1
|
Barnett JL, Wenger JS, Getahun A, Johnstone TC, Oliver SRJ. Silver 4,4'-Vinylenedipyridine Coordination Polymers: Linker Effects on Formation Thermodynamics and Anion Exchange. Inorg Chem 2025; 64:37-49. [PMID: 39700329 DOI: 10.1021/acs.inorgchem.4c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Four new and one previously reported silver 4,4'-vinylenedipyridine (Vpe) coordination polymers were tested as anion exchange materials to assess their potential for pollutant sequestration and compared to analogous silver 4,4'-bipyridine (bipy) coordination polymers. The materials were synthesized using nitrate, tetrafluoroborate, perchlorate, perrhenate, or chromate as the anion to produce cationic coordination polymers with solubilities ranging from 0.0137(7) to 0.21(5) mM. These values are much lower than silver bipy coordination polymers [0.045(3) to 5.5(5) mM] and agree with thermochemical calculations. [Ag(Vpe)+][BF4-], [Ag2(Vpe)2.52+][CrO42-]·5H2O, and [Ag(Vpe)+][ReO4-]·2H2O structures are reported. Perrhenate and chromate ions in an equimolar solution were fully adsorbed by [Ag(Vpe)+][NO3-]·3H2O [620(2) and 137.1(6) mg/g, respectively] as well as by [Ag(Vpe)+][BF4-] [661.8(3) and 190(3) mg/g, respectively] via anion exchange. DFT calculations show that torsional energetics play a significant role in the formation thermodynamics by reducing the energy cost by as much as 4.8 kJ/mol when bipy is replaced with Vpe in silver-based coordination polymers. The results obtained with the flat Vpe ligand highlight the potential role of coordination polymers in practical anion exchange.
Collapse
Affiliation(s)
- Jeremy L Barnett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - John S Wenger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Addis Getahun
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Scott R J Oliver
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
2
|
Zhang Z, Pan F, Mohamed SA, Ji C, Zhang K, Jiang J, Jiang Z. Accelerating Discovery of Water Stable Metal-Organic Frameworks by Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405087. [PMID: 39155437 DOI: 10.1002/smll.202405087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Metal-organic frameworks (MOFs) provide an extensive design landscape for nanoporous materials that drive innovation across energy and environmental fields. However, their practical applications are often hindered by water stability challenges. In this study, a machine learning (ML) approach is proposed to accelerate the discovery of water stable MOFs and validated through experimental test. First, the largest database currently available that contains water stability information of 1133 synthesized MOFs is constructed and categorized according to experimental stability. Then, structural and chemical descriptors are applied at various fragmental levels to develop ML classifiers for predicting the water stability of MOFs. The ML classifiers achieve high prediction accuracy and excellent transferability on out-of-sample validation. Next, two MOFs are experimentally synthesized with their water stability tested to validate ML predictions. Finally, the ML classifiers are applied to discover water stable MOFs in the ab initio REPEAT charge MOF (ARC-MOF) database. Among ≈280 000 candidates, ≈130 000 (47%) MOFs are predicted to be water stable; furthermore, through multi-stability analysis, 461 (0.16%) MOFs are identified as not only water stable but also thermal and activation stable. The ML approach is anticipated to serve as a prerequisite filtering tool to streamline the exploration of water stable MOFs for important practical applications.
Collapse
Affiliation(s)
- Zhiming Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Saad Aldin Mohamed
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chengxin Ji
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kang Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Pu TL, Wang XY, Sun ZB, Dong XY, Wang QY, Zang SQ. Introducing Carborane Clusters into Crystalline Frameworks via Thiol-Yne Click Chemistry for Energetic Materials. Angew Chem Int Ed Engl 2024; 63:e202402363. [PMID: 38497318 DOI: 10.1002/anie.202402363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Crystalline frameworks represent a cutting-edge frontier in material science, and recently, there has been a surge of interest in energetic crystalline frameworks. However, the well-established porosity often leads to diminished output energy, necessitating a novel approach for performance enhancement. Thiol-yne coupling, a versatile metal-free click reaction, has been underutilized in crystalline frameworks. As a proof of concept, we herein demonstrate the potential of this approach by introducing the energy-rich, size-matched, and reductive 1,2-dicarbadodecaborane-1-thiol (CB-SH) into an acetylene-functionalized framework, Zn(AIm)2, via thiol-yne click reaction. This innovative decoration strategy resulted in a remarkable 46.6 % increase in energy density, a six-fold reduction in ignition delay time (4 ms) with red fuming nitric acid as the oxidizer, and impressive enhancement of stability. Density functional theory calculations were employed to elucidate the mechanism by which CB-SH promotes hypergolic ignition. The thiol-yne click modification strategy presented here permits engineering of crystalline frameworks for the design of advanced energetic materials.
