1
|
Yin DP, Zhao XY, Cheng JM, Zhu RM, Liu C, Hong CY. Preparation of Peapod-Like Nano-Copolymers with Periodic Sequence via Polymerization-Induced Morphology Differentiation and Fusion. Angew Chem Int Ed Engl 2025; 64:e202424666. [PMID: 39980473 DOI: 10.1002/anie.202424666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Inorganic nanoparticles have so far dominated the field of nanoparticle assembly, and assembly of pure organic nanoparticles (such as block copolymer nanoparticles) has rarely been examined in colloidal systems. Expanding the scope of nanoparticles is of great significance for the study of nanoparticle assembly. Herein, a paradigm for the copolymerization of organic nanoparticles into peapod-like linear nanostructures with periodic sequence is introduced. Vesicles and porous spheres are generated in situ during polymerization-induced self-assembly (PISA) and can be viewed as nanoscale monomers ("nanomers"). The subsequent copolymerization of these nanomers is completed in one-pot, which greatly simplifies the preparation of nanomers and peapod-like nano-copolymers. It is demonstrated that appropriate π-π stacking interactions are crucial to the formation of nanomers and their copolymerization progress. Notably, the research subjects in nano-copolymers with periodic sequence have expanded to organic nanoparticles, which is beneficial to further expand the horizons of nanoparticle assembly. Moreover, the multiple separated compartments in the peapod-like nano-copolymers will open new directions toward development of artificial organelle and on-demand catalysis in different compartments within the same nano-object.
Collapse
Affiliation(s)
- De-Peng Yin
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Xin-Yue Zhao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Jia-Min Cheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Ren-Man Zhu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Chao Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Chun-Yan Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| |
Collapse
|
2
|
Luo D, Shi M, Guo S, Lin W, Wei J, Ni Y. On-Demand Assembly of Nanocrystals into a Superstructure Library in Co(OH) 2 Single-Walled Nanotubes. NANO LETTERS 2025; 25:4137-4142. [PMID: 37967165 DOI: 10.1021/acs.nanolett.3c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The hierarchical self-assembly of colloidal particles facilitates the bottom-up manufacturing of metamaterials with synergistically integrated functionalities. Here, we define a modular assembly methodology that enables multinary co-assembly of nanoparticles in one-dimensional confined space. A series of isotropic and anisotropic nanocrystals such as plasmonic, metallic, visible, and near-infrared responsive nanoparticles as well as transition-metal phosphides can be selectively assembled within the single-walled Co(OH)2 nanotubes to achieve various increasingly sophisticated assembly systems, including unary, binary, ternary, and quaternary superstructures. Moreover, the selective assembly of distinct functional nanoparticles produces different integrated functional superstructures. This generalizable methodology provides predictable pathways to complex architectures with structural programming and customization that are otherwise inaccessible.
