1
|
Mirzaei S, Khosravi H, Hu X, Mirzaei MS, Castro VME, Wang X, Figueroa NA, Chang T, Chen YP, Ríos GP, Gonzalez-Pech NI, Chen YS, Hernández Sánchez R. Catching Fullerenes: Synthesis of Molecular Nanogloves. Angew Chem Int Ed Engl 2025:e202505083. [PMID: 40310683 DOI: 10.1002/anie.202505083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
Herein, we report the synthesis of a new series of rigid, all meta-phenylene, conjugated deep-cavity molecules, displaying high binding affinity towards buckyballs. A facile synthetic approach with an overall combined yield of approximately 53% in the last two steps has been developed using a templating strategy that combines the general structure of resorcin[4]arene and [12]cyclo-meta-phenylene. These two moieties are covalently linked via four acetal bonds, resulting in a glove-like architecture. 1H NMR titration experiments reveal fullerene binding affinities (Ka) exceeding ≥106 M-1. The size complementarity between fullerenes and these scaffolds maximizes CH⋯π and π⋯π interactions, and their host:guest adduct resembles a ball in a glove, hence their name as nanogloves. Fullerene recognition is tested by suspending carbon soot in a solution of nanoglove in 1,1,2,2-tetrachloroethane, where more than a dozen fullerenes are observed, ranging from C60 to C96.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania, 15260, USA
| | - Hormoz Khosravi
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | - Xiangquan Hu
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | - M Saeed Mirzaei
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | | | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main St., Houston, Texas, 77005, USA
| | | | - Tieyan Chang
- ChemMatCARS, The University of Chicago, Lemont, Illinois, 60439, USA
| | - Ying-Pin Chen
- ChemMatCARS, The University of Chicago, Lemont, Illinois, 60439, USA
| | - Gabriella Prieto Ríos
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania, 15260, USA
| | | | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Lemont, Illinois, 60439, USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, 77005, USA
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania, 15260, USA
- Rice Advanced Materials Institute, Rice University, Houston, Texas, USA
| |
Collapse
|
2
|
Fan Y, He J, Guo S, Jiang H. Host-Guest Chemistry in Binary and Ternary Complexes Utilizing π-Conjugated Carbon Nanorings. Chempluschem 2024; 89:e202300536. [PMID: 38123532 DOI: 10.1002/cplu.202300536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
The carbon nanorings, possessing a radial π system, have garnered significant attention primarily due to their size-dependent photophysical properties and the presence of a unique curved π-conjugated cavity. This is evidenced by the rapid proliferation of publications. Furthermore, the integration of building blocks into CPP skeletons can confer [n]CPPs with novel and exceptional photophysical and electronic characteristics, as well as chiral properties and host-guest interactions, thereby augmenting the diversity of [n]CPPs. Notably, the curved π surface structures and concave cavity of carbon nanorings enable them to host aromatic or non-aromatic guests with a complementarily curved surface, resulting in interesting binary or ternary complexes. This review provides a comprehensive treatment of literature reports on binary and ternary complexes, focusing on both their host-guest interactions and properties. It is important to note that the scope of this review is limited to host-guest chemistry in binary and ternary complexes based on π-conjugated carbon nanorings.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
3
|
Giovanardi G, Cattani S, Balestri D, Secchi A, Cera G. Iridium-Catalyzed C-H Borylations: Regioselective Functionalizations of Calix[4]arene Macrocycles. J Org Chem 2024; 89:8486-8499. [PMID: 38816966 DOI: 10.1021/acs.joc.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We report iridium-catalyzed C-H borylations for the regioselective synthesis of distally disubstituted calix[4]arene macrocycles. The atom- and step-economical method led to a broad family of calix[4]arenes in good yields and functional group tolerance. The synthetic utility of the C-H borylation protocol was finally illustrated with several late-stage modifications for the synthesis of elaborate calix[4]arenes frameworks, otherwise challenging to achieve with commonly employed procedures.
