1
|
Chen Z, Tang M, Chen X, Ding D, Gao JK, She Y, Yang YF. Using machine learning methods to predict the diabatic bond dissociation energy of non-heme iron complexes. Org Biomol Chem 2025; 23:4758-4767. [PMID: 40261048 DOI: 10.1039/d5ob00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Bond dissociation energy (BDE) is an important property in chemical research. In the process of non-heme iron complex catalytic reactions, diabatic BDE has a significant impact on the selectivity of halogenation and hydroxylation reactions. Measuring or calculating BDE by using traditional experimental or theoretical methods is often expensive and complex, so we propose the first application of machine learning on non-heme iron complexes to predict and rationalize the diabatic BDEs of Fe-X and Fe-OH bonds in order to assist in the study of selectivity in non-heme iron complex catalytic reactions. We built a reliable and representative dataset containing over 600 types of non-heme iron complexes and used density functional theory (DFT) to calculate nearly 900 diabatic BDE for machine learning. In terms of model training, we used 2D molecular fingerprints and 3D descriptors as inputs to train the regression model. The results indicate that the ensemble algorithm combined with Morgan fingerprints can effectively predict the diabatic BDEs of non-heme iron complexes. Using the Gradient Boosting Regressor (GBR) model and Morgan fingerprints can achieve an accurate prediction of R2 = 0.791 and the mean absolute error (MAE) = 10.23 kcal mol-1. The incorporation of 3D descriptors significantly improves the predictive performance of molecular fingerprints other than Morgan fingerprints. Notably, the SOAP descriptor effectively captures key 3D molecular information, making it particularly advantageous for predicting isomers with large ΔBDE. However, when the ΔBDE of isomers in the dataset is small, Morgan fingerprints remain the more efficient choice.
Collapse
Affiliation(s)
- Zhengwei Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Miaojiong Tang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Debo Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Jing-Kun Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Ma R, Zhang J, Gong J, Lin Y, Zhang J, Huang ZQ, Chang CR, Liu S, Zhu W, Wang Y, Zeng K, Tao Y, Hu J, Zhang Z, Liang X, Han Y, Mao J, Zhuang Z, Yan J, Wang D, Xiong Y. The Cooperative Effects of the Rh-M Dual-Metal Atomic Pairs in Formic Acid Oxidation. Angew Chem Int Ed Engl 2025; 64:e202503095. [PMID: 40095392 DOI: 10.1002/anie.202503095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
The continuously increasing mass activity of precious metal in formic acid oxidation reaction (FAOR) is the key to achieving the practical application of direct formic acid fuel cells (DFAFCs). Herein, Rh-based dual-metal atomic pairs supported on nitrogen-doped carbon catalysts [DAP-(M, Rh)/CN] with adjacent interatomic Rh-M (M = V, Cr, Mn, Fe, Co, Ni, Cu) have been synthesized by a "host-guest" strategy. It is discovered that DAP-(Cr, Rh)/CN shows the highest mass activity of 64.1 A mg-1, which is 3.8 times higher than that of the single atom Rh catalyst (17.0 A mg-1) and two orders of magnitude higher than Pd/C (0.58 A mg-1). Interestingly, the mass activity of DAP-(M, Rh)/CN first increases from 11.7 A mg-1 (Rh-V) to 64.1 A mg-1 (Rh-Cr) and then decreases to 21.8 A mg-1 (Rh-Cu), forming a volcano curve of the reaction activity. Density functional theory calculations combined with in situ Fourier transform infrared spectrometer (FTIR) spectra reveal that formic acid oxidized on a series of DAP-(M, Rh)/CN catalysts through the formate route with the subsidiary M metal atoms binding the HCOO species and the Rh atom accepting the H atoms. The most suitable adsorption strength of HCOO on the Cr sites luckily contributes to two spontaneous elementary steps and thus accelerates the FAOR rates.
