1
|
LeComte A, Sailer R, Mahato S, VandeVen W, Zhou W, Paterson AR, Desmau M, Ebrahim AM, Thomas F, Chiang L. Synthesis and Characterization of Co Complexes Coordinated by a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2025; 64:5986-5995. [PMID: 40100031 PMCID: PMC11962833 DOI: 10.1021/acs.inorgchem.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The synthesis and characterization of a square planar CoII complex coordinated by the tetraanionic bis(amidateanilido) L4- ligand, 12-, and its corresponding one-electron oxidized forms 2-, 3, and 4+ are discussed herein. 12- undergoes aerobic oxidation to form 2-, a square planar S = 1 CoIII complex. This aerobic reactivity is attributed to a remarkably negative CoII/CoIII potential, as observed in its cyclic voltammogram, which is among the most negative CoII/CoIII couples reported. This supports the conclusion that the L4- ligation is strongly stabilizing to the oxidized CoIII center. The cyclic voltammogram of 2- also reveals that further oxidations are possible at mild potentials. Indeed, the stoichiometric addition of a suitable chemical oxidant yields a ligand-oxidized S = 1/2 CoIII complex, 3, while the addition of a further equivalent of the oxidant putatively yields 4+. The formation of the ligand oxidized species 3 suggests that bis(amidateanilido) ligation can further behave as a redox-active ligand upon additional oxidation.
Collapse
Affiliation(s)
- Avery LeComte
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Rachel Sailer
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Samyadeb Mahato
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
- Department
of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Alisa R. Paterson
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Morgane Desmau
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Amani M. Ebrahim
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Fabrice Thomas
- Univ.
Grenoble Alpes, DCM, CNRS, Grenoble 38000, CEDEX 9, France
| | - Linus Chiang
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
2
|
Kirsch KE, Little ME, Cundari TR, El-Shaer E, Barone G, Lynch VM, Toledo SA. Direct O 2 mediated oxidation of a Ni(II)N 3O structural model complex for the active site of nickel acireductone dioxygenase (Ni-ARD): characterization, biomimetic reactivity, and enzymatic implications. Dalton Trans 2024; 53:17852-17863. [PMID: 39421893 DOI: 10.1039/d4dt02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A new biomimetic model complex of the active site of acireductone dioxygenase (ARD) was synthesized and crystallographically characterized ([Ni(ii)(N-(ethyl-N'Me2)(Py)(2-t-ButPhOH))(OTf)]-1). 1 displays carbon-carbon oxidative cleavage activity in the presence of O2 towards the substrate 2-hydroxyacetophenone. This reactivity was monitored via UV-Visible and NMR spectroscopy. We postulate that the reactivity of 1 with O2 leads to the formation of a putative Ni(III)-superoxo transient species resulting from the direct activation of O2via the nickel center during the oxidative reaction. This proposed intermediate and reaction mechanism were studied in detail using DFT calculations. 1 and its substrate bound derivatives display reactivity toward mild outer sphere oxidants, suggesting ease of access to high valent Ni coordination complexes, consistent with our calculations. If confirmed, the direct activation of O2 at a nickel center could have implications for the mechanism of action of ARD and other nickel-based dioxygenases and their respective non-traditional, enzymatic moonlighting functions, as well as contribute to a general understanding of direct oxidation of nickel(II) coordination complexes by O2.
