1
|
Goto H, Shiomi R, Shimizu T, Kochi T, Kakiuchi F. Synthesis of Cyclic 2-Aminodienes and Aminobenzofulvenes by Rhodium-Catalyzed Hydroaminative Cyclization of Diynes. Org Lett 2024; 26:10152-10157. [PMID: 39556099 DOI: 10.1021/acs.orglett.4c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Regioselective hydroaminative cyclizations of 1,5- and 1,6-diynes via double functionalization of an alkyne carbon were achieved using a phosphine-quinolinolato (PNO) rhodium catalyst. While the reaction of 1,6-diynes with secondary amines provided cyclic 2-aminodienes, phenylene-tethered 1,5-diynes were transformed into benzofulvene derivatives. The reaction is considered to proceed via in situ construction of an aminocarbene ligand, [2 + 2] addition with an internal alkyne moiety, and isomerization to an aminodiene structure. This hydroaminative cyclization proceeds just by heating the substrate with the rhodium catalyst without adding any additive and provides a convenient route to access cyclic 2-aminodiene and aminobenzofulvene derivatives.
Collapse
Affiliation(s)
- Hibiki Goto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryosuke Shiomi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Taiyoh Shimizu
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
He W, Zheng WF, Qian H. Rh-Catalyzed Carbonylative Cyclization of Propargylic Alcohols with Aryl Boronic Acids. Org Lett 2024; 26:6279-6283. [PMID: 39023295 DOI: 10.1021/acs.orglett.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
2(3H)-Furanones are tremendously important not only because of their wide occurrence in bioactive compounds but also due to their versatility in organic synthesis. Here, a straightforward approach to 2(3H)-furanones from readily available tertiary propargylic alcohols with arylboronic acids in the presence of CO using rhodium as a catalyst has been established. The method exhibits a broad substrate scope tolerating useful functional groups with a moderate to high stereoselectivity.
Collapse
Affiliation(s)
- Wenxiang He
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Yoshimura A, Ngo K, Mironova IA, Gardner ZS, Rohde GT, Ogura N, Ueki A, Yusubov MS, Saito A, Zhdankin VV. Pseudocyclic Arylbenziodoxaboroles as Water-Triggered Aryne Precursors in Reactions with Organic Sulfides. Org Lett 2024; 26:1891-1895. [PMID: 38408024 DOI: 10.1021/acs.orglett.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pseudocyclic arylbenziodoxaboroles are unique aryne precursors under neutral aqueous conditions that selectively react with organic sulfides, forming the corresponding sulfonium salts. This reaction is compatible with various substituents (alkyl, halogen, CN, NO2, CHO, and cyclopropyl) in the aromatic ring or alkyl group of the sulfide. Similar reactions of sulfoxides afford o-hydroxy-substituted sulfonium salts. The structures of key products were confirmed by X-ray analysis.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Kim Ngo
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Irina A Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina av., 30, 634050 Tomsk, Russia
| | - Zachary S Gardner
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | | | - Nami Ogura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Akiharu Ueki
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina av., 30, 634050 Tomsk, Russia
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Zhu GH, Jiang X. Rh(I)-Catalyzed Cascade Carbonylative Cyclization of Propargyl α-Diazoindolacetates for Construction of Carbazoles. Org Lett 2023; 25:8077-8082. [PMID: 37933919 DOI: 10.1021/acs.orglett.3c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Rh(I)-catalyzed carbene migration/carbonylation/cyclization (MCC) strategy has been established for the construction of diverse functionalized carbazoles from propargyl α-diazoindolacetates. Rh(I)-stabilized carbene with different electrophilic properties displays specific reactivity toward alkyne and CO during the transformation, ensuring the smooth progress of the tandem cyclization. Other heteroaryl scaffolds were achieved simultaneously through this cascade protocol, thus offering a straightforward pathway toward functionalized polycyclic aromatic molecule synthesis.
Collapse
Affiliation(s)
- Guo-Hao Zhu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Zhu BH, Ye SB, Nie ML, Xie ZY, Wang YB, Qian PC, Sun Q, Ye LW, Li L. I 2 -Catalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angew Chem Int Ed Engl 2023; 62:e202215616. [PMID: 36573021 DOI: 10.1002/anie.202215616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 12/28/2022]
Abstract
Herein, an I2 -catalyzed unprecedented cycloisomerization of ynamides is developed, furnishing various functionalized bis(indole) derivatives in generally good to excellent yields with wide substrate scope and excellent atom-economy. This protocol not only represents the first molecular-iodine-catalyzed tandem complex alkyne cycloisomerizations, but also constitutes the first chemoselective cycloisomerization of tryptamine-ynamides involving distinctively different C(sp3 )-C(sp3 ) bond cleavage and rearrangement. Moreover, chiral tetrahydropyridine frameworks containing two stereocenters are obtained with moderate to excellent diastereoselectivities and excellent enantioselectivities. Meanwhile, cycloisomerization and aromatization of ynamides produce pyrrolyl indoles with high efficiency enabled by I2 . Additionally, control experiments and theoretical calculations reveal that this reaction probably undergoes a tandem 5-exo-dig cyclization/rearrangement process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Sheng-Bing Ye
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Min-Ling Nie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Total synthesis of (+)-asperazine A: A stereoselective domino dimerization. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Zhu BH, Shen CH, Nie ML, Zheng F, Huang C, Chen F, Li L, Deng C, Ye LW, Qian PC. Highly Site-Selective Oxidative Cyclization of Ene-ynamides via Non-Noble-Metal Catalysis: Access to Functionalized Lactams. Org Lett 2022; 24:7009-7014. [PMID: 36121648 DOI: 10.1021/acs.orglett.2c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, an unprecedented non-noble-metal-catalyzed oxidation/cyclization of ene-ynamides is developed, allowing the synthesis of diversely functionalized lactams in moderate to good yields with excellent diastereoselectivities without the observation of typical cyclopropanation products. In combination with Ellman's tert-butylsulfinimine chemistry, chiral γ-lactams containing three contiguous stereocenters are obtained with high diastereo- and enantioselectivity. Moreover, density functional theory (DFT) calculations indicate that this protocol probably undergoes a carbon cation or proton transfer process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Cang-Hai Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min-Ling Nie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fumin Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengzhe Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Long Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chao Deng
- Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
9
|
Shi C, Zhou JJ, Hong P, Zhu BH, Hong FL, Qian PC, Sun Q, Lu X, Ye LW. Efficient synthesis of tetracyclic γ-lactams via gold-catalyzed oxidative cyclization of alkenyl diynes. Org Chem Front 2022. [DOI: 10.1039/d2qo00123c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold-catalyzed cascade cyclization of alkenyl diynes involving alkyne oxidation, carbene-alkyne metathesis and cyclopropanation has been developed, furnishing a series of tetracyclic γ-lactams bearing one quaternary carbon center and...