Collapse
Affiliation(s)
- Dian Luo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Manman Shi
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Saiya Guo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Wentao Lin
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Jieding Wei
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Key Laboratory of Functional Molecular Solids, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| |
Collapse
|
3
|
Yon M, Lonetti B, Gineste S, Perez J, Goudouneche D, Weingarten L, Marty JD, Ciuculescu-Pradines D. Easy reversible clustering of gold nanoparticles via pH-Induced assembly of PVP-b-PAA copolymer. J Colloid Interface Sci 2025; 679:9-19. [PMID: 39432954 DOI: 10.1016/j.jcis.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
The growing demand of novel hybrid organic/inorganic systems with exciting properties has contributed to an increasing need for simplifying production strategies. Here, we report a simple method to obtain controlled three-dimensional hybrid architectures, in particular hybrid supracolloids (hSC), formed by gold nanoparticles and a double hydrophilic block copolymer, specifically the poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP), directly in aqueous medium. The ubiquitous pH-sensitive poly(acrylic acid) (PAA) block initiates the assembly through pH changes, while the poly(N-vinyl-2-pyrrolidone) block assures the close affinity with the AuNPs. We demonstrate that the formation of hybrid supracolloids (hSC) is the result of the synergetic behavior of the two specific polymeric blocks. Additionally, the entire process shows spontaneous and fast switchability. The nanostructured copolymer behaves like a highly swollen hydrogel and displays a disordered internal structure. The driving force for the association of the copolymer chains is induced by the synergetic effects of the decrease in solubility of the poly(acrylic acid) block and the formation of inter and intra chains hydrogen bonds. These were demonstrated by using small angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation monitoring (QCM-D) and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM-EDX). In turn, the AuNPs are randomly spread all over the polymeric matrix, as demonstrated by field emission gun - scanning electron microscopy (FEG-SEM). A correlation analysis reveals the hSC density depends mostly on the initial concentration of AuNPs. These results can inspire the fabrication of more complex structures with multicomponent composition.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Barbara Lonetti
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Javier Perez
- Synchrotron Soleil, Ligne SWING, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Dominique Goudouneche
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine, ute de Narbonne, 31062 Toulouse, France
| | - Laurent Weingarten
- Centre de MicroCaractérisation Raimond Castaing, ECA, 3 rue Caroline Aigle, 31400 Toulouse, France
| | - Jean-Daniel Marty
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| | - Diana Ciuculescu-Pradines
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| |
Collapse
|
4
|
Yue X, Li F, Fu X, Wang Y, Yan N. Multifunctional Janus particles composed of inorganic nanoparticles through emulsion confined assembly. Phys Chem Chem Phys 2025; 27:991-997. [PMID: 39668785 DOI: 10.1039/d4cp03699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Janus particles, consisting of two or more chemically distinct composites within a single structural system, have attracted significant attention for their solid surfactant functionality, as well as their potential applications in micro/nanomotors and functional materials. Here, we present a simple and robust method to prepare plasmonic Janus particles consisting of a polystyrene-tethered gold nanorod (AuNRs@PS) head and a poly(4-vinylpyridine) (P4VP) head through emulsion confined assembly. The balance of the Janus particles can be finely tuned by adjusting the volume ratio of the AuNRs@PS solution and P4VP solution. The result shows that the diameter ratio (r) of AuNRs@PS5k/P4VP is proportional to the volume ratio (R) of the AuNRs@PS and P4VP solutions. Furthermore, the obtained Janus particles with AuNR head have a peak absorbance of around 800 nm, which can be applied in photothermal therapy. Additionally, multifunctionality can be achieved by reducing nanoparticle (NP) precursors on a prefabricated scaffold of P4VP or co-assembling P4VP-tethered NPs with AuNRs@PS building blocks. These multifunctional Janus particles hold great potential for applications in micro/nanomotors, catalysts, and biological materials.
Collapse
Affiliation(s)
- Xuan Yue
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Feibo Li
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Xiying Fu
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Yanming Wang
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Nan Yan
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
5
|
Li J, Yu X, Zhang J, Jin J, Pan Y, Ji X, Jiang W. Effect of the number ratio and size ratio on the formation of binary superlattices assembled from polymer-tethered spherical nanoparticles of two sizes. NANOSCALE 2025; 17:797-802. [PMID: 39601753 DOI: 10.1039/d4nr04032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Binary superlattices (BNSLs) with unique configurations are of great interest, attributed to the interaction between two kinds of nanoparticles, providing potential applications in sensing, electronic and optical fields. Here, polystyrene (PS) tethered spherical gold nanoparticles (AuNPs) with two core diameters spontaneously assembled into BNSLs via emulsion-confined self-assembly. BNSLs with specific stoichiometry and interparticle gaps of the NPs are prepared by tuning the number and size ratios of the two types of NPs. Moreover, after introducing long ligands, binary NPs are separated into macrophase separation or mixed together, depending on the interaction between polymer chains tethered to the AuNPs. Finally, PS-tethered AuNPs provide more possibilities for fabricating multifunctional BNSLs.
