1
|
Yue X, Wu L, Wang H. A Straightforward Synthetic Route to Monocyclic 1,3,2,4-Diazadiborinines. Inorg Chem 2025; 64:751-756. [PMID: 39737868 DOI: 10.1021/acs.inorgchem.4c05317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
A novel straightforward synthetic route to monocyclic 1,3,2,4-diazadiborinines has been developed by the sequential reaction of the NHC-coordinated iminoborane with bases and haloboranes (or borate). The first examples of monocyclic 1,3,2,4-diazadiborinines featuring different functional groups on the two B atoms have been synthesized and structurally characterized. Further derivatization of 4-bromophenyl-substituted 1,3,2,4-diazadiborinine has also been achieved, giving the biphenyl-substituted 1,3,2,4-diazadiborinine. The aromaticity of these newly synthesized 1,3,2,4-diazadiborinines was also studied by theoretical calculations.
Collapse
Affiliation(s)
- Xin Yue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Linlin Wu
- Hunan Provincial Key Laboratory of Micro and Nano Materials Interfaces Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Tan L, Chen J, Liu X, Matler A, Schopper N, Finze M, Lin Z, Ye Q. Antiaromatic 2-Azaboroles with π 4σ 2 Electronic Configuration. J Am Chem Soc 2024; 146:31681-31690. [PMID: 39415725 DOI: 10.1021/jacs.4c10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Similar to pyridine, which is a structural analog of benzene, 2-azaborole can be viewed as a structural analog of borole, in which the CH group at the 2-position is replaced by an N atom. Due to its unique π4σ2 electronic configuration, it should exhibit Lewis acidity, antiaromaticity, as well as Lewis basicity simultaneously. However, this uniqueness also makes its synthesis and isolation particularly challenging. One anticipated issue is its readiness for self-dimerization. This work proposes 2-azaborole and targets the synthesis and characterization of its derivatives for the first time. By reacting benzoborirene C6H4{BN(SiMe3)2} with bulky nitriles, crystalline benzo-fused 2-azaboroles have been successfully achieved and fully characterized. The importance of steric hindrance has been experimentally verified, showing that insufficient kinetic protection results in the dimerization of benzo-fused 2-azaboroles to form BN-allenophanes, a class of 10-membered macrocyclic compounds featuring two BN-allene units. The unique electronic structure of 2-azaborole as well as the mechanism of dimerization has been corroborated by theoretical calculations. In addition, its ability to act both as a Lewis acid and a Lewis base is demonstrated through its reaction with 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene (MeIiPr) and AlCl3, respectively, which also implies the potential of the 2-azaborole motif as a σ-donor ligand for main group and organometallic chemistry.
Collapse
Affiliation(s)
- Leibo Tan
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Xiaocui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndromes, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Alexander Matler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nils Schopper
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Qing Ye
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Zhang Y, Li W, Jiang R, Zhang L, Li Y, Xu X, Liu X. Synthetic Doping of Acenaphthylene through BN/CC Isosterism and a Direct Comparison with BN-Acenaphthene. J Org Chem 2022; 87:12986-12996. [PMID: 36149831 DOI: 10.1021/acs.joc.2c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boron/nitrogen-doped acenaphthylenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via indole-directed C-H borylation. The reference molecule BN-acenaphthene was also synthesized in a similar manner. Both BN-acenaphthylene and BN-acenaphthene were unequivocally characterized by single-crystal X-ray analysis. The aromaticities of each ring in BN-acenaphthylenes were quantified by experimental and theoretical methods. Moreover, doping the BN unit into acenaphthylene can increase the LUMO level and decrease the HOMO level, resulting in wider HOMO-LUMO energy gaps. Furthermore, regioselective bromination of BN-acenaphthylene (B-Mes) afforded monobrominated BN-acenaphthylene in good yield. Subsequently, cross-coupling of brominated BN-acenaphthylene gave a series of BN-acenaphthylene derivatives. In addition, the photophysical properties of these BN-acenaphthylene derivatives can be fine-tuned by the substituents on the BN-acenaphthylene scaffold.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yuanhao Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoyang Xu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
4
|
Sun Q, Daniliuc CG, Mück‐Lichtenfeld C, Kehr G, Erker G. Formation of a Hybrid 1‐Bora‐3‐boratabenzene Heteroarene Anion Derivative. Angew Chem Int Ed Engl 2022; 61:e202205565. [DOI: 10.1002/anie.202205565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Qiu Sun
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
5
|
Sun Q, Daniliuc CG, Mück-Lichtenfeld C, Kehr G, Erker G. Formation of a Hybrid 1‐Bora‐3‐boratabenzene Heteroarene Anion Derivative. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiu Sun
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemsiches Institut GERMANY
| | | | - Gerald Kehr
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Gerhard Erker
- Universität Münster Organisch-Chemisches Institut Corrensstr. 40 48149 Münster GERMANY
| |
Collapse
|
6
|
Erker G, Li J, Daniliuc CG, Kehr G. An Olefin-based Multi-component Reaction to 1,2-Azaborolidine Derivatives. Dalton Trans 2022; 51:1775-1778. [DOI: 10.1039/d1dt04337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the borane FmesBH2·SMe2 [Fmes: 2,4,6-tris(trifluoro-methyl)phenyl] with two molar equivs of a small series of 1-alkenes followed by treatment with two molar equivalents of the bulky isonitrile CN-Xyl (Xyl:...