Collapse
Affiliation(s)
- Kelsey E Kirsch
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| | - Mary E Little
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, 1155 Union Cir, Denton, Texas 76203, USA
| | - Emily El-Shaer
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Georgia Barone
- Department of Chemistry, St Edward's University, 3001 South Congress Ave, Austin, Texas 78704, USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, Texas 78712, USA
| | - Santiago A Toledo
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC, 20016, USA.
| |
Collapse
|
3
|
Ramakrishnan S, Anjukandi P. Superoxide to Peroxide Interconversion in Ni-TMC Complexes: The Significance of Structure and Spin States. Inorg Chem 2024; 63:15186-15196. [PMID: 39072391 DOI: 10.1021/acs.inorgchem.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A deeper comprehension of the characteristics of metal-superoxide and metal-peroxide chemical species is imperative, considering their pivotal functions in oxygen transport, enzymatic activation, and catalytic oxygenations. O2 activation is mediated by the interconversion of superoxide and peroxide species. Even though there are multiple studies on metal-superoxide and -peroxide intermediates, robust examples of their interconversion processes are scarce synthetically. For example, Ni-superoxide/peroxide complexes have been characterized with N-Tetramethylated Cyclam (TMC) ligands with different ring sizes, i.e., Nickel(II)-superoxide complex is characterized with 14-TMC while Nickel(III)-peroxide complex with 12-TMC. Later, both complexes were obtained with 13-TMC ligand by employing different bases; interestingly, no evidence of interconversion between them was identified. What are the factors influencing these processes and why is this preference? We attempt a computational analysis of this issue and provide arguments based on our conclusions. 2-dimensional potential energy scan is performed on the 12-TMC, 13-TMC, and 14-TMC systems to identify the reaction path connecting superoxide and peroxide species. Analyses indicate that structure and spin states play a significant role in determining the probability of interconversion. The superoxide-peroxide interconversion process appears to be bound by their propensity for distinct structural features and spin states.
Collapse
Affiliation(s)
- Shyama Ramakrishnan
- Department of Chemistry, Indian Institute of Technology, Kanjikode, Palakkad, Kerala 678623, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Kanjikode, Palakkad, Kerala 678623, India
| |
Collapse
|
4
|
Lillo HL, Buss JA. A dinuclear nickel peroxycarbonate complex: CO 2 addition promotes H 2O 2 release. Chem Commun (Camb) 2024; 60:8549-8552. [PMID: 39041317 DOI: 10.1039/d4cc02241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Nickel coordination compounds featuring Ni-O bonds are key structural motifs in both bioinorganic and synthetic chemistries. They serve as precursors for organic substrate oxidation and are commonly invoked intermediates in water oxidation and oxygen reduction schemes. Herein, we disclose a series of well-defined dinuclear nickel complexes that, upon treatment with CO2 and H2O2, afford the first nickel-bound peroxycarbonate. This unprecedented nickel-oxygen intermediate is stabilized by hydrogen bonding templated across the bimetallic core. Contrasting copper and iron analogues, the nickel peroxycarbonate reversibly dissociates H2O2, a process that is shown to be accelerated by exogenous CO2.
Collapse
Affiliation(s)
- Hayley L Lillo
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Joshua A Buss
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Beagan DM, Rivera C, Szymczak NK. Appended Lewis Acids Enable Dioxygen Reactivity and Catalytic Oxidations with Ni(II). J Am Chem Soc 2024; 146:12375-12385. [PMID: 38661576 PMCID: PMC11148854 DOI: 10.1021/jacs.3c12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We disclose a suite of Ni(II) complexes featuring secondary sphere Lewis acids of varied Lewis acidity and tether lengths. Several of these complexes feature atypical behavior of Ni(II): reactivity with O2 that occurs only in the presence of a tethered Lewis acid. In situ UV-vis spectroscopy revealed that, although adducts are stable at -40 °C, complexes containing 9-borabicyclo[3.3.1]nonane (9-BBN) Lewis acids underwent irreversible oxidative deborylation when warmed to room temperature. We computationally and experimentally identified that oxidative instability of appended 9-BBN moieties can be mitigated using weaker Lewis acids such as pinacolborane (BPin). These insights enabled the realization of catalytic reactions: hydrogen atom abstraction from phenols and room temperature oxygen atom transfer to PPh3.
