1
|
Raju A, Jothish S, Sakthivel K, Mishra S, Gana RJ, Kikushima K, Dohi T, Singh FV. Recent advances in metal-catalysed oxidation reactions. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241215. [PMID: 39780973 PMCID: PMC11707547 DOI: 10.1098/rsos.241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
Oxidation reactions are vital tools in synthetic organic chemistry. Oxidation of organic species such as alcohols, phenols, aldehydes and ketones provides synthetically valuable organic compounds, especially synthetic intermediates for several biologically active compounds. Some of these synthetic intermediates have shown their synthetic utility in the total synthesis of natural products. Several classical and modern synthetic approaches have been used to achieve these oxidation reactions. In this review article, various oxidation reactions achieved by metal catalysis are highlighted.
Collapse
Affiliation(s)
- Aleena Raju
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Subhiksha Jothish
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Kokila Sakthivel
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Shachi Mishra
- P. G. Department of Chemistry, Jai Prakash University, Chapra, Saran, Bihar841302, India
| | - R. J. Gana
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Fateh V. Singh
- Department of Chemistry, SAS, Vellore Institute of Technology, Chennai, Tamil Nadu600127, India
| |
Collapse
|
2
|
Ye G, Shi G, Wang H, Zeng X, Wu L, Zhou J, Zhang Q, Wei J, Li Z, Nie L, Wang J. In Situ Implanting ZrW 2O 7(OH) 2(H 2O) 2 Nanorods into Hierarchical Functionalized Metal-Organic Framework via Solvent-Free Approach for Upgrading Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311249. [PMID: 38482932 DOI: 10.1002/smll.202311249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Indexed: 08/09/2024]
Abstract
Host-guest catalyst provides new opportunities for targeted applications and the development of new strategies for preparing host-guest catalysts is highly desired. Herein, an in situ solvent-free approach is developed for implanting ZrW2O7(OH)2(H2O)2 nanorods (ZrW-NR) in nitro-functionalized UiO-66(Zr) (UiO-66(Zr)-NO2) with hierarchical porosity, and the encapsulation of ZrW-NR enables the as-prepared host-guest catalyst remarkably enhanced catalytic performance for both for oxidative desulfurization (ODS) and acetalization reactions. ZrW-NR@UiO-66(Zr)-NO2 can eliminate 500 ppm sulfur within 9 min at 40 °C in ODS, and can transform 5.6 mmol benzaldehyde after 3 min at room temperature in acetalization reaction. Its turnover frequencies reach 72.3 h-1 at 40 °C for ODS which is 33.4 times higher than UiO-66(Zr)-NO2, and 28140 h-1 for acetalization which is the highest among previous reports. Density functional theory calculation result indicates that the W sites in ZrW-NR can decompose H2O2 to WVI-peroxo intermediates that contribute to catalytic activity for the ODS reaction. This work opens a new solvent-free approach for preparing MOFs-based host-guest catalysts to upgrade their redox and acid performance.
Collapse
Affiliation(s)
- Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Guangming Shi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hanlu Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Xingye Zeng
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinshan Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Long Nie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Ding B, Cai J, Guo Q, Huang L, Duan C. Bioinspired Photoactive Cu-Halide Coordination Polymers for Reduction Activation and Oxygen Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13938-13947. [PMID: 38451748 DOI: 10.1021/acsami.3c17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Natural copper oxygenases provide fundamental principles for catalytic oxidation with kinetically inert molecular oxygen, but it remains a marked challenge to mimic both their structure and function in an entity. Inspired by the CuA enzymatic sites, herein we report two new photoactive binuclear copper-iodine- and bisbenzimidazole-comodified coordination polymers to reproduce the natural oxo-functionalization repertoire in a unique photocatalytic pathway. Under light irradiation, the Cu-halide coordination polymers effectively reduce NHP esters and complete oxygen reduction activation via photoinduced electron transfer for the aerobic oxidative coupling of hydroquinone with terminal alkynes, affording hydroxyl-functionalized ketones with high efficiency and selectivity. This supramolecular approach to developing bioinspired artificial oxygenases that merge transition metal- and photocatalysis supplies a new way to fabricate distinctive photocatalysts with desirable catalytic performances and controllable precise active sites.
