1
|
Zhao XZ, Wang W, Mahmud MRA, Agama K, Pommier Y, Burke TR. Application of a bivalent "click" approach to target tyrosyl-DNA phosphodiesterase 1 (TDP1). RSC Med Chem 2025; 16:1969-1985. [PMID: 39990162 PMCID: PMC11843577 DOI: 10.1039/d4md00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/26/2025] [Indexed: 02/25/2025] Open
Abstract
Although inhibiting the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) synergizes with topoisomerase type I (TOP1) inhibitors in anticancer therapy, development of TDP1 inhibitors has been highly challenging. This may be due to the open and shallow nature of the TDP1 catalytic site and the necessity of competing with a large and highly extended substrate. The toolbox available to chemical biologists for studying TDP1 could be significantly enhanced by introducing the ability to selectively eliminate TDP1 using protein degraders. Our current work starts from phenyl imidazopyridine-based TDP1 inhibitors previously developed from small molecule microarrays (SMMs). Using crystal structures of lead inhibitors bound to TDP1, we designed and synthesized a series of bivalent proteolysis-targeting chimeras (PROTACs). The focus of our current work is to explore synthetic approaches that permit installation of E3 ligase-targeting functionality, while retaining the TDP1 binding. We employed copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reactions to assemble PROTAC constituents with 1,2,3-triazole-containing linkers. With the addition of the relatively large parts of the linkers and E3-targeting moieties, we retained the ability to inhibit TDP1. The successful development of TDP1-directed PROTACS would yield a new therapeutic class that could potentially enhance the efficacy and selectivity of TOP1 inhibitors including those used as payloads in antibody drug conjugates (ADCs).
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Md Rasel Al Mahmud
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| |
Collapse
|
2
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
3
|
Zhao XZ, Barakat IA, Lountos GT, Wang W, Agama K, Mahmud MRA, Suazo KF, Andresson T, Pommier Y, Burke TR. Targeted sulfur(VI) fluoride exchange-mediated covalent modification of a tyrosine residue in the catalytic pocket of tyrosyl-DNA phosphodiesterase 1. Commun Chem 2024; 7:208. [PMID: 39284936 PMCID: PMC11405833 DOI: 10.1038/s42004-024-01298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Developing effective inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) has been challenging because of the enzyme shallow catalytic pocket and non-specific substrate binding interactions. Recently, we discovered a quinolone-binding hot spot in TDP1's active site proximal to the evolutionary conserved Y204 and F259 residues that position DNA. Sulfur (VI) fluoride exchange (SuFEx) is a biocompatible click chemistry reaction that enables acylation of protein residues, including tyrosine. Selective protein modifications can provide insights into the biological roles of proteins and inform ligand design. As we report herein, we used SuFEx chemistries to prepare covalent TDP1-bound binders showing site-specific covalent bonds with Y204. Our work presents the first application of SuFEx chemistries to TDP1 ligands. It validates the ability to covalently modify specific TDP1 residues by designed targeting and adds to the chemical biology resource toolbox for studying TDP1.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Idris A Barakat
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Md Rasel Al Mahmud
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiall F Suazo
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
4
|
Smallwood TB, Krumpe LRH, Payne CD, Klein VG, O'Keefe BR, Clark RJ, Schroeder CI, Rosengren KJ. Picking the tyrosine-lock: chemical synthesis of the tyrosyl-DNA phosphodiesterase I inhibitor recifin A and analogues. Chem Sci 2024; 15:13227-13233. [PMID: 39183914 PMCID: PMC11339948 DOI: 10.1039/d4sc01976h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/11/2024] [Indexed: 08/27/2024] Open
Abstract
The peptide recifin A is the inaugural member of the structurally intriguing new fold referred to as a tyrosine-lock. Its central four stranded β-sheet is stabilized by a unique arrangement in which three disulfide bonds and their interconnecting backbone form a ring that wraps around one of the strands, resulting in a Tyr side chain being buried in the molecular core. Here we aimed to establish a synthetic route to this complex class of natural products. Full length recifin A was successfully generated through native chemical ligation chemistry joining two 21 amino acid residue fragments. Surprisingly, reduced linear recifin A readily adopts the correct, topologically-complex fold via random oxidation of the cysteines, suggesting it is highly energetically favored. Utilizing our synthetic strategy, we generated five recifin A analogues to investigate the structural role of the central Tyr residue and provide the first insights into the structure activity relationship of recifin A towards its cancer target tyrosyl-DNA phosphodiesterase I.