Collapse
Affiliation(s)
- Jinlan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
6
|
Cai Y, Sarkar S, Peng Y, König TAF, Vana P. Ultrasonic Control of Polymer-Capped Plasmonic Molecules. ACS NANO 2024; 18:31360-31371. [PMID: 39478368 PMCID: PMC11562790 DOI: 10.1021/acsnano.4c10912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/13/2024]
Abstract
Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different ABN-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.
Collapse
Affiliation(s)
- Yingying Cai
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Swagato Sarkar
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Yuwen Peng
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Tobias A. F. König
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Philipp Vana
- Institut
für Physikalische Chemie, Georg-August-Universität
Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Yue X, Li F, Fu X, Wang Y, Yan N. Self-assembly of gold nanoparticles into ring-like hierarchical superstructures with tunable interparticle distance. SOFT MATTER 2024; 20:8098-8103. [PMID: 39356348 DOI: 10.1039/d4sm00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Ring-like hierarchical superstructures have attracted increasing attention in recent years due to their structural symmetry and interesting properties. Here, we obtain well-defined ring-like superstructures with tunable interparticle distance from the self-assembly of polystyrene (PS)-tethered gold nanoparticles (AuNPs@PS). The results show that the interparticle distance between the adjacent AuNPs of the ring-like superstructures can be systematically tailored by adjusting the molecular weight of the tethered PS ligands. The thickness of the ring-like superstructures is proportional to the concentration of the inorganic NP building blocks. Interestingly, the formation of ring-like superstructures can be extended to a variety of inorganic NP building blocks with different diameters, shapes, tethered polymers. The PS-tethered gold nanorods (AuNRs) and gold nanocubes (AuNCs) can also self-assemble into ring-like superstructures. It is noteworthy that this strategy is universal to fabricate a variety of ring-like superstructures, which have potential applications in surface-enhanced Raman scattering, optoelectronics, and sensors.
Collapse
Affiliation(s)
- Xuan Yue
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Feibo Li
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Xiying Fu
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Yanming Wang
- College of Materials Science and Engineering, Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China.
| | - Nan Yan
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
8
|
Liu B, Lv DM, Wang YL, Li WY, Sun YW, Li ZW. Surface Engineering and Programmed Self-Assembly of Silica Nanoparticles with Controllable Polystyrene/Poly(4-vinybenzyl azide) Patches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6363-6374. [PMID: 38470241 DOI: 10.1021/acs.langmuir.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The programmed self-assembly of patchy nanoparticles (NPs) through a bottom-up approach is an efficient strategy for producing highly organized materials with a predetermined architecture. Herein, we report the preparation of di- and trivalent silica NPs with polystyrene (PS)/poly(4-vinylbenzyl azide) (PVBA) patches and assemble them in a THF mixture by lowering the solvent quality. Silica-PS/PVBA colloidal hybrid clusters were synthesized through the seeded growth emulsion copolymerization of styrene and 4-vinylbenzyl azide (VBA) in varying ratios. Subsequently, macromolecules on silica NPs originating from the copolymerization of growing PS or PVBA chains with the surface-grafted MMS compatibilizer are engineered by fine-tuning of polymer compositions or adjustment of solvent qualities. Moreover, multistage silica regrowth of tripod and tetrapod allowed a fine control of the patch-to-particle size ratio ranging from 0.69 to 1.54. Intriguingly, patchy silica NPs (1-, 2-, 3-PSNs) rather than hybrid clusters are successfully used as templates for multistep regrowth experiments, leading to the formation of silica NPs with a new morphology and size controllable PVBA/PS patches. Last but not least, combined with mesoscale dynamics simulations, the self-assembly kinetics of 2-PSN and 3-PSN into linear colloidal polymers and honeycomb-like lattices are studied. This work paves a new avenue for constructing colloidal polymers with a well-defined sequence and colloidal crystals with a predetermined architecture.