Collapse
Affiliation(s)
- Baotong Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junkai Cai
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiaojia Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
5
|
Zhang CP, Zhu YJ, Wang D, Qian J, Zhao YP, Lian C, Zhang ZH, He MY, Chen SC, Chen Q. Ligand-Mediated Regulation of the Chemical/Thermal Stability and Catalytic Performance of Isostructural Cobalt(II) Coordination Polymers. Inorg Chem 2023; 62:17678-17690. [PMID: 37856236 DOI: 10.1021/acs.inorgchem.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Regulating the chemical/thermal stability and catalytic activity of coordination polymers (CPs) to achieve high catalytic performance is topical and challenging. The CPs are competent in promoting oxidative cross-coupling, yet they have not received substantial attention. Here, the ligand effect of the secondary ligand of CPs for oxidative cross-coupling reactions was investigated. Specifically, four new isostructural CPs [Co(Fbtx)1.5(4-R-1,2-BDC)]n (denoted as Co-CP-R, Fbtx = 1,4-bis(1,2,4-triazole-1-ylmethyl)-2,3,5,6-tetrafluorobenzene, 4-R-1,2-BDC = 4-R-1,2-benzenedicarboxylate, R = F, Cl, Br, CF3) were prepared. It was found that in the reactions of oxidative amination of benzoxazoles with secondary amines and the oxidative coupling of styrenes with benzaldehydes, both the chemical and thermal stabilities of the four Co-CPs with the R group followed the trend of -CF3 > -Br > -Cl > -F. Density functional theory (DFT) calculations suggested that the difference in reactivity may be ascribed to the effect of substituent groups on the electron transition energy of the cobalt(II) center of these Co-CPs. These findings highlight the secondary ligand effect in regulating the stability and catalytic performance of coordination networks.
Collapse
Affiliation(s)
- Cheng-Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Jun Zhu
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Pei Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Cheng Lian
- Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Sheng-Chun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
6
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
7
|
Su RH, Shi WJ, Zhang XY, Hou L, Wang YY. Cu-MOFs with Rich Open Metal and F Sites for Separation of C 2H 2 from CO 2 and CH 4. Inorg Chem 2023. [PMID: 37450355 DOI: 10.1021/acs.inorgchem.3c01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, we used the 4-fluoro-[1,1'-biphenyl]-3,4',5-tricarboxylic acid (H3fbptc) ligand to design and construct a new metal-organic framework (MOF), [Cu3(fbptc)2(H2O)3]·3NMP (1), which possesses rich accessible metal sites and F functional groups in the porous walls and shows high uptake for C2H2 (119.3 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (14.4) and CO2 (3.6) at 298 K and 100 kPa. In particular, for the gas mixtures of C2H2-CH4 and C2H2-CO2, the MOF reveals large breakthrough time ratios (C2H2/CH4 = 13, C2H2/CO2 = 5.9), which are particularly prominent in dynamic breakthrough experiments, also confirming the excellent potential for the practical separation of C2H2 from two-component mixtures (C2H2-CH4 and C2H2-CO2) and even three-component mixtures (C2H2-CO2-CH4).
Collapse
Affiliation(s)
- Run-Han Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
8
|
Hosoya M, Saito Y, Horiuchi Y. Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions. Beilstein J Org Chem 2023; 19:752-763. [PMID: 37284591 PMCID: PMC10241100 DOI: 10.3762/bjoc.19.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
We report on the high potential of a honeycomb reactor for the use in aerobic oxidation under continuous-flow conditions. The honeycomb reactor is made of porous material with narrow channels separated by porous walls allowing for high density accumulation in the reactor. This structure raised the mixing efficiency of a gas-liquid reaction system, and it effectively accelerated the aerobic oxidation of benzyl alcohols to benzaldehydes under continuous-flow conditions. This reactor is a promising device for streamlining aerobic oxidation with high process safety because it is a closed system.