Collapse
Affiliation(s)
- Daniel M Beagan
- University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Carolina Rivera
- University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Nathaniel K Szymczak
- University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
7
|
Wei XZ, Liao FJ, Xu X, Ye C, Tung CH, Wu LZ. In situ assembly of nickel-based ultrathin catalyst film for water oxidation. Chem Commun (Camb) 2023; 59:11109-11112. [PMID: 37646081 DOI: 10.1039/d3cc03110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A nickel-based ultrathin catalyst film is assembled in situ from a solution of Ni(OAc)2 and a Schiff-base ligand L. The resulting ultrathin catalyst film shows a low overpotential of 330 mV, a steady current of 7 mA cm-2 for water oxidation over 10 h.
Collapse
Affiliation(s)
- Xiang-Zhu Wei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang-Jie Liao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Maksimchuk N, Puiggalí-Jou J, Zalomaeva OV, Larionov KP, Evtushok VY, Soshnikov IE, Solé-Daura A, Kholdeeva OA, Poblet JM, Carbó JJ. Resolving the Mechanism for H 2O 2 Decomposition over Zr(IV)-Substituted Lindqvist Tungstate: Evidence of Singlet Oxygen Intermediacy. ACS Catal 2023; 13:10324-10339. [PMID: 37560188 PMCID: PMC10407852 DOI: 10.1021/acscatal.3c02416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
The decomposition of hydrogen peroxide (H2O2) is the main undesired side reaction in catalytic oxidation processes of industrial interest that make use of H2O2 as a terminal oxidant, such as the epoxidation of alkenes. However, the mechanism responsible for this reaction is still poorly understood, thus hindering the development of design rules to maximize the efficiency of catalytic oxidations in terms of product selectivity and oxidant utilization efficiency. Here, we thoroughly investigated the H2O2 decomposition mechanism using a Zr-monosubstituted dimeric Lindqvist tungstate, (Bu4N)6[{W5O18Zr(μ-OH)}2] ({ZrW5}2), which revealed high activity for this reaction in acetonitrile. The mechanism of the {ZrW5}2-catalyzed H2O2 degradation in the absence of an organic substrate was investigated using kinetic, spectroscopic, and computational tools. The reaction is first order in the Zr catalyst and shows saturation behavior with increasing H2O2 concentration. The apparent activation energy is 11.5 kcal·mol-1, which is significantly lower than the values previously found for Ti- and Nb-substituted Lindqvist tungstates (14.6 and 16.7 kcal·mol-1, respectively). EPR spectroscopic studies indicated the formation of superoxide radicals, while EPR with a specific singlet oxygen trap, 2,2,6,6-tetramethylpiperidone (4-oxo-TEMP), revealed the generation of 1O2. The interaction of test substrates, α-terpinene and tetramethylethylene, with H2O2 in the presence of {ZrW5}2 corroborated the formation of products typical of the oxidation processes that engage 1O2 (endoperoxide ascaridole and 2,3-dimethyl-3-butene-2-hydroperoxide, respectively). While radical scavengers tBuOH and p-benzoquinone produced no effect on the peroxide product yield, the addition of 4-oxo-TEMP significantly reduced it. After optimization of the reaction conditions, a 90% yield of ascaridole was attained. DFT calculations provided an atomistic description of the H2O2 decomposition mechanism by Zr-substituted Lindqvist tungstate catalysts. Calculations showed that the reaction proceeds through a Zr-trioxidane [Zr-η2-OO(OH)] key intermediate, whose formation is the rate-determining step. The Zr-substituted POM activates heterolytically a first H2O2 molecule to generate a Zr-peroxo species, which attacks nucleophilically to a second H2O2, causing its heterolytic O-O cleavage to yield the Zr-trioxidane complex. In agreement with spectroscopic and kinetic studies, the lowest-energy pathway involves dimeric Zr species and an inner-sphere mechanism. Still, we also found monomeric inner- and outer-sphere pathways that are close in energy and could coexist with the dimeric one. The highly reactive Zr-trioxidane intermediate can evolve heterolytically to release singlet oxygen and also decompose homolytically, producing superoxide as the predominant radical species. For H2O2 decomposition by Ti- and Nb-substituted POMs, we also propose the formation of the TM-trioxidane key intermediate, finding good agreement with the observed trends in apparent activation energies.