Collapse
Affiliation(s)
- Bin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Dong-Mei Lv
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan-Lan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Wei-Ya Li
- Nouryon Chemicals (Jiaxing) Co., Ltd., No. 1111, West Yashan Road, Jiaxing, Zhejiang Province 314000, China
| | - Yu-Wei Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Wu Y, Yang Y, Zhang Y, Dai L, Dong W, He H, Li H, Nie Z, Sang Y. Photo-Induced Self-assembly of Copolymer-Capped Nanoparticles into Colloidal Molecules. Angew Chem Int Ed Engl 2024; 63:e202313406. [PMID: 37801444 DOI: 10.1002/anie.202313406] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Colloidal molecules (CMs) are precisely defined assemblies of nanoparticles (NPs) that mimic the structure of real molecules, but externally programming the precise self-assembly of CMs is still challenging. In this work, we show that the photo-induced self-assembly of complementary copolymer-capped binary NPs can be precisely controlled to form clustered ABx or linear (AB)y CMs at high yield (x is the coordination number of NP-Bs, and y is the repeating unit number of AB clusters). Under UV light irradiation, photolabile p-methoxyphenacyl groups of copolymers on NP-A*s are converted to carboxyl groups (NP-A), which react with tertiary amines of copolymers on NP-B to trigger the directional NP bonding. The x value of ABx can be precisely controlled between 1 and 3 by varying the irradiation duration and hence the amount of carboxyl groups generated on NP-As. Moreover, when NP-A* and NP-B are irradiated after mixing, the assembly process generates AB clusters or linear (AB)y structures with alternating sequence of the binary NPs. This assembly approach offers a simple yet non-invasive way to externally regulate the formation of various CMs on demand without the need of redesigning the surface chemistry of NPs for use in drug delivery, diagnostics, optoelectronics, and plasmonic devices.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Yanqiong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Liwei Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Huibin He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Hao Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, 200438, Shanghai, P. R. China
| |
Collapse
|
10
|
Huang KH, Liu HH, Cheng KY, Tsai CL, Cheng YJ. Sequence-controlled alternating block polychalcogenophenes: synthesis, structural characterization, molecular properties, and transistors for bromine detection. Chem Sci 2023; 14:8552-8563. [PMID: 37592995 PMCID: PMC10430600 DOI: 10.1039/d3sc02289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Sequence-controlled polychalcogenophenes have attracted much interest in terms of synthesis, structure and function in polymer science. For the first time, we developed a new class of alternating block conjugated copolymers denoted as poly(alt-AB)x-b-(alt-AC)y where both blocks are constituted by an alternating copolymer. 3-Hexylthiophene (S), 3-hexylselenophene (Se) and 3-hexyltellurophene (Te) are used as A, B and C units to assemble three sequence-controlled polychalcogenophenes P(SSe)b(STe), P(SSe)b(SeTe) and P(STe)b(SeTe) which are prepared by adding two different Grignard monomers in sequence to carry out Ni(dppp)Cl2-catalyzed Kumada polymerization. The molecular weight, dispersity, and length of each block (x = y) and main-chain sequence can be synthetically controlled via the catalyst transfer polycondensation mechanism. The polymer structures, i.e. alternating block main chain with high side-chain regioregularity, are unambiguously confirmed by 1H-NMR and 13C-NMR. The optical and electrochemical properties of the polymers can be systematically fine-tuned by the composition and ratio of the chalcogenophenes. From GIWAXS measurements, all the polymers exhibited predominantly edge-on orientations, indicating that the packing behaviors of the alternating block polychalcogenophenes with high regioregularity are inherited from the highly crystalline P3HT. P(SSe)b(STe) exhibited a hole OFET mobility of 1.4 × 10-2 cm2 V-1 s-1, which represents one of the highest values among the tellurophene-containing polychalcogenophenes. The tellurophene units in the polymers can undergo Br2 addition to form the oxidized TeBr2 species which results in dramatically red-shifted absorption due to the alternating arrangement to induce strong charge transfer character. The OFET devices using the tellurophene-containing polychalcogenophenes can be applied for Br2 detection, showing high sensitivity, selectivity and reversibility.