Collapse
Affiliation(s)
- Masahiro Hosoya
- API R&D Laboratory, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Saito
- Carbon Neutral Promotion Division, ARK Creation Centre, Cataler Corporation, 1905-10 Shimonobe, Iwata, Shizuoka 438-0112, Japan
| | - Yousuke Horiuchi
- Carbon Neutral Promotion Division, ARK Creation Centre, Cataler Corporation, 1905-10 Shimonobe, Iwata, Shizuoka 438-0112, Japan
| |
Collapse
|
9
|
Ionic liquid/high-density polyethylene composite supported molybdenum complex: a powerful, highly stable and easy recoverable catalyst. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Understanding the intrinsic synergistic mechanism between Pt—O—Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Kalhor S, Shi H. Catalytic chemo and homoselective ipso-nitration under mild condition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Interstitial nitrogen-induced efficiency alcohol oxidation over heterogeneous N–CoMn2O4 catalyst under visible-light. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Berkson ZJ, Lätsch L, Hillenbrand J, Fürstner A, Copéret C. Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95Mo NMR Chemical Shift Descriptors. J Am Chem Soc 2022; 144:15020-15025. [PMID: 35969854 DOI: 10.1021/jacs.2c06252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.
Collapse
Affiliation(s)
- Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Post-synthetic halogen incorporation in Zr-based MOF for enhancement of the catalytic oxidation reactions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Cui WJ, Zhang SM, Ma YY, Wang Y, Miao RX, Han ZG. Polyoxometalate-Incorporated Metal-Organic Network as a Heterogeneous Catalyst for Selective Oxidation of Aryl Alkenes. Inorg Chem 2022; 61:9421-9432. [PMID: 35700095 DOI: 10.1021/acs.inorgchem.2c00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selective oxidation of aryl alkenes is important for chemical synthesis reactions, in which the key lies in the rational design of efficient catalysts. Herein, four polyoxometalate (POM)-incorporated metal-organic networks, with the formulas of [Co(ttb)(H2O)3]2[SiMo12O40]·2H2O (1), [Co(ttb)(H2O)2]2[SiW12O40]·8H2O (2), [Zn(Httb)(H2ttb)][BW12O40]·9H2O (3) and {[Zn(H2O)3(ttb)]4[Zn3(H2O)6]}[H3SiW10.5Zn1.5O40]2·24H2O (4) (ttb = 1,3,5-tri(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene), were hydrothermally synthesized and structurally characterized. Structural analysis showed that compound 1 consists of a POM-encapsulated three-dimensional (3-D) supramolecular framework; compound 2 is composed of a POM-supported 3-D coordination network; and compounds 3-4 show POM-incorporated 3-D supramolecular networks. Using selective catalytic oxidation of styrene as the model reaction, compounds 1-4 as heterogeneous catalysts display excellent performance with the double advantages of high styrene conversion and benzaldehyde selectivity owing to the synergistic effect among POM anions and transition metal (TM) centers. Among them, compound 1 exhibits the highest performance with ca. 96% styrene conversion and ca. 99% benzaldehyde selectivity in 3 h. In addition, compound 1 also displays excellent substrate compatibility, good reusability, and structural stability. Thus, a plausible reaction pathway for the selective oxidation of styrene is proposed. This study on the structure-function relationship paves a way for the rational design of POM-based heterogeneous catalysts for important catalysis applications.
Collapse
Affiliation(s)
- Wen-Jing Cui
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Si-Meng Zhang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yue Wang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Ruo-Xuan Miao
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
16
|
Ma Y, Lu W, Han X, Chen Y, da Silva I, Lee D, Sheveleva AM, Wang Z, Li J, Li W, Fan M, Xu S, Tuna F, McInnes EJL, Cheng Y, Rudić S, Manuel P, Frogley MD, Ramirez-Cuesta AJ, Schröder M, Yang S. Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites. J Am Chem Soc 2022; 144:8624-8632. [PMID: 35533381 PMCID: PMC9121371 DOI: 10.1021/jacs.2c00952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/30/2022]
Abstract
The presence of active sites in metal-organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111-1135 m2 g-1), decoration of the -OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g-1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g-1 in UiO-66-defect to 4.15 mmol g-1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.