Collapse
|
7
|
Chen C, Daniliuc CG, Kehr G, Erker G. N-Heterocyclic Carbene Stabilized 1-Bora-1,3-butadienes. J Am Chem Soc 2021; 143:21312-21320. [PMID: 34894685 DOI: 10.1021/jacs.1c09774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deprotonation of [(NHC)(Fmes)B-allyl]+ borenium cations (NHC, IMes (a) or IMe2 (b); Fmes, 2,4,6-(CF3)3C6H2) provides an easy entry to the NHC-stabilized 1-bora-1,3-butadienes. They feature a planar s-trans-conformation just like 1,3-butadiene. The 1-borabutadiene 7a undergoes hydroboration reactions; the HB(C6F5)2 hydroboration product is trapped with CO or an isonitrile to give the respective cyclic zwitterionic borenium-borate enolate or enamide products. 1-Borabutadiene 7b undergoes 1,4-chalcogenation with elemental sulfur or selenium, and it gives the six-membered heterocyclic 1,4-addition product with the S═O bond of sulfur dioxide. Compound 7b served as a precursor for the formation of a borylated η3-allyl ligand at Ru. 7b formed a Rh complex by reaction with [Rh(ethylene)2Cl]2. It subsequently underwent an intramolecular C-H activation reaction to a mixture of η3-methyl-boraallyl Rh complex isomers.
Collapse
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
8
|
Li J, Daniliuc CG, Kehr G, Erker G. Three‐Component Reaction to 1,4,2‐Diazaborole‐Type Heteroarene Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
9
|
Zhou H, Wang J, Meng Y, Liu F, Wang T. Formation of cyclic (boryl)iminomethane derivatives by the insertion of isocyanides into a boron-carbon bond. Dalton Trans 2021; 51:741-745. [PMID: 34927663 DOI: 10.1039/d1dt03884b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isocyanides are highly valuable reagents in organic synthesis and have been widely used in multicomponent reactions. Although η2-imidoyl metal complexes, which are important intermediates in isocyanide chemistry, have been extensively explored, their boron species analogues have remained elusive. Hererin, we reported the synthesis of cyclic (boryl)iminomethanes via direct isocyanide insertion into the B-C bond of amino alkenyl boranes in a facile synthetic procedure. A family of well-defined cyclic (boryl)iminomethanes are characterized. Furthermore, the intrinsic ring strain of cyclic (boryl)iminomethanes primes them to further react with isocyanides and selectively afford double insertion products. Our results provide new insights into novel isocyanide chemistry involving boron species.
Collapse
Affiliation(s)
- Haiyu Zhou
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jingjing Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yuxuan Meng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Fei Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Tongdao Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
10
|
Li J, Daniliuc CG, Kehr G, Erker G. Three-Component Reaction to 1,4,2-Diazaborole-Type Heteroarene Systems. Angew Chem Int Ed Engl 2021; 60:27053-27061. [PMID: 34597449 DOI: 10.1002/anie.202111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/14/2022]
Abstract
The borane FmesBH2 reacts in a three-component reaction with an isonitrile and a small series of organonitriles to give rare examples of the class of dihydro-1,4,2-diazaborole derivatives. In a related way, annulated BN-indolizine derivatives became conveniently available, as were dihydro-1,4,2-oxaza- or thiazaborole derivatives. The nucleophilic framework of a dihydro-1,4,2-diazaborole example allowed for an uncatalyzed acylation reaction. It also served as a 1,3-dipolar reagent and underwent a [3+2] cycloaddition/[4+2] cycloreversion sequence when treated with methyl propiolate to give the respective pyrrole product. The [3+2] cycloaddition product of a dihydro-1,4,2-diazaborole derivative with N-phenylmaleimide was isolated and its heterobicyclo[2.2.1]heptane derived structure characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| |
Collapse
|
11
|
Škoch K, Daniliuc CG, Kehr G, Erker G. Substituent Dependent Cyclization Reactions of 1,1'‐Bis(alkynyl)ferrocenes with the (C
6
F
5
)BH
2
⋅ SMe
2
Hydroboration Reagent. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Karel Škoch
- Organisch-Chemisches Institut Westfälische-Wilhelms Universität Münster Corrensstraβe 40 48149 Münster Germany
- Current address: Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68 Husinec-Řež Czech Republic
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische-Wilhelms Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische-Wilhelms Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische-Wilhelms Universität Münster Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
12
|
Pearce KG, Canham EPF, Nixon JF, Crossley IR. A Benzodiphosphaborolediide. Chemistry 2021; 27:16342-16346. [PMID: 34586681 DOI: 10.1002/chem.202103427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 01/06/2023]
Abstract
The first example of a diphosphaborolediide, the benzo-fused [C6 H4 P2 BPh]2- (12- ), is prepared from ortho-bis(phosphino)benzene (C6 H4 {PH2 }) and dichlorophenylborane, via a sequential lithiation approach. The dilithio-salt can be obtained as an oligomeric THF solvate or discrete TMEDA adduct, both of which are fully characterized, including by X-ray diffraction. Alongside NICS calculations, data strongly suggest some aromaticity within 12- , which is further supported by preliminary coordination studies that demonstrate η5 -coordination to a zerovalent molybdenum center, as observed crystallographically for the oligomeric [{Mo(CO)3 (η5 -1)}{μ-η1 -Mo(CO)3 (TMEDA)}2 ] ⋅ [μ-Li(THF)][μ-Li(TMEDA)].