Collapse
Affiliation(s)
- Runze Ma
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bioinspired Materials and Devices & School of Energy and Power Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Jiaxin Gong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Jialin Zhang
- Beijing Key Laboratory of Bioinspired Materials and Devices & School of Energy and Power Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Shoujie Liu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yuxin Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Ke Zeng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Yu Tao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Jinhua Hu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P.R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Jun Yan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, P.R. China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| |
Collapse
|
3
|
Yadav S, Lyons RS, Readi-Brown Z, Siegler MA, Goldberg DP. Influence of the second coordination sphere on O 2 activation by a nonheme iron(II) thiolate complex. J Inorg Biochem 2025; 264:112776. [PMID: 39644805 DOI: 10.1016/j.jinorgbio.2024.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAMe2S-) and its nonheme iron complex, FeII(BPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -20 °C generates a high-spin iron(III)-hydroxide complex, [FeIII(OH)(BPAMe2S)(Br)] (2), that was characterized by UV-vis, 57Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O2 at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O2 does not yield a stabilized Fe/O2 intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the FeIII(O2-•) intermediate with the BNPAMe2S- ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O2 activation by the nonheme iron center.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Robert S Lyons
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Zoe Readi-Brown
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States.
| |
Collapse
|
4
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Nonheme Mononuclear and Dinuclear Iron(II) and Iron(III) Fluoride Complexes and Their Fluorine Radical Transfer Reactivity. Inorg Chem 2025; 64:682-691. [PMID: 39729544 DOI: 10.1021/acs.inorgchem.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
The nonheme iron(II) complexes containing a fluoride anion, FeII(BNPAPh2O)(F) (1) and [FeII(BNPAPh2OH)(F)(THF)](BF4) (2), were synthesized and structurally characterized. Addition of dioxygen to either 1 or 2 led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe2III(BNPAPh2O)2(F)2(μ-F)]+ (4), which was characterized by single-crystal X-ray diffraction, 1H NMR, and elemental analysis. An iron(II)(iodide) complex, FeII(BNPAPh2O)(I) (3), was prepared and reacted with O2 to give the mononuclear complex cis-FeIII(BNPAPh2O)(OH)(I) (5). Addition of excess fluoride to 5 led to the formation of the oxo-bridged, dinuclear iron(III) complex [Fe2III(BNPAPh2O)2(F)2(μ-O)] (6), while the mononuclear iron(III)(fluoride) complex cis-FeIII(BNPAPh2O)(F)(Cl) (7) was prepared from the addition of excess F- to FeIII(BNPAPh2O)Cl2. The dinuclear complexes 4 and 6 were unreactive to fluorine radical transfer, but mononuclear 7 reacts with the radical substrate (p-MeO-C6H4)3C• to give the fluorine radical transfer products FeII(BNPAPh2O)(Cl) and (p-OMe-C6H4)3CF. These results show that a mononuclear FeIII(F) complex is capable of mediating fluorine radical transfer, even in the presence of second coordination sphere hydrogen bonds to the F- ligand. These findings are placed in context with what is known about the nonheme iron halogenases and related synthetic catalysts regarding their ability, or lack thereof, to mediate fluorine radical transfer reactions.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Cruickshank E. The Emergence of a Polar Nematic Phase: A Chemist's Insight into the Ferroelectric Nematic Phase. Chempluschem 2024; 89:e202300726. [PMID: 38452282 DOI: 10.1002/cplu.202300726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The discovery of a new polar nematic phase; the ferroelectric nematic, has generated a great deal of excitement in the field of liquid crystals. To date there have been around 150 materials reported exhibiting the ferroelectric nematic phase, in general, following three key archetypal structures with these compounds known as RM734, DIO and UUQU-4N. In this review, the relationship between the molecular structure and the stability of the ferroelectric nematic, NF, phase will be described from a chemist's perspective. This will look to highlight the wide variety of functionalities which have been incorporated into these archetypal structures and how these changes influence the transition temperatures of the mesophases present. The NF phase appears to be stabilised particularly by reducing the length of terminal alkyl chains present and adding fluorines laterally along the length of the molecular backbone. This review will look to introduce the background of the ferroelectric nematic phase before then showing the molecular structures of a range of materials which exhibit the phase, describing their structure-property relationships and therefore giving an up-to-date account of the literature for this fascinating new mesophase.