Collapse
Affiliation(s)
- Tian-Li Pu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xu-Yang Wang
- Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi-Bing Sun
- Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-You Wang
- Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Xie Y, Biliškov N, Titi HM. Vibrational dynamics as an essential determinant of the thermal stability of zinc zeolitic imidazolate lattices. Phys Chem Chem Phys 2024; 26:5408-5413. [PMID: 38273812 DOI: 10.1039/d3cp05367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Thermal stability and kinetics of zeolitic imidazolate frameworks (ZIFs) are crucial for their applications as energetic materials. Here, the effect of microscopic vibrational dynamics on the thermal stability of ZIFs is demonstrated by using simple tools. Specifically, we explored the thermal kinetics based on Flynn-Wall-Ozawa and Kissinger's methods. The study comprises a combination of structure-related effects such as topology, density, and alkyl substitution with respect to vibrational dynamics in ZIFs. The results exhibit a linear correlation between the vibrational dynamics of the linkers and activation energy, I.E. stabilization of ZIFs, in the polymorphic Zn(EtIm)2 series. At the same time, thermal destabilization was observed with the growing alkyl chain and was further probed by IR spectroscopy.
Collapse
Affiliation(s)
- Yonger Xie
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
| | - Nikola Biliškov
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Hatem M Titi
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
5
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
6
|
Cvetnić M, Šplajt R, Topić E, Rubčić M, Bregović N. Direct thermodynamic characterization of solid-state reactions by isothermal calorimetry. Phys Chem Chem Phys 2023; 26:67-75. [PMID: 37955204 DOI: 10.1039/d3cp03933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Despite the growing importance of solid-state reactions, their thermodynamic characterization has largely remained unexplored. This is in part due to the lack of methodology for measuring the heat effects related to reactions between solid reactants. We address here this gap and report on the first direct thermodynamic study of chemical reactions between solid reactants by isothermal calorimetry. Three reaction classes, cationic host-guest complex formation, molecular co-crystallization, and Baeyer-Villiger oxidation were investigated, showcasing the versatility of the devised methodology to provide detailed insight into the enthalpy changes related to various reactions. The reliability of the method was confirmed by correlation with the values obtained via solution calorimetry using Hess's law. The thermodynamic characterization of solid-state reactions described here will enable a deeper understanding of the factors governing solid-state processes.
Collapse
Affiliation(s)
- Marija Cvetnić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac, 102/A, Zagreb 10 000, Croatia.
| | - Robert Šplajt
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac, 102/A, Zagreb 10 000, Croatia.
| | - Edi Topić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac, 102/A, Zagreb 10 000, Croatia.
| | - Mirta Rubčić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac, 102/A, Zagreb 10 000, Croatia.
| | - Nikola Bregović
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac, 102/A, Zagreb 10 000, Croatia.