Collapse
Affiliation(s)
- Kuo-Hsiu Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Huai-Hsuan Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Kuang-Yi Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Chia-Lin Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
- Center for Emergent Functional Matter Science, National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan China
| |
Collapse
|
11
|
Kim GH, Kim M, Hyun JK, Park SJ. Directional Self-Assembly of Nanoparticles Coated with Thermoresponsive Block Copolymers and Charged Small Molecules. ACS Macro Lett 2023:986-992. [PMID: 37399507 DOI: 10.1021/acsmacrolett.3c00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Herein, we report the directional stimuli-responsive self-assembly of gold nanoparticles (AuNPs) coated with a thermoresponsive block copolymer (BCP), poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and charged small molecules. AuNPs modified with PEG-b-PNIPAM possessing a AuNP/PNIPAM/PEG core/active/shell structure undergo temperature-induced self-assembly into one-dimensional (1D) or two-dimensional (2D) structures in salt solutions, with the morphology varying with the ionic strength of the medium. Salt-free self-assembly is also realized by modulating the surface charge by the codeposition of positively charged small molecules; 1D or 2D assemblies are formed depending on the ratio between the small molecule and PEG-b-PNIPAM, consistent with the trend observed with the bulk salt concentration. A series of charge-controlled self-assembly at various conditions revealed that the temperature-induced BCP-mediated self-assembly reported here provides an effective means for on-demand directional self-assembly of nanoparticles (NPs) with controlled morphology, interparticle distance, and optical properties, and the fixation of high-temperature structures.
Collapse
Affiliation(s)
- Ga-Hyun Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Minji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jerome K Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
12
|
Cui Y, Wang J, Liang J, Qiu H. Molecular Engineering of Colloidal Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207609. [PMID: 36799197 DOI: 10.1002/smll.202207609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Indexed: 05/18/2023]
Abstract
Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingchun Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Dong W, Zhang Y, Yi C, Chang JJ, Ye S, Nie Z. Halogen Bonding-Driven Reversible Self-Assembly of Plasmonic Colloidal Molecules. ACS NANO 2023; 17:3047-3054. [PMID: 36603151 DOI: 10.1021/acsnano.2c11833] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal molecules (CMs) assembled from plasmonic nanoparticles are an emerging class of building blocks for creating plasmonic materials and devices, but precise yet reversible assembly of plasmonic CMs remains a challenge. This communication describes the reversible self-assembly of binary plasmonic nanoparticles capped with complementary copolymer ligands into different CMs via halogen bonding interactions at high yield. The coordination number of the CMs is governed by the number ratio of complementary halogen donor and acceptor groups on the interacting nanoparticles. The reversibility of the halogen bonds allows for controlling the repeated formation and disassociation of the plasmonic CMs and hence their optical properties. Furthermore, the CMs can be designed to further self-assemble into complex structures in selective solvents. The precisely engineered reversible nanostructures may find applications in sensing, catalysis, and smart optoelectronic devices.
