecedented disrotatory thermal cycloreversion of the closed-ring isomer. Our results provide useful information not only for the dynamics of the 6π azaelectrocyclic reaction but also for the further development of diarylethene photoswitches utilizing the 6π azaelectrocyclic reaction.
Collapse
Affiliation(s)
- Shota Hamatani
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Seiya Kobatake
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
8
|
Sun Z, Zhang X, Fu J, Zhang L, Cheng M, Yang L, Liu Y. Collective Syntheses of 8-Oxoprotoberberines via Sequential In(OTf) 3-Catalyzed Cyclization and Pd(OAc) 2-Catalyzed Heck Coupling. J Org Chem 2023. [PMID: 37172220 DOI: 10.1021/acs.joc.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six 8-oxoprotoberberines were synthesized collectively in four steps with acceptable yields (14-19%), of which the products 8-oxopalmatine, 8-oxopseudopalmatine, 8-oxoberberine, and 8-oxopseudoberberine come from nature. The synthetic route was featured with the In(OTf)3-catalyzed cyclization and Heck coupling. Moreover, the syntheses of the natural products berberine, canadine, and iambertine were achieved via various reductions from 8-oxoberberine, which provided a concise approach to the syntheses of this kind of alkaloids.
Collapse
Affiliation(s)
- Zenghui Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
9
|
Kharitonov VB, Muratov DV, Loginov DA. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Du L, Gong Y, Han J, Xin X, Luo H, Tian Y, Li Y, Li B. Cascade 8π Electrocyclization/Benzannulation to Access Highly Substituted Phenylpyridines. Org Lett 2021; 23:7966-7971. [PMID: 34617768 DOI: 10.1021/acs.orglett.1c02968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cascade 8π electrocyclization/benzannulation reaction was developed to obtain the synthetically important highly substituted phenyl-pyridines. This method shows great potential in the rapid and inexpensive application of the scalable and operationally simple production of accessible substrates. On the basis of the resulting phenyl-pyridine products, a new Ru catalyst and bidentate ligand were designed and prepared, further demonstrating its high practicability.
Collapse
Affiliation(s)
- Luan Du
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yiliang Gong
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jingpeng Han
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Xiaolan Xin
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Han Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - You Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| |
Collapse
|
11
|
Luo H, Li Y, Du L, Xin X, Wang T, Han J, Tian Y, Li B. Divergent Synthesis of Highly Substituted Pyridines and Benzenes from Dienals, Alkynes, and Sulfonyl Azides. Org Lett 2021; 23:7883-7887. [PMID: 34590870 DOI: 10.1021/acs.orglett.1c02900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent synthesis is extremely important for the highly efficient preparation of structurally diverse target molecules. Herein, we describe a multicomponent cascade reaction, which allows access to highly substituted pyridines and benzenes by combining four individual steps in a one-pot manner from the same set of readily available starting materials. The azepine intermediates were first used as the precursors for 6π-electrocyclization to construct highly substituted pyridines and benzenes in a tunable manner.
Collapse
Affiliation(s)
- Han Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - You Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Luan Du
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Xiaolan Xin
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Jingpeng Han
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, 400044, China
| |
Collapse
|
12
|
Wang Z, Zheng Z, Li P, Zhou C, Cai S, Xiao B, Wang L. Rhodium‐Catalyzed
Direct C—H Alkenylation of Indoles with Alkenyl Borates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ze‐Tian Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Zi‐Ang Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Peng‐Jie Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Chun‐Ni Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Shao‐Jun Cai
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Liang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| |
Collapse
|
13
|
Lichitsky BV, Karibov TT, Melekhina VG, Komogortsev AN, Fakhrutdinov AN, Minyaev ME, Krayushkin MM. General approach to substituted naphtho[1,2-b]benzofurans via photochemical 6π-electrocyclization of benzofuranyl containing cinnamonitriles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Li Q, Liu R, Wei Y, Shi M. Silver/Rhodium Relay Catalysis Enables C−H Functionalization of
In Situ
Generated Isoquinolines with Sulfoxonium Ylides: Construction of Hexahydrodibenzo[
a
,
g
]quinolizine Scaffolds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Quanzhe Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering East China University of Science and Technology Meilong Road No.130 Shanghai 200237 People's Republic of China
| | - Ruixing Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering East China University of Science and Technology Meilong Road No.130 Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
15
|
Jiang X, Zeng Z, Shi D, Liu C, Zhang Y. Divergent total syntheses of pseudoberberine and nitidine through C H vinylation and switchable 6π electrocyclizations. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Liu K, Jiang X. Modular and Divergent Syntheses of Protoberberine and Protonitidine Alkaloids. Org Lett 2021; 23:1327-1332. [PMID: 33555884 DOI: 10.1021/acs.orglett.0c04310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modularly convergent and divergent strategy was established for the family synthesis of both protoberberine and protonitidine alkaloids. The robust, scalable, and flexible synthetic route featured a collective preparation of protoberberine and protonitidine alkaloids from a common isoquinoline assembled from pyridyne as the key synthon, which was based on the selective N-C or C-C cyclization via distinct processes. Through the strategy, 20 protoberberine alkaloids, 5 protonitidine alkaloids, and 11 analogues with diverse substituents were comprehensively aquired.
Collapse
Affiliation(s)
- Kai Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
17
|
Yan X, Zheng J, Li WDZ. Studies on the Chemical Synthesis of Natural Drugs Berberine. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|