Collapse
Affiliation(s)
- Ewan Cruickshank
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
6
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 PMCID: PMC11318076 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Yadav V, Wen L, Yadav S, Siegler MA, Goldberg DP. Selective Radical Transfer in a Series of Nonheme Iron(III) Complexes. Inorg Chem 2023; 62:17830-17842. [PMID: 37857315 PMCID: PMC11296666 DOI: 10.1021/acs.inorgchem.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A series of nonheme iron complexes, FeIII(BNPAPh2O)(Lax)(Leq) (Lax/eq = N3-, NCS-, NCO-, and Cl-) have been synthesized using the previously reported BNPAPh2O- ligand. The ferrous analogs FeII(BNPAPh2O)(Lax) (Lax = N3-, NCS-, and NCO-) were also prepared. The complexes were structurally characterized using single crystal X-ray diffraction, which shows that all the FeIII complexes are six-coordinate, with one anionic ligand (Lax) in the H-bonding axial site and the other anionic ligand (Leq) in the equatorial plane, cis to the Lax ligand. The reaction of FeIII(BNPAPh2O-)(Lax)(Leq) with Ph3C• shows that one ligand is selectively transferred in each case. A selectivity trend emerges that shows •N3 is the most favored for transfer in each case to the carbon radical, whereas Cl• is the least favored. The NCO and NCS ligands showed an intermediate propensity for radical transfer, with NCS > NCO. The overall order of selectivity is N3 > NCS > NCO > Cl. In addition, we also demonstrated that H-bonding has a small effect on governing product selectivity by using a non-H-bonded ligand (DPAPh2O-). This study demonstrates the inherent radical transfer selectivity of nonhydroxo-ligated nonheme iron(III) complexes, which could be useful for efforts in synthetic and (bio)catalytic C-H functionalization.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Tufaha N, Cruickshank E, Pociecha D, Gorecka E, Storey JM, Imrie CT. Molecular Shape, Electronic Factors, and the Ferroelectric Nematic Phase: Investigating the Impact of Structural Modifications. Chemistry 2023; 29:e202300073. [PMID: 36807424 PMCID: PMC10962687 DOI: 10.1002/chem.202300073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The synthesis and characterisation of two series of low molar mass mesogens, the (4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3.m) and the (3-fluoro-4-nitrophenyl) 2-alkoxy-4-(4-methoxybenzoyl)oxybenzoates (NT3F.m), are reported in order to investigate the effect of changing the position of a lateral alkoxy chain from the methoxy-substituted terminal ring to the central phenyl ring in these two series of materials based on RM734. All members of the NT3.m series exhibited a conventional nematic phase, N, which preceded the ferroelectric nematic phase, NF , whereas all the members of the NT3F.m series exhibited direct NF -I transitions except for NT3F.1 which also exhibited an N phase. These materials cannot be described as wedge-shaped, yet their values of the ferroelectric nematic-nematic transition temperature, TN F N ${{_{{\rm N}{_{{\rm F}}}{\rm N}}}}$ , exceed those of the corresponding materials with the lateral alkoxy chain located on the methoxy-substituted terminal ring. In part, this may be attributed to the effect that changing the position of the lateral alkoxy chain has on the electronic properties of these materials, specifically on the electron density associated with the methoxy-substituted terminal aromatic ring. The value of TNI decreased with the addition of a fluorine atom ortho to the nitro group in NT3F.1, however, the opposite behaviour was found when the transition temperatures of the NF phase were compared which are higher for the NT3F.m series. This may reflect a change in the polarity and polarizability of the NT3F.m series compared to the NT3.m series. Therefore, it is suggested that, rather than simply promoting a tapered shape, the role of the lateral chain in inhibiting anti-parallel associations and its effect on the electronic properties of the molecules are the key factors in driving the formation of the NF phase.