Collapse
Affiliation(s)
- Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Julia J Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
14
|
Kim J, Lee S, Son J, Kim J, Hilal H, Park M, Jung I, Nam JM, Park S. Plasmonic Cyclic Au Nanosphere Hexamers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205956. [PMID: 36464657 DOI: 10.1002/smll.202205956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Rational design of plasmonic colloidal assemblies via bottom-up synthesis is challenging but would show unprecedented optical properties that strongly relate to the assembly's shape and spatial arrangement. Herein, the synthesis of plasmonic cyclic Au nanosphere hexamers (PCHs) is reported, wherein six Au nanospheres (Au NSs) are connected via thin metal ligaments. By tuning Au reduction, six dangling Au NSs are interconnected with a core hexagon nanoplate (NPL). Then, Pt atoms are selectively deposited on the edges of the spheres. After etching of the core, necklace-like nanostructures of Pt framework are obtained. Deposition of Au is followed, leading to PCHs in high yield (≈90%). Notably, PCHs exhibit the combinatorial plasmonic characteristics of individual Au NSs and the in-plane coupling of the six linked Au NSs. They yield highly uniform, reproducible, and polarization-independent single-particle surface-enhanced Raman scattering signals, which are attributed to the 2-dimensional isotropic alignment of the Au NSs. Those are applied to a SERS-based immunoassay as quantitative and qualitative single particle SERS nanoprobes. This assay shows a low limit-of-detection, down to 100 pm, which is orders of magnitude lower than those based on Au NSs, and one order of magnitude lower than an assay using analogous particles of smooth Au nanorings.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Minsun Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
15
|
Singh B, Sikarwar S, Agarwal S, Singh DP, Pandey KK, Manohar R. Chemically Functionalized Gold Nanosphere-Blended Nematic Liquid Crystals for Photonic Applications. ACS OMEGA 2023; 8:2315-2327. [PMID: 36687113 PMCID: PMC9850737 DOI: 10.1021/acsomega.2c06718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A demand for functional materials that are capable of tailoring light-emissive properties has apparently been rising nowadays substantially for their utilization in organic optoelectronic devices. Motivated by such promising characteristics, we present highly emissive as well as aggregation-induced emission (AIE) electroluminescent composite systems composed of a nematic liquid crystals (NLC) blended with polyethylene-functionalized gold nanospheres (GNSs). The major findings of this study include superior electro-optical properties such as threshold voltage reduction by around 24%. The fall time is reduced by 11.50, 30.33, 49.33, and 63.17% respectively, and rotational viscosity is reduced by 13.86, 32.77, 36.97, and 49.58% for 5.0 × 1011, 5.0 × 1012, 2.5 × 1013, and 5.0 × 1013 number of GNS-blended liquid crystal (LC) cells. The increased UV absorbance and greatly enhanced luminescence properties have been attributed to surface plasmon resonance near the surface of GNSs and AIE effect risen due to agglomeration of the capping agent with the NLC molecules respectively, and these characteristics make them suitable for new-age display applications.
Collapse
Affiliation(s)
- Bhupendra
Pratap Singh
- Liquid
Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow226007, India
| | - Samiksha Sikarwar
- Integrated
Basic Science, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow226025, India
| | - Shikha Agarwal
- Liquid
Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow226007, India
| | - Dharmendra Pratap Singh
- Université
du Littoral Côte d’Opale, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux
Moléculaires, Calais62228, France
| | - Kamal Kumar Pandey
- Department
of Physics, Shri Jai Narain Misra Post Graduate
College, Lucknow226001, India
| | - Rajiv Manohar
- Liquid
Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow226007, India
| |
Collapse
|
16
|
Chen N, Wang Y, Song X, Li Y, Deng Z. Steering DNA Condensation on Engineered Nanointerfaces. NANO LETTERS 2022; 22:8550-8558. [PMID: 36315179 DOI: 10.1021/acs.nanolett.2c03051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA has received increasing attention in nanotechnology due to its ability to fold into prescribed structures. Different from the commonly adopted base-pairing strategy, an emerging class of amorphous DNA materials are formed by DNA's abiological interactions. Despite the great successes, a lack of nanoscale nucleation/growth control disables more advanced considerations. This work aims at harnessing the heterogeneous nucleation of metal-ion-glued DNA condensates on nanointerfaces. Upon unveiling key orthogonal factors including solution pH, ionic cross-linkers, and surface functionalities, chemically programmable DNA condensation on nanoparticle seeds is achieved, resembling a famous Stöber process for silica coating. The nucleation rules discovered on individual nanoseeds can be passed on to their dimeric assemblies, where broken spherical symmetry and the existence of interparticle gaps help a regiospecific DNA gelation. The steerable DNA condensation, and the multifunctions from DNA, metal ions, and nanocores, hold a great promise in noncanonical DNA nanotechnology toward novel applications.