Collapse
Affiliation(s)
| | - Jordi Puiggalí-Jou
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Olga V. Zalomaeva
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Kirill P. Larionov
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | | | - Igor E. Soshnikov
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Albert Solé-Daura
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Oxana A. Kholdeeva
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Josep M. Poblet
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Jorge J. Carbó
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| |
Collapse
|
9
|
Deolka S, Govindarajan R, Khaskin E, Vasylevskyi S, Bahri J, Fayzullin RR, Roy MC, Khusnutdinova JR. Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant. Chem Sci 2023; 14:7026-7035. [PMID: 37389265 PMCID: PMC10306096 DOI: 10.1039/d3sc01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel perfluoroethyl and perfluoropropyl complexes supported by naphthyridine-type ligands show drastically different aerobic reactivity from their trifluoromethyl analogs resulting in facile oxygen transfer to perfluoroalkyl groups or oxygenation of external organic substrates (phosphines, sulfides, alkenes and alcohols) using O2 or air as a terminal oxidant. Such mild aerobic oxygenation occurs through the formation of spectroscopically detected transient high-valent NiIII and structurally characterized mixed-valent NiII-NiIV intermediates and radical intermediates, resembling O2 activation reported for some Pd dialkyl complexes. This reactivity is in contrast with the aerobic oxidation of naphthyridine-based Ni(CF3)2 complexes resulting in the formation of a stable NiIII product, which is attributed to the effect of greater steric congestion imposed by longer perfluoroalkyl chains.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - R Govindarajan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Janet Bahri
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
10
|
Sherbow TJ, Li K, Zakharov LN, Pluth MD. Synthesis and reactivity of a tris(carbene) zinc chloride complex. Dalton Trans 2022; 51:14563-14567. [PMID: 36074723 PMCID: PMC9673275 DOI: 10.1039/d2dt02809c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The [PhB(tBuIm)3]1- ligand has gained increased attention since it was first reported in 2006 due to its ability to stabilize highly reactive first row transition metal complexes. In this work, we investigate the coordination chemistry of this ligand with redox-inert zinc to understand how a zinc metal center behaves in such a strong coordinating environment. The PhB(tBuIm)3ZnCl (1) complex can be formed via deprotonation of [PhB(tBuIm)3][OTf]2 followed by the addition of ZnCl2. Salt metathesis reaction with nucleophilic n-BuLi yields the highly carbon-rich zinc coordination complex PhB(tBuIm)3ZnBu (2) with three carbene atom donors and one carbanion donor. In contrast, reaction of complex 1 with a less nucleophilic polysulfide reagent, [K.18-C-6]2[S4], leads to the formation of a tetrahedral zinc tetrasulfido complex via protonation of one carbene donor to form PhB(tBuIm)2(tBuImH)Zn(κ2-S4) (3).
Collapse
Affiliation(s)
- Tobias J Sherbow
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| | - Keyan Li
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| | - Lev N Zakharov
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| |
Collapse
|
11
|
Lueckheide MJ, Ertem MZ, Michon MA, Chmielniak P, Robinson JR. Peroxide-Selective Reduction of O 2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. J Am Chem Soc 2022; 144:17295-17306. [PMID: 36083877 DOI: 10.1021/jacs.2c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.