| |
Collapse
|
7
|
Navrotsky A, Leonel GJ. Thermochemistry of hybrid materials. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220334. [PMID: 37691468 DOI: 10.1098/rsta.2022.0334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/20/2023] [Indexed: 09/12/2023]
Abstract
This paper is based on a lecture Navrotsky gave honouring the memory of Paul McMillan. It summarizes our recent findings in the thermodynamics of hybrid materials including metal organic frameworks (MOFs), polymer-derived ceramics (PDCs) and ionic organic-inorganic compounds. This work describes the main structure types and their corresponding thermodynamic stability, obtained from calorimetric measurements in our laboratory. The effects of linker substituent and framework topology on the thermodynamic stability of isostructural zeolitic imidazolate frameworks and other MOFs are discussed. The paper documents the effects of interdomain interaction and bonding speciation on the thermodynamic stability of various PDC compositions, including SiC, SiOC and SiCN systems. The paper further describes effects of different cations on the thermodynamic stability of selected ionic organic-inorganic compounds. Similarities and differences among these materials are emphasized. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Alexandra Navrotsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287, USA
- School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Gerson J Leonel
- Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, AZ 85287, USA
- School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
León-Alcaide L, López-Cabrelles J, Esteve-Rochina M, Ortí E, Calbo J, Huisman BAH, Sessolo M, Waerenborgh JC, Vieira BJC, Mínguez Espallargas G. Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron-Zinc ZIF-8. J Am Chem Soc 2023; 145:23249-23256. [PMID: 37813379 PMCID: PMC10603776 DOI: 10.1021/jacs.3c08017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/11/2023]
Abstract
Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - María Esteve-Rochina
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bas A. H. Huisman
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Michele Sessolo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - João C. Waerenborgh
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | - Bruno J. C. Vieira
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | | |
Collapse
|
9
|
Leonel G, Lennox CB, Xu Y, Arhangelskis M, Friščić T, Navrotsky A. Experimental and Theoretical Evaluation of the Thermodynamics of the Carbonation Reaction of ZIF-8 and Its Close-Packed Polymorph with Carbon Dioxide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19520-19526. [PMID: 37817918 PMCID: PMC10561648 DOI: 10.1021/acs.jpcc.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Indexed: 10/12/2023]
Abstract
We report the first experimental and theoretical evaluation of the thermodynamic driving force for the reaction of metal-organic framework (MOF) materials with carbon dioxide, leading to a metal-organic carbonate phase. Carbonation upon exposure of MOFs to CO2 is a significant concern for the design and deployment of such materials in carbon storage technologies, and this work shows that the formation of a carbonate material from the popular SOD-topology framework material ZIF-8, as well as its dense-packed dia-topology polymorph, is significantly exothermic. With knowledge of the crystal structure of the starting and final phases in the carbonation reaction, we have also identified periodic density functional theory approaches that most closely reproduce the measured reaction enthalpies. This development now permits the use of advanced theoretical calculations to calculate the driving forces behind the carbonation of zeolitic imidazolate frameworks with reasonable accuracy.
Collapse
Affiliation(s)
- Gerson
J. Leonel
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Cameron B. Lennox
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Yizhi Xu
- Faculty of
Chemistry, University of Warsaw, 1 Pasteura Street, Warsaw 02-093, Poland
| | - Mihails Arhangelskis
- Faculty of
Chemistry, University of Warsaw, 1 Pasteura Street, Warsaw 02-093, Poland
| | - Tomislav Friščić
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Alexandra Navrotsky
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Leonel G, Lennox CB, Scharrer M, Jayanthi K, Friščic T, Navrotsky A. Experimental Investigation of Thermodynamic Stabilization in Boron Imidazolate Frameworks (BIFs) Synthesized by Mechanochemistry. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17754-17760. [PMID: 37736295 PMCID: PMC10510708 DOI: 10.1021/acs.jpcc.3c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/23/2023]
Abstract
This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid (dia) topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.