Collapse
Affiliation(s)
- Nuo Chen
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueliang Wang
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Zhang NN, Shen X, Liu K, Nie Z, Kumacheva E. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Acc Chem Res 2022; 55:1503-1513. [PMID: 35576169 DOI: 10.1021/acs.accounts.2c00066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ConspectusCurrent interest in nanoparticle ensembles is motivated by their collective synergetic properties that are distinct from or better than those of individual nanoparticles and their bulk counterparts. These new advanced optical, electronic, magnetic, and catalytic properties can find applications in advanced nanomaterials and functional devices, if control is achieved over nanoparticle organization. Self-assembly offers a cost-efficient approach to produce ensembles of nanoparticles with well-defined and predictable structures. Nanoparticles functionalized with polymer molecules are promising building blocks for self-assembled nanostructures, due to the comparable dimensions of macromolecules and nanoparticles, the ability to synthesize polymers with various compositions, degrees of polymerization, and structures, and the ability of polymers to self-assemble in their own right. Moreover, polymer ligands can endow additional functionalities to nanoparticle assemblies, thus broadening the range of their applications.In this Account, we describe recent progress of our research groups in the development of new strategies for the self-assembly of nanoparticles tethered to macromolecules. At the beginning of our journey, we developed a new approach to patchy nanoparticles and their self-assembly. In a thermodynamically driven strategy, we used poor solvency conditions to induce homopolymer surface segregation in pinned micelles (patches). Patchy nanoparticles underwent self-assembly in a well-defined and controlled manner. Following this work, we overcame the limitation of low yield of the generation of patchy nanoparticles, by using block copolymer ligands. For block copolymer-capped nanoparticles, patch formation and self-assembly were "staged" by using distinct stimuli for each process. We expanded this work to the generation of patchy nanoparticles via dynamic exchange of block copolymer molecules between the nanoparticle surface and micelles in the solution. The scope of our work was further extended to a series of strategies that utilized the change in the configuration of block copolymer ligands during nanoparticle interactions. To this end, we explored the amphiphilicity of block copolymer-tethered nanoparticles and complementary interactions between reactive block copolymer ligands. Both approaches enabled exquisite control over directional and self-limiting self-assembly of complex hierarchical nanostructures. Next, we focused on the self-assembly of chiral nanostructures. To enable this goal, we attached chiral molecules to the surface of nanoparticles and organized these hybrid building blocks in ensembles with excellent chiroptical properties. In summary, our work enables surface engineering of polymer-capped nanoparticles and their controllable and predictable self-assembly. Future research in the field of nanoparticle self-assembly will include the development of effective characterization techniques, the synthesis of new functional polymers, and the development of environmentally responsive self-assembly of polymer-capped nanoparticles for the fabrication of nanomaterials with tailored functionalities.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130061, P. R. China
| | - Xiaoxue Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P.R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061 P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P.R. China
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, M5S3H6 ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9 ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5 ON, Canada
| |
Collapse
|
18
|
Liang S, Zhang M, Biesold GM, Choi W, He Y, Li Z, Shen D, Lin Z. Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005888. [PMID: 34096108 DOI: 10.1002/adma.202005888] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/18/2021] [Indexed: 05/27/2023]
Abstract
Metal halide perovskite nanocrystals (PNCs) have recently garnered tremendous research interest due to their unique optoelectronic properties and promising applications in photovoltaics and optoelectronics. Metal halide PNCs can be combined with polymers to create nanocomposites that carry an array of advantageous characteristics. The polymer matrix can bestow stability, stretchability, and solution-processability while the PNCs maintain their size-, shape- and composition-dependent optoelectronic properties. As such, these nanocomposites possess great promise for next-generation displays, lighting, sensing, biomedical technologies, and energy conversion. The recent advances in metal halide PNC/polymer nanocomposites are summarized here. First, a variety of synthetic strategies for crafting PNC/polymer nanocomposites are discussed. Second, their array of intriguing properties is examined. Third, the broad range of applications of PNC/polymer nanocomposites is highlighted, including light-emitting diodes (LEDs), lasers, and scintillators. Finally, an outlook on future research directions and challenges in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woosung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yanjie He