Collapse
Affiliation(s)
- Matthew J Lueckheide
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael A Michon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Goetz MK, Schneider JE, Filatov AS, Jesse KA, Anderson JS. Enzyme-Like Hydroxylation of Aliphatic C-H Bonds From an Isolable Co-Oxo Complex. J Am Chem Soc 2021; 143:20849-20862. [PMID: 34856101 DOI: 10.1021/jacs.1c09280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The selective hydroxylation of aliphatic C-H bonds remains a challenging but broadly useful transformation. Nature has evolved systems that excel at this reaction, exemplified by cytochrome P450 enzymes, which use an iron-oxo intermediate to activate aliphatic C-H bonds with k1 > 1400 s-1 at 4 °C. Many synthetic catalysts have been inspired by these enzymes and are similarly proposed to use transition metal-oxo intermediates. However, most examples of well-characterized transition metal-oxo species are not capable of reacting with strong, aliphatic C-H bonds, resulting in a lack of understanding of what factors facilitate this reactivity. Here, we report the isolation and characterization of a new terminal CoIII-oxo complex, PhB(AdIm)3CoIIIO. Upon oxidation, a transient CoIV-oxo intermediate is generated that is capable of hydroxylating aliphatic C-H bonds with an extrapolated k1 for C-H activation >130 s-1 at 4 °C, comparable to values observed in cytochrome P450 enzymes. Experimental thermodynamic values and DFT analysis demonstrate that, although the initial C-H activation step in this reaction is endergonic, the overall reaction is driven by an extremely exergonic radical rebound step, similar to what has been proposed in cytochrome P450 enzymes. The rapid C-H hydroxylation reactivity displayed in this well-defined system provides insight into how hydroxylation is accomplished by biological systems and similarly potent synthetic oxidants.
Collapse
Affiliation(s)
- McKenna K Goetz
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of
Cis
and
Trans
Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Natasha P. Vargo
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| | - Jill B. Harland
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Bradley W. Musselman
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Brookhaven National Laboratory PO Box 5000 Upton NY 11973-5000 USA
| | - Jerome R. Robinson
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| |
Collapse
|
14
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021; 60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
Collapse
Affiliation(s)
- Natasha P Vargo
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Bradley W Musselman
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, PO Box 5000, Upton, NY, 11973-5000, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| |
Collapse
|
15
|
Das A, Chakraborty S, Mandal SK. Abnormal N-heterocyclic Carbene Based Ni(II) π-allyl Complex towards Molecular Oxygen Activation. Chem Asian J 2021; 16:2257-2260. [PMID: 34137185 DOI: 10.1002/asia.202100568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Indexed: 11/08/2022]
Abstract
Abnormal N-heterocyclic carbene (aNHC) based Ni(II) π-allyl complexes (3 and 4) were synthesized starting from a Ni(0) precursor. These complexes were characterized by NMR spectroscopy, single-crystal X-ray crystallography (4) and elemental analysis data. The underlying mechanism for the formation of Ni(II) η3 -allyl complexes from a Ni(0) precursor on treatment with a free abnormal N-heterocyclic carbene in absence of any external additive or oxidant was unraveled. Later, complex 3 was exposed to O2 gas under ambient pressure resulting in molecular oxygen activation to form a μ-hydroxo bridged Ni(II) dimer.
Collapse
Affiliation(s)
- Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Soumi Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
16
|
Chandra A, Ansari M, Monte‐Pérez I, Kundu S, Rajaraman G, Ray K. Ligand‐Constraint‐Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anirban Chandra
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Inés Monte‐Pérez
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Subrata Kundu
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
17
|
Chandra A, Ansari M, Monte-Pérez I, Kundu S, Rajaraman G, Ray K. Ligand-Constraint-Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021; 60:14954-14959. [PMID: 33843113 PMCID: PMC8252416 DOI: 10.1002/anie.202100438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Indexed: 12/16/2022]
Abstract
μ‐1,2‐peroxo‐bridged diiron(III) intermediates P are proposed as reactive intermediates in various biological oxidation reactions. In sMMO, P acts as an electrophile, and performs hydrogen atom and oxygen atom transfers to electron‐rich substrates. In cyanobacterial ADO, however, P is postulated to react by nucleophilic attack on electrophilic carbon atoms. In biomimetic studies, the ability of μ‐1,2‐peroxo‐bridged dimetal complexes of Fe, Co, Ni and Cu to act as nucleophiles that effect deformylation of aldehydes is documented. By performing reactivity and theoretical studies on an end‐on μ‐1,2‐peroxodicobalt(III) complex 1 involving a non‐heme ligand system, L1, supported on a Sn6O6 stannoxane core, we now show that a peroxo‐bridged dimetal complex can also be a reactive electrophile. The observed electrophilic chemistry, which is induced by the constraints provided by the Sn6O6 core, represents a new domain for metal−peroxide reactivity.