Collapse
Affiliation(s)
- Yujie Ma
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Xue Han
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Ivan da Silva
- ISIS
Facility, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.
| | - Alena M. Sheveleva
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Zi Wang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jiangnan Li
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Weiyao Li
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Mengtian Fan
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Shaojun Xu
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K.
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
- School
of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Yongqiang Cheng
- Neutron
Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svemir Rudić
- ISIS
Facility, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K.
| | - Pascal Manuel
- ISIS
Facility, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K.
| | - Mark D. Frogley
- Diamond Light
Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K.
| | - Anibal J. Ramirez-Cuesta
- Neutron
Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
17
|
Gao F, Zhang S, Lv Q, Yu B. Recent advances in graphene oxide catalyzed organic transformations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Green and efficient oxidative desulfurization of refractory S-compounds from liquid fuels catalyzed by chromium-based MIL-101 stabilized MoOx catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Zhong B, Huang H, Jing X, Duan C. Binuclear copper iodine cluster-based coordination sheets as photocatalysts for decarboxylative cyanation. Chem Commun (Camb) 2022; 58:3961-3964. [PMID: 35244648 DOI: 10.1039/d2cc00547f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized two new MOFs (Cu-Tpxa-1 and Cu-Tpxa-2) that were used as heterogeneous photocatalysts, combining photocatalysis and copper catalysis to achieve decarboxylative radical cyanation reactions. This new heterogeneous catalysis method optimized the redox properties and excited-state lifetimes, providing a new idea for exploring photocatalytic mechanisms.
Collapse
Affiliation(s)
- Bingwen Zhong
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Huilin Huang
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- Add State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
20
|
Chen Y, Ahn S, Mian MR, Wang X, Ma Q, Son FA, Yang L, Ma K, Zhang X, Notestein JM, Farha OK. Modulating Chemical Environments of Metal-Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure-Activity Relationship in Cyclohexene Epoxidation. J Am Chem Soc 2022; 144:3554-3563. [PMID: 35179900 DOI: 10.1021/jacs.1c12421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sol Ahn
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lifeng Yang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Martin CR, Park KC, Leith GA, Yu J, Mathur A, Wilson GR, Gange GB, Barth EL, Ly RT, Manley OM, Forrester KL, Karakalos SG, Smith MD, Makris TM, Vannucci AK, Peryshkov DV, Shustova NB. Stimuli-Modulated Metal Oxidation States in Photochromic MOFs. J Am Chem Soc 2022; 144:4457-4468. [PMID: 35138840 DOI: 10.1021/jacs.1c11984] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gayathri B Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Richard T Ly
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Stavros G Karakalos
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M Makris
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
22
|
Synthesis of newly crystalline-porous- Pd(II)- (E,E)-2, 4-hexadienoic acid complex-leads to 3D-MOFs for hydrogen storage. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jennifer K. Naglic
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Corey R. Martin
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Katherine McCullough
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | | | - Ryan E. Corkill
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jochen Lauterbach
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Stavros G. Karakalos
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Donna A. Chen
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
24
|
Goetjen TA, Knapp JG, Syed ZH, Hackler RA, Zhang X, Delferro M, Hupp JT, Farha OK. Ethylene polymerization with a crystallographically well-defined metal–organic framework supported catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01990b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crystallographic characterization of a heterogeneous ethylene polymerization catalyst elucidates a chromium–carbon bond after alkyl aluminum activation and provides mechanistic insights.