Collapse
Affiliation(s)
- Gerson
J. Leonel
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Cameron B. Lennox
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Manuel Scharrer
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - K Jayanthi
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomislav Friščic
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC H2L
0B7, Canada
| | - Alexandra Navrotsky
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Leonel G, Lennox CB, Marrett JM, Friščić T, Navrotsky A. Crystallographic and Compositional Dependence of Thermodynamic Stability of [Co(II), Cu(II), and Zn(II)] in 2-Methylimidazole-Containing Zeolitic Imidazolate Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7189-7195. [PMID: 37719037 PMCID: PMC10501375 DOI: 10.1021/acs.chemmater.3c01464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Indexed: 09/19/2023]
Abstract
We report the first systematic study experimentally investigating the effect of changes to the divalent metal node on the thermodynamic stability of three-dimensional (3D) and two-dimensional (2D) zeolitic imidazolate frameworks (ZIFs) based on 2-methylimidazolate linkers. In particular, the comparison of enthalpies of formation for materials based on cobalt, copper, and zinc suggests that the use of nodes with larger ionic radius metals leads to the stabilization of the porous sodalite topology with respect to the corresponding higher-density diamondoid (dia)-topology polymorphs. The stabilizing effect of metals is dependent on the framework topology and dimensionality. With previous works pointing to solvent-mediated transformation of 2D ZIF-L structures to their 3D analogues in the sodalite topology, thermodynamic measurements show that contrary to popular belief, the 2D frameworks are energetically stable, thus shedding light on the energetic landscape of these materials. Additionally, the calorimetric data confirm that a change in the dimensionality (3D → 2D) and the presence of structural water within the framework can stabilize structures by as much as 40 kJ·mol-1, making the formation of zinc-based ZIF-L material under such conditions thermodynamically preferred to the formation of both ZIF-8 and its dense, dia-topology polymorph.
Collapse
Affiliation(s)
- Gerson
J. Leonel
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Cameron B. Lennox
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H2L 0B7, Canada
| | - Joseph M. Marrett
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H2L 0B7, Canada
| | - Tomislav Friščić
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H2L 0B7, Canada
| | - Alexandra Navrotsky
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
12
|
Kirlikovali KO, Hanna SL, Son FA, Farha OK. Back to the Basics: Developing Advanced Metal-Organic Frameworks Using Fundamental Chemistry Concepts. ACS NANOSCIENCE AU 2023; 3:37-45. [PMID: 37101466 PMCID: PMC10125349 DOI: 10.1021/acsnanoscienceau.2c00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 04/28/2023]
Abstract
Over the past 25 years, metal-organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs. We then discuss these design principles in the context of several literature examples, highlighting both relevant fundamental chemistry principles and additional design principles required to access stable MOF structures. Finally, we envision how these fundamental concepts may offer access to even more advanced structures with tailored properties as the MOF field looks toward the future.
Collapse
Affiliation(s)
- Kent O. Kirlikovali
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sylvia L. Hanna
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Florencia A. Son
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department
of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Xu Y, Marrett JM, Titi HM, Darby JP, Morris AJ, Friščić T, Arhangelskis M. Experimentally Validated Ab Initio Crystal Structure Prediction of Novel Metal-Organic Framework Materials. J Am Chem Soc 2023; 145:3515-3525. [PMID: 36719794 PMCID: PMC9936577 DOI: 10.1021/jacs.2c12095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
First-principles crystal structure prediction (CSP) is the most powerful approach for materials discovery, enabling the prediction and evaluation of properties of new solid phases based only on a diagram of their underlying components. Here, we present the first CSP-based discovery of metal-organic frameworks (MOFs), offering a broader alternative to conventional techniques, which rely on geometry, intuition, and experimental screening. Phase landscapes were calculated for three systems involving flexible Cu(II) nodes, which could adopt a potentially limitless number of network topologies and are not amenable to conventional MOF design. The CSP procedure was validated experimentally through the synthesis of materials whose structures perfectly matched those found among the lowest-energy calculated structures and whose relevant properties, such as combustion energies, could immediately be evaluated from CSP-derived structures.