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zili Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dingfeng Shen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
19
|
Lee S, Sim K, Moon SY, Choi J, Jeon Y, Nam JM, Park SJ. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007668. [PMID: 34021638 DOI: 10.1002/adma.202007668] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Indexed: 05/20/2023]
Abstract
The spatial arrangement of plasmonic nanoparticles can dramatically affect their interaction with electromagnetic waves, which offers an effective approach to systematically control their optical properties and manifest new phenomena. To this end, significant efforts were made to develop methodologies by which the assembly structure of metal nanoparticles can be controlled with high precision. Herein, recent advances in bottom-up chemical strategies toward the well-controlled assembly of plasmonic nanoparticles, including multicomponent and multifunctional systems are reviewed. Further, it is discussed how the progress in this area has paved the way toward the construction of smart dynamic nanostructures capable of on-demand, reversible structural changes that alter their properties in a predictable and reproducible manner. Finally, this review provides insight into the challenges, future directions, and perspectives in the field of controlled plasmonic assemblies.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So Yoon Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jisu Choi
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yoojung Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
20
|
Cheng Q, Yue L, Li J, Gao C, Ding Y, Sun C, Xu M, Yuan Z, Wang R. Supramolecular Tropism Driven Aggregation of Nanoparticles In Situ for Tumor-Specific Bioimaging and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101332. [PMID: 34405525 DOI: 10.1002/smll.202101332] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Inorganic nanomedicine has attracted increasing attentions in biomedical sciences due to their excellent biocompatibility and tunable, versatile functionality. However, the relatively poor accumulation and retention of these nanomedicines in targeted tissues have often hindered their clinical translation. Herein, highly efficient, targeted delivery, and in situ aggregation of ferrocene (Fc)-capped Au nanoparticles (NPs) are reported to cucurbit[7]uril (CB[7])-capped Fe3 O4 NPs (as an artificial target) that are magnetically deposited into the tumor, driven by strong, multipoint CB[7]-Fc host-guest interactions (here defined as "supramolecular tropism" for the first time), leading to high tumor accumulation and retention of these NPs. The in vitro and in vivo studies demonstrate the precisely controlled, specific accumulation, and retention of Au NPs in the tumor cells and tissue via supramolecular tropism and in situ aggregation, which afford locally enhanced CT imaging of cancer and enable tumor-specific photothermal therapy attributed to the plasmonic coupling effects between adjacent Au NPs within the supramolecular aggregations. This work provides a novel concept of supramolecular tropism, which may drive targeted delivery and enable specific accumulation, retention, and activation of nanomedicine for improved bioimaging and therapy of cancer.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Mengze Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
21
|
Luo M, Jin B, Luo Y, Li X. Supramicellar Nanofibrils with End-to-End Coupled Uniform Cylindrical Micelle Subunits via One-Step Assembly from a Liquid Crystalline Block Copolymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mingyan Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
- Experimental Centre of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Xu Z, Lin J, Zhang L, Wang L. Distinctive Dielectric Permittivity of Hierarchical Nanostructures with Ordered Nanoparticle Networks Self-Assembled from AB- g-NP/AC Block Copolymer Mixtures. NANO LETTERS 2021; 21:2982-2988. [PMID: 33792314 DOI: 10.1021/acs.nanolett.1c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Directing nanoparticles into ordered organization in polymer matrix to improve macroscopic properties of nanocomposites remains a challenge. Herein, by means of theoretical simulations, we show the high permittivity of hybrid nanostructures designed with mixtures of AB block copolymer-grafted nanoparticles and lamella-forming AC diblock copolymers. The grafted nanoparticles self-assemble into parallel stripes or highly ordered networks in the lamellae of the AC diblock copolymers. The ordered nanoparticle networks, including honeycomb-like and kagomé networks, provide bending and conductive pathways for concentrating electric fields, which results in the improvement of the permittivity. We envisage that this strategy will open a gateway to prepare hierarchically ordered functional nanocomposites with distinctive dielectric properties.
Collapse
Affiliation(s)
- Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|