Collapse
Affiliation(s)
- Timothy A. Goetjen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Julia G. Knapp
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| | - Zoha H. Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Ryan A. Hackler
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Xuan Zhang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, USA 60439
| | - Joseph T. Hupp
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA 60208
| |
Collapse
|
25
|
Hongxiao L, Fan L, Chen H, Zhang X, Gao Y. Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation. Dalton Trans 2022; 51:3546-3556. [DOI: 10.1039/d1dt04231a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the integrated properties from chemically dissimilar metals, microporous heterometallic MOFs have wider potential applicability, which prompts us to explore the tendency collocation of different metal cations in the...
Collapse
|
26
|
Chen H, Zhang Z, Lv H, Liu S, Zhang X. Investigation on the catalytic behavior of a novel thulium-organic framework with a planar tetranuclear {Tm 4} cluster as the active center for chemical CO 2 fixation. Dalton Trans 2021; 51:532-540. [PMID: 34927659 DOI: 10.1039/d1dt03646g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, the exquisite combination of coplanar [Tm4(CO2)10(μ3-OH)2(μ2-HCO2)(OH2)2] clusters ({Tm4}) and structure-oriented functional BDCP5- leads to the highly robust nanoporous {Tm4}-organic framework {(Me2NH2)[Tm4(BDCP)2(μ3-OH)2(μ2-HCO2)(H2O)2]·7DMF·5H2O}n (NUC-37, H5BDCP = 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine). To the best of our knowledge, NUC-37 is the first anionic {Ln4}-based three-dimensional framework with embedded hierarchical microporous and nanoporous channels, among which each larger one is shaped by six rows of coplanar {Tm4} clusters and characterized by plentiful coexisting Lewis acid-base sites on the inner wall including open TmIII sites, Npyridine atoms, μ3-OH and μ2-HCO2. Catalytic experimental studies exhibit that NUC-37 possesses highly selective catalytic activity on the cycloaddition of epoxides with CO2 as well as high recyclability under gentle conditions, which should be ascribed to its nanoscale channels, rich bifunctional active sites, and stable physicochemical properties. This work offers an effective means for synthesizing productive cluster-based Ln-MOF catalysts by employing structure-oriented ligands and controlling the solvothermal reaction conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
27
|
Wang GD, Li YZ, Zhang WF, Hou L, Wang YY, Zhu Z. Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58862-58870. [PMID: 34870404 DOI: 10.1021/acsami.1c20533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient separation of acetylene from a ternary acetylene-containing mixture is an important and vital task in petrochemical industry, which is difficult to achieve using a single material. Herein, a new Ca2+-based metal-organic framework (MOF) [Ca(dtztp)0.5(DMA)]·2H2O (1) was constructed using the N,O-donor ligand 2,5-di(2H-tetrazol-5-yl)terephthalic acid and the less-studied alkaline earth Ca2+ ions. The MOF shows a 3D honeycomb framework based on unique metal-carboxylate-azolate rod secondary building units. Owing to the presence of high-density organic hydrogen-bonding acceptors and open metal sites (OMSs), the activated MOF shows high adsorption capacity for C2H2 and selectivity for C2H2 over CO2, C2H4, C2H6, and CH4. Dynamic breakthrough experiments indicated the actual C2H2 separation potential of the MOF from binary (C2H2-C2H4 and C2H2-CO2) and ternary (C2H2-C2H4-CO2 and C2H2-C2H4-C2H6) mixtures. Simulations revealed that the synergistic interactions between the OMSs and N atoms in MOF and C2H2 molecules play an important role in the separation of C2H2.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
28
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A MOF Multifunctional Cargo Vehicle for Reactive Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2021; 61:e202113909. [PMID: 34845811 DOI: 10.1002/anie.202113909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal-organic frameworks (MOFs). Simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki-Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF-based reagent-catalyst cargo vessels for reactive reagents, as an attractive alternative to the use of toxic pure gases or gas generators.