Collapse
Affiliation(s)
- Yizhi Xu
- Faculty
of Chemistry, University of Warsaw; 1 Pasteura Street, Warsaw 02-093, Poland
| | - Joseph M. Marrett
- Department
of Chemistry, McGill University; 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hatem M. Titi
- Department
of Chemistry, McGill University; 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - James P. Darby
- Department
of Engineering, University of Cambridge; Trumpington Street, Cambridge CB2 1PZ, UK
| | - Andrew J. Morris
- School
of Metallurgy and Materials, University
of Birmingham; Edgbaston, Birmingham B15 2TT, UK,
| | - Tomislav Friščić
- Department
of Chemistry, McGill University; 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada,School
of Chemistry, University of Birmingham; Edgbaston, Birmingham B15 2TT, UK,
| | - Mihails Arhangelskis
- Faculty
of Chemistry, University of Warsaw; 1 Pasteura Street, Warsaw 02-093, Poland,
| |
Collapse
|
14
|
Recent progress of metal-organic frameworks as sensors in (bio)analytical fields: towards real-world applications. Anal Bioanal Chem 2023; 415:2005-2023. [PMID: 36598537 PMCID: PMC9811896 DOI: 10.1007/s00216-022-04493-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The deployment of metal-organic frameworks (MOFs) in a plethora of analytical and bioanalytical applications is a growing research area. Their unique properties such as high but tunable porosity, well-defined channels or pores, and ease of post-synthetic modification to incorporate additional functional units make them ideal candidates for sensing applications. This is possible because the interaction of analytes with a MOF often results in a change in its structure, eventually leading to a modification of the intrinsic physicochemical properties of the MOF which is then transduced into a measurable signal. The high porosity allows for the adsorption of analytes very efficiently, while the tunable pore sizes/nature and/or installation of specific recognition groups allow modulating the affinity towards different classes of compounds, which in turn lead to good sensor sensitivity and selectivity, respectively. Some figures are given to illustrate the potential of MOF-based sensors in the most relevant application fields, and future challenges and opportunities to their possible translation from academia (i.e., laboratory testing of MOF sensing properties) to industry (i.e., real-world analytical sensor devices) are critically discussed.
Collapse
|
15
|
Mula S, Donà L, Civalleri B, van der Veen MA. Structure-Property Relationship of Piezoelectric Properties in Zeolitic Imidazolate Frameworks: A Computational Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50803-50814. [PMID: 36321950 PMCID: PMC9674201 DOI: 10.1021/acsami.2c13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials with very high structural tunability. They possess a very low dielectric permittivity εr due to their porosity and hence are favorable for piezoelectric energy harvesting. Even though they have huge potential as piezoelectric materials, a detailed analysis and structure-property relationship of the piezoelectric properties in MOFs are lacking so far. This work focuses on a class of cubic non-centrosymmetric MOFs, namely, zeolitic imidazolate frameworks (ZIFs) to rationalize how the variation of different building blocks of the structure, that is, metal node and linker substituents affect the piezoelectric constants. The piezoelectric tensor for the ZIFs is computed from ab initio theoretical methods. From the calculations, we analyze the different contributions to the final piezoelectric constant d14, namely, the clamped ion (e140) and the internal strain (e14int) contributions and the mechanical properties. For the studied ZIFs, even though e14 (e140 + e14int) is similar for all ZIFs, the resultant piezoelectric coefficient d14 calculated from piezoelectric constant e14 and elastic compliance constant s44 varies significantly among the different structures. It is the largest for CdIF-1 (Cd2+ and -CH3 linker substituent). This is mainly due to the higher elasticity or flexibility of the framework. Interestingly, the magnitude of d14 for CdIF-1 is higher than II-VI inorganic piezoelectrics and of a similar magnitude as the quintessential piezoelectric polymer polyvinylidene fluoride.
