1
|
Xia T, Han Y, Zhu C, Sun Z, Yuan C, Cui Q, Cheng JG, Du W, Li W, Xie K, Huang K, Feng S, Walker D, Li MR. Thermochemical Mechanism of Optimized Lanthanum Chromite Heaters for High-Pressure and High-Temperature Experiments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32244-32252. [PMID: 35792079 DOI: 10.1021/acsami.2c07639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-pressure heaters in large volume presses must reconcile potentially contradictory properties, and the whole high-pressure and high-temperature (HPHT) community has been engaged for years to seek a better heater. LaCrO3 (LCO)-based ceramic heaters have been widely applied in multianvil apparatus; however, their performance is far from satisfactory, motivating further research on the chemical optimization strategy and corresponding thermochemical mechanism. Here, we adopted a chemical-screening strategy and manufactured tubular heaters using the electrically, chemically, and mechanically optimized Sr-Cu codoped La0.9Sr0.1Cr0.8Cu0.2O3-δ (LSCCuO-9182). HPHT examinations of cylindrical LSCCuO-9182 heaters on Walker-type multianvil apparatuses demonstrated a small temperature gradient, robust thermochemical stability, and excellent compatibility with high-pressure assemblies below 2273 K and 10 GPa. Thermochemical mechanism analysis revealed that the temperature limitation of the LSCCuO-9182 heater was related to the autoredox process of the Cu dopant and Cr and the exchanging ionic migration of Cu and Mg between the LSCCuO-9182 heater and the MgO sleeve. Our combinatorial strategy coupled with thermochemical mechanism analysis makes the prioritization of contradictory objectives more rational, yields reliable LCO heaters, and sheds light on further improvement of the temperature limitation and thermochemical stability.
Collapse
Affiliation(s)
- Tao Xia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yifeng Han
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chuanhui Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zhongxiong Sun
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chongyang Yuan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Qi Cui
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jin-Guang Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Du
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Wenting Li
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Kui Xie
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - David Walker
- Lamont Doherty Earth Observatory, Columbia University, 61 Route 9W, PO Box 1000, Palisades, New York 10964, United States
| | - Man-Rong Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
2
|
O'Nolan D, Zhao H, Chen Z, Grenier A, Beauvais ML, Newton MA, Nenoff TM, Chupas PJ, Chapman KW. A multimodal analytical toolkit to resolve correlated reaction pathways: the case of nanoparticle formation in zeolites. Chem Sci 2021; 12:13836-13847. [PMID: 34760169 PMCID: PMC8549813 DOI: 10.1039/d1sc04232g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted via multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis. Multimodal in situ experimental data probing a complex reaction have been integrated via a multi-level analysis involving non-negative matrix factorization and correlation analysis. This strategy can be applied generally to multimodal experiments.![]()
Collapse
Affiliation(s)
- Daniel O'Nolan
- Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA
| | - Haiyan Zhao
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont Illinois 60439 USA
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA
| | - Antonin Grenier
- Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA
| | - Michelle L Beauvais
- Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA
| | - Mark A Newton
- Department of Chemistry and Applied Biosciences, ETH Zürich Zürich Switzerland
| | - Tina M Nenoff
- Sandia National Laboratories, Materials Chemicals and Physics Center Albuquerque New Mexico 87185 USA
| | - Peter J Chupas
- Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA .,X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont Illinois 60439 USA.,Associated Universities Inc 16th Street NW, Suite 730 Washington DC 20036 USA
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA .,X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont Illinois 60439 USA
| |
Collapse
|
3
|
Szymanski NJ, Zeng Y, Huo H, Bartel CJ, Kim H, Ceder G. Toward autonomous design and synthesis of novel inorganic materials. MATERIALS HORIZONS 2021; 8:2169-2198. [PMID: 34846423 DOI: 10.1039/d1mh00495f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous experimentation driven by artificial intelligence (AI) provides an exciting opportunity to revolutionize inorganic materials discovery and development. Herein, we review recent progress in the design of self-driving laboratories, including robotics to automate materials synthesis and characterization, in conjunction with AI to interpret experimental outcomes and propose new experimental procedures. We focus on efforts to automate inorganic synthesis through solution-based routes, solid-state reactions, and thin film deposition. In each case, connections are made to relevant work in organic chemistry, where automation is more common. Characterization techniques are primarily discussed in the context of phase identification, as this task is critical to understand what products have formed during synthesis. The application of deep learning to analyze multivariate characterization data and perform phase identification is examined. To achieve "closed-loop" materials synthesis and design, we further provide a detailed overview of optimization algorithms that use active learning to rationally guide experimental iterations. Finally, we highlight several key opportunities and challenges for the future development of self-driving inorganic materials synthesis platforms.
Collapse
Affiliation(s)
- Nathan J Szymanski
- Department of Materials Science & Engineering, UC Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Liu CH, Wright CJ, Gu R, Bandi S, Wustrow A, Todd PK, O'Nolan D, Beauvais ML, Neilson JR, Chupas PJ, Chapman KW, Billinge SJL. Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. J Appl Crystallogr 2021. [DOI: 10.1107/s160057672100265x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of the non-negative matrix factorization (NMF) technique is validated for automatically extracting physically relevant components from atomic pair distribution function (PDF) data from time-series data such as in situ experiments. The use of two matrix-factorization techniques, principal component analysis and NMF, on PDF data is compared in the context of a chemical synthesis reaction taking place in a synchrotron beam, applying the approach to synthetic data where the correct composition is known and on measured PDFs from previously published experimental data. The NMF approach yields mathematical components that are very close to the PDFs of the chemical components of the system and a time evolution of the weights that closely follows the ground truth. Finally, it is discussed how this would appear in a streaming context if the analysis were being carried out at the beamline as the experiment progressed.
Collapse
|