Collapse
Affiliation(s)
- Gabriele Giovanardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Yang J, Mao LL, Xiao H, Zhang G, Zhang S, Kang L, Lin Z, Tung CH, Wu LZ, Cong H. A Conjugated Phenylene Nanocage with a Guest-Adaptive Deformable Cavity. Angew Chem Int Ed Engl 2024; 63:e202403062. [PMID: 38421901 DOI: 10.1002/anie.202403062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
The highly strained, phenylene-derived organic cages are typically regarded as very rigid entities, yet their deformation potential and supramolecular properties remain underexplored. Herein, we report a pliable conjugated phenylene nanocage by synergistically merging rigid and flexible building blocks. The anisotropic cage molecule contains branched phenylene chains capped by a calix[6]arene moiety, the delicate conformational changes of which endow the cage with a remarkably deformable cavity. When complexing with fullerene guests, the cage showcases excellent guest-adaptivity, with its cavity volume capable of swelling by as much as 85 %.
Collapse
Affiliation(s)
- Jingxuan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang-Liang Mao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Kang
- Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheshuai Lin
- Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Yoshigoe Y, Shimada H, Takaki T, Imai Y, Saito S. Synthesis and Isolation of a Homochiral Nanohoop Composed of a Tröger's Base and Hexaparaphenylene. Chemistry 2024; 30:e202304059. [PMID: 38230745 DOI: 10.1002/chem.202304059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
The synthesis of a new nanohoop containing a stereogenic Tröger's base skeleton tethered to a curved hexaparaphenylene ([6]CPP) is reported. The TB[6]CPP nanohoop possesses a stable C2 symmetrical structure, which promotes the allowed transition that gives rise to pale blue emission with a quantum yield of ~0.69, surpassing the value of the more symmetrical [8]CPP. Moreover, TB[6]CPP shows chiroptical properties including circular dichroism and circularly polarized luminescence with a moderate dissymmetry factor (|glum|) of ~2.1×10-3.
Collapse
Affiliation(s)
- Yusuke Yoshigoe
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hirotaka Shimada
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Takuya Takaki
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shinich Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
6
|
Grabicki N, Fisher S, Dumele O. A Fourfold Gold(I)-Aryl Macrocycle with Hyperbolic Geometry and its Reductive Elimination to a Carbon Nanoring Host. Angew Chem Int Ed Engl 2023; 62:e202217917. [PMID: 36753601 DOI: 10.1002/anie.202217917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI 2 -aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60 , and C70 were determined.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Sergey Fisher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Oliver Dumele
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
7
|
Pavlović RZ, Zhiquan L, Finnegan TJ, Waudby CA, Wang X, Gunawardana VWL, Zhu X, Wong CM, Hamby T, Moore CE, Hoefer N, McComb DW, Sevov CS, Badjić JD. Closed Aromatic Tubes-Capsularenes. Angew Chem Int Ed Engl 2022; 61:e202211304. [PMID: 35981224 PMCID: PMC9825917 DOI: 10.1002/anie.202211304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/11/2023]
Abstract
In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4-7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1 H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7×0.9 nm), 8 (0.7×1.1 nm;) and 9 (0.7×1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices.
Collapse
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | | | - Xiuze Wang
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | | | - Xingrong Zhu
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Curt M. Wong
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Taylor Hamby
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Nicole Hoefer
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOH 43210USA
| | - David W. McComb
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOH 43210USA,Department of Materials Science and EngineeringThe Ohio State UniversityColumbusOH 43210USA
| | - Christo S. Sevov
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| |
Collapse
|
8
|
Yoshigoe Y, Tanji Y, Hata Y, Osakada K, Saito S, Kayahara E, Yamago S, Tsuchido Y, Kawai H. Dynamic Au-C σ-Bonds Leading to an Efficient Synthesis of [ n]Cycloparaphenylenes ( n = 9-15) by Self-Assembly. JACS AU 2022; 2:1857-1868. [PMID: 36032535 PMCID: PMC9400051 DOI: 10.1021/jacsau.2c00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmetalation of the digold(I) complex [Au2Cl2(dcpm)] (1) (dcpm = bis(dicyclohexylphosphino)methane) with oligophenylene diboronic acids gave the triangular macrocyclic complexes [Au2(C6H4) x (dcpm)]3 (x = 3, 4, 5) with yields of over 70%. On the other hand, when the other digold(I) complex [Au2Cl2(dppm)] (1') (dppm = bis(diphenylphosphino)methane) was used, only a negligible amount of the triangular complex was obtained. The control experiments revealed that the dcpm ligand accelerated an intermolecular Au(I)-C σ-bond-exchange reaction and that this high reversibility is the origin of the selective formation of the triangular complexes. Structural analyses and theoretical calculations indicate that the dcpm ligand increases the electrophilicity of the Au atom in the complex, thus facilitating the exchange reaction, although the cyclohexyl group is an electron-donating group. Furthermore, the oxidative chlorination of the macrocyclic gold complexes afforded a series of [n]cycloparaphenylenes (n = 9, 12, 15) in 78-88% isolated yields. The reorganization of two different macrocyclic Au complexes gave a mixture of macrocyclic complexes incorporating different oligophenylene linkers, from which a mixture of [n]cycloparaphenylenes with various numbers of phenylene units was obtained in good yields.