Collapse
Affiliation(s)
- Anirban Chandra
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Inés Monte-Pérez
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Subrata Kundu
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
18
|
Sherbow TJ, Zakharov L, Pluth MD. Synthesis of Terminal Bis(hydrosulfido) and Disulfido Complexes of Ni(II) from a Geometrically Frustrated Tetrahedral Ni(II) Chloride Complex. Inorg Chem 2021; 60:8135-8142. [PMID: 33999607 DOI: 10.1021/acs.inorgchem.1c00787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies have highlighted how reactive sulfur species (RSS) can be regulated and transported by metal-sulfur coordination compounds. We report herein the reactivity of PhB(tBuIm)3NiCl (1) with RSS, including the hydrosulfide anion ([Bu4N][SH]) and a reduced tetrasulfide ([K18-C-6]2[S4]). The strongly donating tris(carbene) ligand in 1 is geometrically constrained to a tetrahedral geometry, and the energetically preferable square planar geometry is not achievable with the [PhB(tBuIm)3]- ligand. Upon reaction of 1 with [Bu4N][SH] and [K18-C-6]2[S4], the square planar complexes PhB(tBuIm)2(tBuImH)Ni(SH)2 (2) and PhB(tBuIm)2(tBuImH)Ni(η2-S2) (3) are formed, respectively, via the protonation of one carbene ligand donor atom. Mechanistic investigation suggest that protonation occurs either from decomposition of 1 during the reaction progress, reactions with advantageous [Bu4N]+/[K18-C-6]+ countercations or from the generation of transient unidentified RSS that facilitate proton transfer reactions.
Collapse
Affiliation(s)
- Tobias J Sherbow
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev Zakharov
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
19
|
Lee JL, Oswald VF, Biswas S, Hill EA, Ziller JW, Hendrich MP, Borovik AS. Stepwise assembly of heterobimetallic complexes: synthesis, structure, and physical properties. Dalton Trans 2021; 50:8111-8119. [PMID: 34019606 DOI: 10.1039/d1dt01021b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic active sites are ubiquitous in metalloenzymes and have sparked investigations of synthetic models to aid in the establishment of structure-function relationship. We previously reported a series of discrete bimetallic complexes with [FeIII-(μ-OH)-MII] cores in which the ligand framework provides distinct binding sites for two metal centers. The formation of these complexes relied on a stepwise synthetic approach in which an FeIII-OH complex containing a sulfonamido tripodal ligand served as a synthon that promoted assembly. We have utilized this approach in the present study to produce a new series of bimetallic complexes with [FeIII-(μ-OH)-MII] cores (M = Ni, Cu, Zn) by using an ancillary ligand to the FeIII center that contains phosphinic amido groups. Assembly began with formation of an FeIII-OH that was subsequently used to bind the MII fragment that contained a triazacyclononane ligand. The series of bimetallic complexes were charactered structurally by X-ray diffraction methods, spectroscopically by absorption, vibrational, electron paramagnetic resonance spectroscopies, and electrochemically by cyclic voltammetry. A notable finding is that these new [FeIII-(μ-OH)-MII] complexes displayed significantly lower reduction potentials than their sulfonamido counterparts, which paves way for future studies on high valent bimetallic complexes in this scaffold.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, USA.
| | - Victoria F Oswald
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, USA.
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Ethan A Hill
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, USA.
| | - Joseph W Ziller
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, USA.
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, USA.
| |
Collapse
|