Collapse
Affiliation(s)
- Naila Tufaha
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| | - Ewan Cruickshank
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| | - Damian Pociecha
- Faculty of ChemistryUniversity of Warsawul. Zwirki i Wigury 10102-089WarsawPoland
| | - Ewa Gorecka
- Faculty of ChemistryUniversity of Warsawul. Zwirki i Wigury 10102-089WarsawPoland
| | - John M.D. Storey
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| | - Corrie T. Imrie
- Department of ChemistryUniversity of AberdeenOld AberdeenAB24 3UEUK
| |
Collapse
|
10
|
Zhang C, Yuan L, Liu C, Li Z, Zou Y, Zhang X, Zhang Y, Zhang Z, Wei G, Yu C. Crystal Engineering Enables Cobalt-Based Metal-Organic Frameworks as High-Performance Electrocatalysts for H 2O 2 Production. J Am Chem Soc 2023; 145:7791-7799. [PMID: 36896469 DOI: 10.1021/jacs.2c11446] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Metal-organic frameworks (MOFs) with highly adjustable structures are an emerging family of electrocatalysts in two-electron oxygen reduction reaction (2e-ORR) for H2O2 production. However, the development of MOF-based 2e-ORR catalysts with high H2O2 selectivity and production rate remains challenging. Herein, an elaborate design with fine control over MOFs at both atomic and nano-scale is demonstrated, enabling the well-known Zn/Co bimetallic zeolite imidazole frameworks (ZnCo-ZIFs) as excellent 2e-ORR electrocatalysts. Experimental results combined with density functional theory simulation have shown that the atomic level control can regulate the role of water molecules participating in the ORR process, and the morphology control over desired facet exposure adjusts the coordination unsaturation degree of active sites. The structural regulation at two length scales leads to synchronous control over both the kinetics and thermodynamics for ORR on bimetallic ZIF catalysts. The optimized ZnCo-ZIF with a Zn/Co molar ratio of 9/1 and predominant {001} facet exposure exhibits a high 2e- selectivity of ∼100% and a H2O2 yield of 4.35 mol gcat-1 h-1. The findings pave a new avenue toward the development of multivariate MOFs as advanced 2e-ORR electrocatalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zimeng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zhiqiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Yadav V, Wen L, Rodriguez RJ, Siegler MA, Goldberg DP. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis. J Am Chem Soc 2022; 144:20641-20652. [PMID: 36382466 PMCID: PMC10226418 DOI: 10.1021/jacs.2c07224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The new nonheme iron complexes FeII(BNPAPh2O)(N3) (1), FeIII(BNPAPh2O)(OH)(N3) (2), FeII(BNPAPh2O)(OH) (3), FeIII(BNPAPh2O)(OH)(NCS) (4), FeII(BNPAPh2O)(NCS) (5), FeIII(BNPAPh2O)(NCS)2 (6), and FeIII(BNPAPh2O)(N3)2 (7) (BNPAPh2O = 2-(bis((6-(neopentylamino)pyridin-2-yl) methyl)amino)-1,1-diphenylethanolate) were synthesized and characterized by single crystal X-ray diffraction (XRD), as well as by 1H NMR, 57Fe Mössbauer, and ATR-IR spectroscopies. Complex 2 was reacted with a series of carbon radicals, ArX3C· (ArX = p-X-C6H4), analogous to the proposed radical rebound step for nonheme iron hydroxylases and halogenases. The results show that for ArX3C· (X = Cl, H, tBu), only OH· transfer occurs to give ArX3COH. However, when X = OMe, a mixture of alcohol (ArX3COH) (30%) and azide (ArX3CN3) (40%) products was obtained. These data indicate that the rebound selectivity is influenced by the electron-rich nature of the carbon radicals for the azide complex. Reaction of 2 with Ph3C· in the presence of Sc3+ or H+ reverses the selectivity, giving only the azide product. In contrast to the mixed selectivity seen for 2, the reactivity of cis-FeIII(OH)(NCS) with the X = OMe radical derivative leads only to hydroxylation. Catalytic azidation was achieved with 1 as catalyst, λ3-azidoiodane as oxidant and azide source, and Ph3CH as test substrate, giving Ph3CN3 in 84% (TON = 8). These studies show that hydroxylation is favored over azidation for nonheme iron(III) complexes, but the nature of the carbon radical can alter this selectivity. If an OH· transfer pathway can be avoided, the FeIII(N3) complexes are capable of mediating both stoichiometric and catalytic azidation.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Lyupeng Wen
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Rodolfo J. Rodriguez
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
12
|
Cruickshank E, Walker R, Storey JMD, Imrie CT. The effect of a lateral alkyloxy chain on the ferroelectric nematic phase. RSC Adv 2022; 12:29482-29490. [PMID: 36320775 PMCID: PMC9562421 DOI: 10.1039/d2ra05628c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
The synthesis and characterisation of two series of low molar mass liquid crystals, the 4-[(4-nitrophenoxy)carbonyl]phenyl 2-alkoxy-4-methoxybenzoates (series 5-m) and the 4-[(3-fluoro-4-nitrophenoxy)carbonyl]phenyl 2-alkoxy-4-methoxybenzoates (series 6-m) are reported in order to explore the effects of a lateral alkyloxy chain on the formation and stability of the recently discovered ferroelectric nematic phase. In both series m, the number of carbon atoms in the lateral chain, is varied from one to nine. The two series differ by the addition of a fluorine substituent in the 6-m series. 5-1 is the extensively studied ferroelectric nematogen RM734. All the members of the 5-m series exhibited both a conventional nematic, N, and ferroelectric nematic, NF, phase, whereas all the members of the 6-m series exhibit a direct NF-I transition with the exception of 6-1 that also exhibits a N phase. The replacement of a hydrogen atom by a fluorine atom reduces the nematic-isotropic transition temperature, T NI, whereas the ferroelectric nematic-nematic, or isotropic, transition temperature, T NFN/I, increases. This is interpreted in terms of the reduced structural anisotropy associated with the larger fluorine atom whereas the increase in the stability of the NF phase reflects changes in polarity and polarizability. The dependence of T NI and T NFN/I on m in both series is similar, and these initially decrease on increasing m but converge to limiting values on further increasing m. This suggests that the lateral alkyloxy chain may adopt conformations in which it lies along the major axis of the mesogenic unit.