Collapse
Affiliation(s)
- Taylor B Smallwood
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Lauren R H Krumpe
- Molecular Targets Program, Centre for Cancer Research, National Cancer Institute, National Institute of Health Frederick MD 21702 USA
| | - Colton D Payne
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Victoria G Klein
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, National Institute of Health Frederick MD 21702 USA
| | - Barry R O'Keefe
- Molecular Targets Program, Centre for Cancer Research, National Cancer Institute, National Institute of Health Frederick MD 21702 USA
- Natural Products Branch, Centre for Cancer Research, National Cancer Institute, National Institute of Health Frederick MD 21702 USA
| | - Richard J Clark
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Christina I Schroeder
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, National Institute of Health Frederick MD 21702 USA
- Peptide Therapeutics, Genentech Inc 1 DNA Way South San Francisco CA 94080 USA
| | - K Johan Rosengren
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| |
Collapse
|
5
|
Zhao XZ, Wang W, Lountos GT, Tropea JE, Needle D, Pommier Y, Burke TR. Phosphonic acid-containing inhibitors of tyrosyl-DNA phosphodiesterase 1. Front Chem 2022; 10:910953. [PMID: 36051621 PMCID: PMC9424690 DOI: 10.3389/fchem.2022.910953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3′-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region. We have previously reported imidazopyrazines and imidazopyridines that can inhibit TDP1 catalytic function in vitro. We solved the TDP1 crystal structures with bound inhibitors of this class and found that the dicarboxylic acid functionality within the N-(3,4-dicarboxyphenyl)-2-diphenylimidazo [1,2-a]pyridin-3-amine platform overlaps with aspects of phosphoryl substrate recognition. Yet phosphonic acids could potentially better-replicate cognate TOP1-DNA substrate binding interactions than carboxylic acids. As reported herein, we designed phosphonic acid-containing variants of our previously reported carboxylic acid-containing imidazopyrazine and imidazopyridine inhibitors and effected their synthesis using one-pot Groebke–Blackburn–Bienayme multicomponent reactions. We obtained crystal structures of TDP1 complexed with a subset of inhibitors. We discuss binding interactions of these inhibitors within the context of phosphate-containing substrate and carboxylic acid-based inhibitors. These compounds represent a new structural class of small molecule ligands that mimic aspects of the 3′-processed substrate that results from TDP1 catalysis.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
- *Correspondence: Xue Zhi Zhao,
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
6
|
Yang H, Wang FT, Wu M, Wang W, Agama K, Pommier Y, An LK. Synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as tyrosyl-DNA phosphodiesterase 1 inhibitors and their anticancer activity. Bioorg Chem 2022; 123:105789. [PMID: 35429714 PMCID: PMC10557912 DOI: 10.1016/j.bioorg.2022.105789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that repairs DNA lesions caused by the trapping of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors have synergistic effect with TOP1 inhibitors in cancer cells and can overcome cancer cell resistance to TOP1 inhibitors. Here, we report the synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as selective TDP1 inhibitors and show that six compounds 14, 16, 18, 20, 25 and 27 exhibit high TDP1 inhibition potency. The most potent TDP1 inhibitor 14 (IC50 = 1.7 ± 0.24 μM) induces cellular TDP1cc formation and shows synergistic effect with topotecan in four human cancer cell lines MCF-7, A549, H460 and HepG2.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|
7
|
Purushotham M, Paul B. Iodinated Diketopiperazines: Synthesis and Biological Evaluation of Iodinated Analogues of Cyclo(L‐Tyrosine‐L‐Tyrosine) Peptides. ChemistrySelect 2022. [DOI: 10.1002/slct.202201120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Manasa Purushotham
- Department of Chemistry Jnana Bharathi Campus Bangalore University Bangalore 560056 India
| | - Bishwajit Paul
- Department of Chemistry Jnana Bharathi Campus Bangalore University Bangalore 560056 India
| |
Collapse
|
8
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
9
|
Pascoe CA, Engelhardt DB, Rosana ARR, van Belkum MJ, Vederas JC. Methylene Analogues of Neopetrosiamide as Potential Antimetastatic Agents: Solid-Supported Syntheses Using Diamino Diacids for Pre-Stapling of Peptides with Multiple Disulfides. Org Lett 2021; 23:9216-9220. [PMID: 34784223 DOI: 10.1021/acs.orglett.1c03532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neopetrosiamide, a 28-residue peptide from Neopetrosia sp., contains three disulfide bonds and hinders mammalian tumor cell invasion. Proper connectivity of disulfide bonds is crucial for activity. Synthetic replacement of single disulfide bridges with methylene bridges gives active analogues. Pre-stapling of one ring enhances the correct formation of the remaining disulfides by reducing isomeric possibilities and possibly initiating the correct 3D fold. Cloning and expression of neopetrosiamide in E. coli affords access to the natural linear peptide.