Collapse
Affiliation(s)
- Srinidhi Mula
- Department
of Chemical Engineering, Technische Universiteit
Delft, Delft2629HZ, The Netherlands
| | - Lorenzo Donà
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125Torino, Italy
| | - Bartolomeo Civalleri
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 7, 10125Torino, Italy
| | - Monique A. van der Veen
- Department
of Chemical Engineering, Technische Universiteit
Delft, Delft2629HZ, The Netherlands
| |
Collapse
|
16
|
López-Cabrelles J, Miguel-Casañ E, Esteve-Rochina M, Andres-Garcia E, Vitórica-Yrezábal IJ, Calbo J, Mínguez Espallargas G. Multivariate sodalite zeolitic imidazolate frameworks: a direct solvent-free synthesis. Chem Sci 2022; 13:842-847. [PMID: 35173949 PMCID: PMC8768878 DOI: 10.1039/d1sc04779e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this topology is the lowest in energy upon ligand mixing.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - María Esteve-Rochina
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | | | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | | |
Collapse
|
17
|
Swarbrook AM, Weekes RJ, Goodwin JW, Hawes CS. Ligand isomerism fine-tunes structure and stability in zinc complexes of fused pyrazolopyridines. Dalton Trans 2021; 51:1056-1069. [PMID: 34935828 DOI: 10.1039/d1dt04007c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused-ring pyrazoles offer a versatile platform for derivitization to give finely tuned and functional ligands in coordination assemblies. Here, we explore the pyrazolo[4,3-b]pyridine (HL1) and pyrazolo[3,4-c]pyridine (HL2) backbones and their N-substituted derivatives, using their coordination chemistry with zinc(II) in the solid state and in solution to examine the steric and electronic effects of varying their substitution pattern. The parent heterocycles HL1 and HL2 both generate robust and permanently porous isomeric MOFs on reaction with zinc and a dicarboxylate co-ligand. The subtle geometric change offered by the position of the backbone pyridyl nitrogen atom leads to substantial changes in the pore size and total pore volume, which is reflected in both their surface areas and CO2 uptake performance. Both materials are also unusually resilient to atmospheric water vapour by virtue of the strong metal-azolate bonding. The isomeric chelating ligands L3-L6, generated by N-arylation of the parent heterocycles with a 2-pyridyl group, each coordinate to zinc to give either mononuclear or polymeric coordination compounds depending on the involvement of the backbone pyridine nitrogen atom. While crystal packing influences based on the steric preferences of the ligands are dominant in the crystalline phase, fluorescence spectroscopy is used to show that the 2H isomers L4 and L6 show distinct coordination behaviour to the 1H isomers L3 and L5, forming competing [ML] and [ML2] species in soution. The first stability constant for L6 with zinc(II) is an order of magnitude larger than for the other three ligands, suggesting an improved binding strength based on the electron configuration in this isomer. These results show that careful control of remote substitution on fused pyrazole ligands can lead to substantial improvements in the stability of the resulting complexes, with consequences for the design of stable coordination assemblies containining labile metal ions.
Collapse
Affiliation(s)
- Amelia M Swarbrook
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| | - Rohan J Weekes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| | - Jack W Goodwin
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| | - Chris S Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| |
Collapse
|
18
|
Zhao H, Huang J, Zhang PP, Zhang JJ, Fang WJ, Song XD, Liu S, Duan C. The role of thermodynamically stable configuration in enhancing crystallographic diffraction quality of flexible MOFs. iScience 2021; 24:103398. [PMID: 34841232 PMCID: PMC8605418 DOI: 10.1016/j.isci.2021.103398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Single-crystal X-ray diffraction (SCXRD) is a widely used method for structural characterization. Generally, low temperature is of great significance for improving the crystallographic diffraction quality. Herein we observe that this practice is not always effective for flexible metal-organic frameworks (f-MOFs). An abnormal crystallography, that is, more diffraction spots at a high angle and better resolution of diffraction data as the temperature increases in the f-MOF (1-g), is observed. XRD results reveal that 1-g has a reversible anisotropic thermal expansion behavior with a record-high c-axial positive expansion coefficient of 1,401.8 × 10-6 K-1. Calculation results indicate that the framework of 1-g has a more stable thermodynamic configuration as the temperature increases. Such configuration has lower-frequency vibration and may play a key role in promoting higher Bragg diffraction quality at room temperature. This work is of great significance for how to obtain high-quality SCXRD diffraction data.
Collapse
Affiliation(s)
- He Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxiang Huang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pei-Pei Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jian-Jun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wang-Jian Fang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xue-Dan Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuqin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Lennox CB, Do JL, Crew JG, Arhangelskis M, Titi HM, Howarth AJ, Farha OK, Friščić T. Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. Chem Sci 2021; 12:14499-14506. [PMID: 34881001 PMCID: PMC8580121 DOI: 10.1039/d1sc03665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanochemistry enables rapid access to boron imidazolate frameworks (BIFs), including ultralight materials based on Li and Cu(i) nodes, as well as new, previously unexplored systems based on Ag(i) nodes. Compared to solution methods, mechanochemistry is faster, provides materials with improved porosity, and replaces harsh reactants (e.g. n-butylithium) with simpler and safer oxides, carbonates or hydroxides. Periodic density-functional theory (DFT) calculations on polymorphic pairs of BIFs based on Li+, Cu+ and Ag+ nodes reveals that heavy-atom nodes increase the stability of the open SOD-framework relative to the non-porous dia-polymorph.