Collapse
Affiliation(s)
- Ewan Cruickshank
- Department of Chemistry, University of AberdeenOld AberdeenAB24 3UEUK
| | - Rebecca Walker
- Department of Chemistry, University of AberdeenOld AberdeenAB24 3UEUK
| | - John M. D. Storey
- Department of Chemistry, University of AberdeenOld AberdeenAB24 3UEUK
| | - Corrie T. Imrie
- Department of Chemistry, University of AberdeenOld AberdeenAB24 3UEUK
| |
Collapse
|
13
|
Hu M, Liu J, Song S, Wang W, Yao J, Gong Y, Li C, Li H, Li Y, Yuan X, Fang Z, Xu H, Song W, Li Z. Ultra-thin Two-Dimensional Trimetallic Metal–Organic Framework for Photocatalytic Reduction of CO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mingliang Hu
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jiahao Liu
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Shaojia Song
- Department of Applied Chemistry, College of Science, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiwei Wang
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jiasai Yao
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yixuan Gong
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chenyu Li
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Huan Li
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yanjie Li
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xilin Yuan
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhao Fang
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Hao Xu
- Department of Chemistry, Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Weiyu Song
- Department of Applied Chemistry, College of Science, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenxing Li
- Department of New Energy Science and Engineering, State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
14
|
Experimental (X-ray, TGA) and computation (NBO, AIM) studies of Iron(II) complex with thiabendazole and 5-aminoisophthalate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Dobbelaar E, Rauber C, Bonck T, Kelm H, Schmitz M, de Waal Malefijt ME, Klein JEMN, Krüger HJ. Combining Structural with Functional Model Properties in Iron Synthetic Analogue Complexes for the Active Site in Rabbit Lipoxygenase. J Am Chem Soc 2021; 143:13145-13155. [PMID: 34383499 DOI: 10.1021/jacs.1c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron complexes that model the structural and functional properties of the active iron site in rabbit lipoxygenase are described. The ligand sphere of the mononuclear pseudo-octahedral cis-(carboxylato)(hydroxo)iron(III) complex, which is completed by a tetraazamacrocyclic ligand, reproduces the first coordination shell of the active site in the enzyme. In addition, two corresponding iron(II) complexes are presented that differ in the coordination of a water molecule. In their structural and electronic properties, both the (hydroxo)iron(III) and the (aqua)iron(II) complex reflect well the only two essential states found in the enzymatic mechanism of peroxidation of polyunsaturated fatty acids. Furthermore, the ferric complex is shown to undergo hydrogen atom abstraction reactions with O-H and C-H bonds of suitable substrates, and the bond dissociation free energy of the coordinated water ligand of the ferrous complex is determined to be 72.4 kcal·mol-1. Theoretical investigations of the reactivity support a concerted proton-coupled electron transfer mechanism in close analogy to the initial step in the enzymatic mechanism. The propensity of the (hydroxo)iron(III) complex to undergo H atom abstraction reactions is the basis for its catalytic function in the aerobic peroxidation of 2,4,6-tri(tert-butyl)phenol and its role as a radical initiator in the reaction of dihydroanthracene with oxygen.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christian Rauber
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Thorsten Bonck
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Markus Schmitz
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matina Eloïse de Waal Malefijt
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Hans-Jörg Krüger
- Department of Chemistry, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
16
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|