Collapse
Affiliation(s)
- Cameron A Pascoe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Daniel B Engelhardt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
10
|
A Dual-Sensor-Based Screening System for In Vitro Selection of TDP1 Inhibitors. SENSORS 2021; 21:s21144832. [PMID: 34300575 PMCID: PMC8309759 DOI: 10.3390/s21144832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
DNA sensors can be used as robust tools for high-throughput drug screening of small molecules with the potential to inhibit specific enzymes. As enzymes work in complex biological pathways, it is important to screen for both desired and undesired inhibitory effects. We here report a screening system utilizing specific sensors for tyrosyl-DNA phosphodiesterase 1 (TDP1) and topoisomerase 1 (TOP1) activity to screen in vitro for drugs inhibiting TDP1 without affecting TOP1. As the main function of TDP1 is repair of TOP1 cleavage-induced DNA damage, inhibition of TOP1 cleavage could thus reduce the biological effect of the TDP1 drugs. We identified three new drug candidates of the 1,5-naphthyridine and 1,2,3,4-tetrahydroquinolinylphosphine sulfide families. All three TDP1 inhibitors had no effect on TOP1 activity and acted synergistically with the TOP1 poison SN-38 to increase the amount of TOP1 cleavage-induced DNA damage. Further, they promoted cell death even with low dose SN-38, thereby establishing two new classes of TDP1 inhibitors with clinical potential. Thus, we here report a dual-sensor screening approach for in vitro selection of TDP1 drugs and three new TDP1 drug candidates that act synergistically with TOP1 poisons.
Collapse
|
11
|
Grkovic T, Ruchirawat S, Kittakoop P, Grothaus PG, Evans JR, Britt JR, Newman DJ, Mahidol C, O'Keefe BR. A New Bispyrroloiminoquinone Alkaloid From a Thai Collection of
Clavelina
sp. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tanja Grkovic
- Natural Products Branch Developmental Therapeutics Program Division of Cancer Treatment and Diagnosis National Cancer Institute Frederick Maryland 21702-1201 USA
- Molecular Targets Program Center for Cancer Research National Cancer Institute Frederick Maryland 21702-1201 USA
| | - Somsak Ruchirawat
- Laboratory of Natural Products Chulabhorn Research Institute Kamphang Phet 6 Road Bangkok 10210 Thailand
- Chemical Biology Program Chulabhorn Graduate Institute Kamphang Phet 6 Road Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Technology CHE Ministry of Education Bangkok Thailand
| | - Prasat Kittakoop
- Laboratory of Natural Products Chulabhorn Research Institute Kamphang Phet 6 Road Bangkok 10210 Thailand
- Chemical Biology Program Chulabhorn Graduate Institute Kamphang Phet 6 Road Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Technology CHE Ministry of Education Bangkok Thailand
| | - Paul G. Grothaus
- Natural Products Branch Developmental Therapeutics Program Division of Cancer Treatment and Diagnosis National Cancer Institute Frederick Maryland 21702-1201 USA
| | - Jason R. Evans
- Natural Products Branch Developmental Therapeutics Program Division of Cancer Treatment and Diagnosis National Cancer Institute Frederick Maryland 21702-1201 USA
| | - John R. Britt
- Natural Products Support Group Frederick National Laboratory for Cancer Research Frederick Maryland 21702-1201 USA
| | - David J. Newman
- Natural Products Branch Developmental Therapeutics Program Division of Cancer Treatment and Diagnosis National Cancer Institute Frederick Maryland 21702-1201 USA
| | - Chulabhorn Mahidol
- Laboratory of Natural Products Chulabhorn Research Institute Kamphang Phet 6 Road Bangkok 10210 Thailand
- Chemical Biology Program Chulabhorn Graduate Institute Kamphang Phet 6 Road Bangkok 10210 Thailand
| | - Barry R. O'Keefe
- Natural Products Branch Developmental Therapeutics Program Division of Cancer Treatment and Diagnosis National Cancer Institute Frederick Maryland 21702-1201 USA
- Molecular Targets Program Center for Cancer Research National Cancer Institute Frederick Maryland 21702-1201 USA
| |
Collapse
|