Collapse
Affiliation(s)
- Yusuke Yoshigoe
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yohei Tanji
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Hata
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohtaro Osakada
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichi Saito
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Eiichi Kayahara
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeru Yamago
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshitaka Tsuchido
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
9
|
Pavlović RZ, Zhiquan L, Finnegan TJ, Waudby CA, Wang X, Gunawardana VWL, Zhu X, Wong CM, Hamby T, Moore CE, Hoefer N, McComb DW, Sevov CS, Badjic JD. Closed Aromatic Tubes ‐ Capsularenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Lei Zhiquan
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | | | - Xiuze Wang
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | - Xingrong Zhu
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Curt M. Wong
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Taylor Hamby
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Curtis E. Moore
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Nicole Hoefer
- The Ohio State University Center for Electron Microscopy and Analysis UNITED STATES
| | - David W McComb
- The Ohio State University Material Science and Engineering UNITED STATES
| | - Christo S. Sevov
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| |
Collapse
|
10
|
Fedorowicz D, Banach S, Koza P, Frydrych R, Ślepokura K, Gregoliński J. Controlling chirality in the synthesis of 4 + 4 diastereomeric amine macrocycles derived from trans-1,2-diaminocyclopentane and 2,6-diformylpyridine. Org Biomol Chem 2022; 20:1080-1094. [PMID: 35020779 DOI: 10.1039/d1ob02410h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A few suitably long dialdehyde and primary diamine building blocks of a predetermined chirality have been designed and synthesized to enable controlled and efficient synthesis of all six possible diastereomers of 4 + 4 macrocyclic amine derived from trans-1,2-diaminocyclopentane (DACP) and 2,6-diformypyridine (DFP) units. Although two out of six diastereomers have been reported recently, their synthesis presented here is more direct and occurs with an improved yield. This family of 4 + 4 macrocycles contains one pair of homochiral enantiomers of identical RRRRRRRR and SSSSSSSS configurations of DACP units, two different meso forms (meso I of alternating RRSSRRSS and meso II of neighboring RRRRSSSS configuration of DACP moieties) as well as one pair of heterochiral enantiomers, where configuration of one diamine fragment is opposite to the other three diamine parts, RRRRRRSS and SSSSSSRR, respectively. The structures of each type of macrocycle in solid state have been confirmed by single crystal analyses of a macrocyclic amine in its suitable protonated form. The different symmetry of each type of macrocycle in solutions has been proved by 1H and 13C NMR spectra of their hydrochloride derivatives. The chiral nature of two different pairs of optically active enantiomers has been established by circular dichroism spectra. These chiral 4 + 4 diastereomeric macrocycles are receptors for chiral guests and recognize in solution 10-camphorsulfonic acid as well as chiral tartaric acid.