Collapse
Affiliation(s)
- Preecha Kittikhunnatham
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Gabrielle A Leith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29201, Columbia, UNITED STATES
| | - Abhijai Mathur
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jennifer K Naglic
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Corey R Martin
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Kyoung Chul Park
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Katherine McCullough
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - H D A Chathumal Jayaweera
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Ryan E Corkill
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jochen Lauterbach
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Stavros G Karakalos
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Coulmbia, UNITED STATES
| | - Mark D Smith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Sophya Garashchuk
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Donna A Chen
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Natalia B Shustova
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter street GSRC-533, SC, Columbia, UNITED STATES
| |
Collapse
|
29
|
Drout RJ, Gaidimas MA, Farha OK. Thermochemical Investigation of Oxyanion Coordination in a Zirconium-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51886-51893. [PMID: 34008408 DOI: 10.1021/acsami.1c05271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous materials possess high internal surface areas and void fractions that make them valuable in several applications, including gas storage, heterogeneous catalysis, and water purification. Despite the plentiful effort allocated to porous materials research annually, few methods exist to directly monitor and characterize chemical events occurring within a pore's confines. The crystalline nature of zeolites, covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) permit structural characterization by X-ray diffraction; yet, quantifying the thermodynamics of chemical processes and transformations remains tedious and error ridden. Herein, we employ isothermal titration calorimetry (ITC) to determine the full thermodynamic profile of oxyanion adsorption in a zirconium-based MOF, NU-1000. To further validate this method, which we recently introduced to the field, we replicated ITC experiments as bulk adsorption measurements to demonstrate the correlation between the extracted stoichiometric parameter from ITC thermograms and the MOF uptake capacity. Moreover, based on the calculated association constants, we accurately predicted which analytes might be able to displace others. For example, dihydrogen phosphate can displace selenate and sulfate because of its higher association constant (ΔGphosphate = -5.41 kcal/mol; ΔGselenate = -4.98 kcal/mol; ΔGsulfate = -4.77 kcal/mol). We monitored the exchange processes by titrating oxyanion-functionalized MOF samples with a more strongly binding analyte.
Collapse
Affiliation(s)
- Riki J Drout
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madeleine A Gaidimas
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Zou Y, Li H, Zhao X, Song J, Wang Y, Ma P, Niu J, Wang J. Ru(III) -based polyoxometalate tetramers as highly efficient heterogeneous catalysts for alcohol oxidation reactions at room temperature. Dalton Trans 2021; 50:12664-12673. [PMID: 34545885 DOI: 10.1039/d1dt01819a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ruthenium-containing polyoxometalate-based organic-inorganic hybrid, K4Na9H7.4[(AsW9O33)4(WO2)4{Ru3.2(C3H3N2)2}]·42H2O (1), was successfully synthesized by a one-step hydrothermal method under acidic conditions, which applied a self-assembly strategy between inorganic polyoxometalate based on trivacant [B-α-AsW9O33]9- {AsW9} fragments and an organic ligand, imidazole (C3H4N2). Compound 1 was further characterized by single-crystal X-ray diffraction, PXRD, IR spectroscopy, UV-Vis spectroscopy, ESI-MS, elemental analysis and TGA. Single-crystal X-ray diffraction data reveal that the polyanion consists of four trivacant Keggin-type polyanion {AsW9} building blocks bridged by four {WO6} units, leading to a crown-shaped tetrameric structure [(AsW9O33)4(WO2)4{Ru3.2(C3H3N2)2}]20.4-. The ESI-MS result reveals that the polyanion unit has excellent structural integrity in water. Moreover, the catalysis study of 1 was also further investigated, and the experimental results indicate heterogeneous catalyst 1 presents high efficiency (yield = 98%), excellent selectivity (>99%), and good recyclability for the oxidation of 1-(4-chlorophenyl)ethanol to 4'-chloroacetophenone with commercially available 70% aqueous tert-butyl hydroperoxide {TBHP (aq.)} as the oxidant at room temperature.