Collapse
Affiliation(s)
- Cameron B Lennox
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| | - Joshua G Crew
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,School of Chemistry, Cardiff University Main Building. Park Place Cardiff CF10 3AT UK
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,Faculty of Chemistry, University of Warsaw 1 Pasteura St 02-093 Warsaw Poland
| | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| | - Ashlee J Howarth
- FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada.,Department of Biochemistry and Chemistry, Concordia University 7141 Sherbrooke St. W H4B 1R6 Montreal Canada.,International Institute for Nanotechnology, Department of Chemistry, Northwestern University 2145 Sheridan Road 60208 Evanston Il USA
| | - Omar K Farha
- International Institute for Nanotechnology, Department of Chemistry, Northwestern University 2145 Sheridan Road 60208 Evanston Il USA
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| |
Collapse
|
20
|
You LX, Cao SY, Guo Y, Wang SJ, Xiong G, Dragutan I, Dragutan V, Ding F, Sun YG. Structural insights into new luminescent 2D lanthanide coordination polymers using an N, N′-disubstituted benzimidazole zwitterion. Influence of the ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Hawes CS. Coordination sphere hydrogen bonding as a structural element in metal-organic Frameworks. Dalton Trans 2021; 50:6034-6049. [PMID: 33973587 DOI: 10.1039/d1dt00675d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the design of new metal-organic frameworks, the constant challenges of framework stability and structural predictability continue to influence ligand choice in favour of well-studied dicarboxylates and similar ligands. However, a small subset of known MOF ligands contains suitable functionality for coordination sphere hydrogen bonding which can provide new opportunities in ligand design. Such interactions may serve to support and rigidity the coordination geometry of mononuclear coordination spheres, as well as providing extra thermodynamic and kinetic stabilisation to meet the challenge of hydrolytic stability in these materials. In this perspective, a collection of pyrazole, amine, amide and carboxylic acid containing species are examined through the lens of (primarily) inner-sphere hydrogen bonding. The influence of these interactions is then related to the overall structure, stability and function of these materials, to provide starting points for harnessing these interactions in future materials design.
Collapse
Affiliation(s)
- Chris S Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| |
Collapse
|
22
|
Sarkar A, Jana AK, Natarajan S. Aliphatic amine mediated assembly of [M 6( mna) 6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00544h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New aliphatic amine directed two-dimensional cadmium coordination polymers were shown to exhibit Lewis-acid catalytic activity for the cyanation of imines.
Collapse
Affiliation(s)
- Anupam Sarkar
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Ajay Kumar Jana
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Srinivasan Natarajan
- Framework solids Laboratory
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
23
|
Tseng TW, Luo TT, Tseng KY, Hong YX, Huang GC. Bent-bis(triazolyl)-based coordination polymers tuned by dicarboxylate ligands: syntheses, structures and properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00780g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven new coordination polymers based on the bent 1,1'-(oxybis(1,4-phenylene))-bis(1H-1,2,4-triazole) ligand, with diverse structures and novel topologies, that are directed by the dicarboxylate ligands.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Kuo-Yang Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Yu-Xian Hong
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Guang-Cheng Huang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| |
Collapse
|
24
|
Tseng TW, Luo TT, Kan SJ, Nguyen DDA. Auxiliary ligand-modulated trisimidazole-based coordination polymers: syntheses, structures and photoluminescence properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00068c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Five coordination polymers having 1,3,5-tris(1-imidazolyl)benzene and the varied O-donor auxiliary ligands were designed and synthesized. Further, the auxiliary ligands modulated these complexes with structural diversities and novel topologies.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Shou-Ju Kan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Doan Duy-An Nguyen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| |
Collapse
|