Collapse
Affiliation(s)
- Dominika Fedorowicz
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Sylwia Banach
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Patrycja Koza
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Rafał Frydrych
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Katarzyna Ślepokura
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Janusz Gregoliński
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
11
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung C, Wu L, Cong H. A Conjugated Figure‐of‐Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
12
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung CH, Wu LZ, Cong H. A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2021; 61:e202113334. [PMID: 34817926 DOI: 10.1002/anie.202113334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Indexed: 11/06/2022]
Abstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C60 or C70 , which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Collapse
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Yang Y, Huangfu S, Sato S, Juríček M. Cycloparaphenylene Double Nanohoop: Structure, Lamellar Packing, and Encapsulation of C 60 in the Solid State. Org Lett 2021; 23:7943-7948. [PMID: 34558903 PMCID: PMC8524662 DOI: 10.1021/acs.orglett.1c02950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new member of the cycloparaphenylene double-nanohoop family was synthesized. Its π-framework features two oval cavities that display different shapes depending on the crystallization conditions. Incorporation of the peropyrene bridge within the nanoring cycles via bay-regions alleviates steric effects and thus allows 1:1 complexation with C60 in the solid state. This nanocarbon adopts a lamellar packing motif, and our results suggest that the structural adjustment of this double nanohoop could enable its use in supramolecular and semiconductive materials.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Shangxiong Huangfu
- Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.,Department of Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
14
|
Grabicki N, Nguyen KTD, Weidner S, Dumele O. Supramolekulare Bindungstaschen in [
n
]Cyclo‐2,7‐pyrenylenen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niklas Grabicki
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Khoa T. D. Nguyen
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Steffen Weidner
- Bundesanstalt für Materialprüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Oliver Dumele
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
15
|
Grabicki N, Nguyen KTD, Weidner S, Dumele O. Confined Spaces in [n]Cyclo-2,7-pyrenylenes. Angew Chem Int Ed Engl 2021; 60:14909-14914. [PMID: 33887087 PMCID: PMC8251724 DOI: 10.1002/anie.202102809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Indexed: 12/14/2022]
Abstract
A set of strained aromatic macrocycles based on [n]cyclo-2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size-dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n=5, which leads to an internal binding of up to 8.0×104 m-1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape-complementary crown ether-cation complexes. Both the ether-decorated [n]cyclo-pyrenylenes as well as one of their host-guest complexes have been structurally characterized by single-crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Khoa T. D. Nguyen
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Steffen Weidner
- Bundesanstalt für MaterialprüfungFederal Institute for Material Research and TestingRichard-Willstätter-Strasse 1112489BerlinGermany
| | - Oliver Dumele
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
16
|
Wang J, Ju YY, Low KH, Tan YZ, Liu J. A Molecular Transformer: A π-Conjugated Macrocycle as an Adaptable Host. Angew Chem Int Ed Engl 2021; 60:11814-11818. [PMID: 33751785 DOI: 10.1002/anie.202102637] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 11/06/2022]
Abstract
Here, we report a facile method to synthesize a series of macrocycles with different conformations. The planar macrocycle dimer (1), twisted macrocycle trimer (2) and "figure-eight" tetramer (3) are clearly elucidated by X-ray single-crystal analysis, in which the electron-rich phenanthrene units offer the possibility of supramolecular assembly. As expected, in the solid state, 1 and 3 assemble into a columnar stack and an interlocking dimer, respectively, via π-π interactions between the phenanthrene units. Compared to the rigid conformation of dimer 1, the structure of tetramer 3 is more flexible due to its enlarged ring size. 3 can deform from a figure-eight into a boat-shaped geometry to host a planar electron-deficient guest using its electron-rich phenanthrene units. When assembled with spherical electron-deficient C60 , interestingly, 3 further undergoes a conformational transformation from a figure-eight to a belt shape in order to host C60 . These supramolecular assembly behaviors of 3 demonstrate that it is an adaptable macrocyclic host for both planar molecules and fullerenes.
Collapse
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yang-Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kam-Hung Low
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
17
|
Wang J, Ju Y, Low K, Tan Y, Liu J. A Molecular Transformer: A π‐Conjugated Macrocycle as an Adaptable Host. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Kam‐Hung Low
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
18
|
Jacquot de Rouville HP, Hu J, Heitz V. N-Substituted Acridinium as a Multi-Responsive Recognition Unit in Supramolecular Chemistry. Chempluschem 2021; 86:110-129. [PMID: 33400395 DOI: 10.1002/cplu.202000696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/18/2020] [Indexed: 01/03/2023]
Abstract
The N-substituted acridinium motif is an electron-deficient unit with appealing multi-responsive properties which have been exploited in the field of supramolecular chemistry. This building block reversibly alters its shape, with its chemical and optical properties in response to a chemical or redox signal. In this Review, we discuss selected examples where the switchable properties of 9-aryl-N-methyl-acridinium lead to actuators, multi-input and multi-output systems, host or guest systems, and to interlocked systems with controllable motion.
Collapse
Affiliation(s)
- Henri-Pierre Jacquot de Rouville
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Johnny Hu
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|