Collapse
Affiliation(s)
- Yan Zou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Xue Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Junpeng Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Yaqiong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004, P.R. China.
| |
Collapse
|
31
|
Ye G, Wang H, Chen W, Chu H, Wei J, Wang D, Wang J, Li Y. In Situ Implanting of Single Tungsten Sites into Defective UiO-66(Zr) by Solvent-Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angew Chem Int Ed Engl 2021; 60:20318-20324. [PMID: 34121275 DOI: 10.1002/anie.202107018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Design of single-site catalysts with catalytic sites at atomic-scale and high atom utilization, provides new opportunities to gain superior catalytic performance for targeted reactions. In this contribution, we report a one-pot green approach for in situ implanting of single tungsten sites (up to 12.7 wt.%) onto the nodes of defective UiO-66(Zr) structure via forming Zr-O-W bonds under solvent-free condition. The catalysts displayed extraordinary activity for the oxidative removal of sulfur compounds (1000 ppm S) at room temperature within 30 min. The turnover frequency (TOF) value can reach 44.0 h-1 at 30 °C, which is 109.0, 12.3 and 1.2 times higher than that of pristine UiO-66(Zr), WO3 , and WCl6 (homogeneous catalyst). Theoretical and experimental studies show that the anchored W sites can react with oxidant readily and generate WVI -peroxo intermediates that determine the reaction activity. Our work not only manifests the application of SSCs in the field of desulfurization of fuel oil but also opens a new solvent-free avenue for fabricating MOFs based SSCs.
Collapse
Affiliation(s)
- Gan Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hanlu Wang
- College of Chemical Engineering, Guangdong University of, Petrochemical Technology, Maoming, 525000, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced, Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongqi Chu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinshan Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dagang Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Ye G, Wang H, Chen W, Chu H, Wei J, Wang D, Wang J, Li Y. In Situ Implanting of Single Tungsten Sites into Defective UiO‐66(Zr) by Solvent‐Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gan Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Hanlu Wang
- College of Chemical Engineering Guangdong University of, Petrochemical Technology Maoming 525000 China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced, Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hongqi Chu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Jinshan Wei
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Dagang Wang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Jin Wang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
33
|
Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04518-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Chen Y, Idrees KB, Son FA, Wang X, Chen Z, Xia Q, Li Z, Zhang X, Farha OK. Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16820-16827. [PMID: 33797883 DOI: 10.1021/acsami.1c00061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible metal-organic frameworks (MOFs) are of high interest as smart programmable materials for gas sorption due to their unique structural changes triggered by external stimuli. Owing to this property, which leads to opportunities such as maximizing deliverable gas capacity, flexible MOFs sometimes offer more advantages in sorption applications compared to their more rigid counterparts. Herein, we elucidate the effect of transition metal identity of a series of isonicotinate-based flexible MOFs, M(4-PyC)2 [M═Mg, Mn, and Cu; 4-PyC = 4-pyridine carboxylic acid] on the structural dynamic response to different gases (C2H4, C2H6, Xe, Kr, and SO2). Isotherms at different temperatures show that C2H4, C2H6, and Xe can form sufficiently strong interactions with both Mg(4-PyC)2 and Mn(4-PyC)2 frameworks resulting in gate-opening behavior due to the rotation of the linker's pyridine ring, while Kr cannot induce this phenomenon for the two MOFs under the measured conditions. In contrast, the gate-opening behavior occurs for Cu(4-PyC)2 solely in the presence of C2H4, and no other measured gas, due to the open metal sites of Cu centers. In comparison, SO2, a strong polar molecule, triggers the gate-opening effect in all three MOFs. Interestingly, a shape memory effect is observed for Cu(4-PyC)2 during the second SO2 sorption cycle. When comparing the different gate-opening pressures of each gas, we observed that the structural flexibility of the three frameworks is highly sensitive to the chemical hardness of the Lewis acidic metal ions (Mg2+ > Mn2+ > Cu2+). As a result, the gate opening behavior is observed at lower pressures for the MOFs containing weaker M-N bonds (harder metal ions), with the exception of Cu(4-PyC)2 toward C2H4. These observations reveal that different transition metals can be used to finely control the structural flexibility of the frameworks.
Collapse
Affiliation(s)
- Yongwei Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | | | | | | | | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | | | |
Collapse
|