Collapse
Affiliation(s)
- Kyle G Pearce
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Elinor P F Canham
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - John F Nixon
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Ian R Crossley
- Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| |
Collapse
|
13
|
Abstract
Transition metal catalyzed coupling reaction strategy has been utilized in the synthesis of two novel BN-perylenes starting from halogenated BN-naphthalene derivatives. The molecular structures and packing modes of BN-perylenes were confirmed by NMR spectroscopy and X-ray single-crystal diffraction experiments. Their photophysical properties were further investigated using UV-vis and fluorescence spectroscopy and DFT calculations. Interestingly, the isosteric BN-insertion in perylene system resulted in stronger π-π stacking interaction both in solid and solution phases. The synthesized BN-perylenes are proved to be highly stable and thus provide a new valuable platform for novel organic materials applications which is otherwise inaccessible to date.
Collapse
|
14
|
Manankandayalage CP, Unruh DK, Krempner C. Carbon monoxide bond cleavage mediated by an intramolecular frustrated Lewis pair: access to new B/N heterocycles via selective incorporation of single carbon atoms. Chem Commun (Camb) 2021; 57:12528-12531. [PMID: 34766617 DOI: 10.1039/d1cc05673e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Utilizing an intramolecular frustrated Lewis pair (FLP) decorated with a strongly donating guanidino moiety enabled the formation of a thermally remarkably stable FLP-CO adduct, which at 120 °C underwent CO migration to form an acyl borane. Both compounds underwent rapid CO cleavage in the presence of strong electrophiles leading to the selective formation of a range of new 1,2- and 1,3-benzazaboroles in good yields under mild conditions.
Collapse
Affiliation(s)
- Chamila P Manankandayalage
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Dr & Boston, Lubbock, TX, 79409, USA.
| | - Daniel K Unruh
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Dr & Boston, Lubbock, TX, 79409, USA.
| | - Clemens Krempner
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Dr & Boston, Lubbock, TX, 79409, USA.
| |
Collapse
|
15
|
Li J, Daniliuc CG, Matern J, Fernández G, Kehr G, Erker G. Multi-component synthesis of dihydro-1,3-azaborinine derived oxindole isosteres. Chem Commun (Camb) 2021; 57:7689-7692. [PMID: 34259251 DOI: 10.1039/d1cc02557k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the synthesis of the first examples of 1,3-azaborinine derived oxindole systems, the BN-isosteres of the important compound class of the oxindoles. Hydroboration of terminal aryl acetylenes with FmesBH2, followed by treatment with 2 equiv. of a glycine ester derived isonitrile gave a small series of 1,3-azaborinine derived oxindoles. The new BN-oxindoles show interesting photophysical behavior.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany.
| |
Collapse
|
16
|
Li J, Daniliuc CG, Kehr G, Erker G. Formation of amidino-borate derivatives by a multi-component reaction. Org Biomol Chem 2021; 19:5551-5554. [PMID: 34076028 DOI: 10.1039/d1ob00775k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclohexene reacts with the (Fmes)BH2·SMe2 borane reagent and three molar equivalents of the isonitrile CN-Xyl to give the five membered 1,3-BN heterocyclic product 7 that contains a zwitterionic borata-amidinium moiety and a cyclohexenyl substituent. The analogous five-component coupling between cyclopentene, (Fmes)BH2·SMe2 and CN-Xyl in a 1 : 1 : 3 molar ratio gives the related cyclic amidino-borate derivative 10. The reaction of the (Fmes)BH2 derived frustrated Lewis pair 12, in situ generated or employed as the isolated dimer, reacts with 3 CN-Xyl equivs. at elevated temperature (60 °C) to yield the analogous coupling product 13.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany.
| |
Collapse
|