Collapse
|
10
|
Zhang Z, Zhai T, Zhu B, Qian P, Ye L. Synthesis of Tetrahydroindole Derivatives via Metal-Free Intramolecular [4+2] Annulation of Ynamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Chen JJ, Liu JY, Cao XX, Hu JX, Lu X, Shen WB, Sun Q, Song RJ, Li JH. Theoretical insights into the mechanism and origin of chemoselectivity in the catalyst- and directing group-dependent oxidative cyclization of diynes with pyridine N-oxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00996j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms and origin of the chemoselectivity of Cu(i)- and Au(i)-catalyzed oxidation of diynes for the divergent syntheses of two different N-heterocycles, substituted pyrroles and dihydroindeno[1,2-c]pyrrol-3(2H)-ones, were elucidated using density functional theory.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jia-Yi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xi-Xi Cao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Xin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen-Bo Shen
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
12
|
Bai L, Ma Y, Jiang X. Total Synthesis of (-)-Calycanthine via Iron-Catalyzed Stereoselective Oxidative Dimerization. J Am Chem Soc 2021; 143:20609-20615. [PMID: 34871491 DOI: 10.1021/jacs.1c10498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimeric cyclotryptamine alkaloids typically feature vicinal all-carbon quaternary stereocenters and four nitrogen atoms. In comparison with the actual biosynthetic tryptophan derivatives, we designed the 2N-featured monomer 7, aiming to construct vicinal all-carbon quaternary stereocenters via a one-step dimerization process to access the 4N-featured isomeric members of this family. In this work, we disclose the first synthetic route to access the skeleton of (-)-isocalycanthine, featuring an iron-catalyzed oxidative dimerization reaction in a catalytic single-step operation with an overwhelming control of the absolute and relative stereochemistry. This strategy has been successfully applied to the total synthesis of (-)-calycanthine and 16 isocalycanthine derivatives, which demonstrates a new synthetic pathway for dimeric cyclotryptamine alkaloids.
Collapse
Affiliation(s)
- Leiyang Bai
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Yinhao Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
13
|
Li J, Wang M, Jiang X. Diastereoselective Synthesis of Thioglycosides via Pd-Catalyzed Allylic Rearrangement. Org Lett 2021; 23:9053-9057. [PMID: 34783571 DOI: 10.1021/acs.orglett.1c03302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereoselective glycosylation is challenging in carbohydrate chemistry. Herein, stereoselective thioglycosylation of glycals via palladium-catalyzed allylic rearrangement yields various substituents on α-isomer thioglycosides. Two comprehensive series of aryl and benzyl thioglycosides were obtained via a combination of thiosulfates with glycals derived from glucose, arabinose, galactose, and rhamnose. Furthermore, diosgenyl α-l-rhamnoside and isoquercitrin achieved selectivity via stereospecific [2,3]-sigma rearrangements of α-sulfoxide-rhamnoside and α-sulfoxide-glucoside, respectively.
Collapse
Affiliation(s)
- Jiagen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
14
|
Zheng Y, Zhang TT, Shen WB. Gold-catalyzed oxidative cyclization of amide-alkynes: access to functionalized γ-lactams. Org Biomol Chem 2021; 19:9688-9691. [PMID: 34718364 DOI: 10.1039/d1ob01846a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold-catalyzed oxidative cyclization of amide-alkynes is developed. A series of functionalized γ-lactams are easily accessed by employing this strategy. The tandem reaction proceeds through alkyne oxidation, carbene/alkyne metathesis, and donor/donor carbene oxidation.
Collapse
Affiliation(s)
- Yi Zheng
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ting-Ting Zhang
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wen-Bo Shen
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Shandilya S, Protim Gogoi M, Dutta S, Sahoo AK. Gold-Catalyzed Transformation of Ynamides. CHEM REC 2021; 21:4123-4149. [PMID: 34432929 DOI: 10.1002/tcr.202100159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
Ynamide, a unique species with inherited polarization of nitrogen lone pair electron to triple bond, has been largely used for the developement of novel synthetic methods and the construction of unusual N-bearing heterocycles. The reaction versatility of ynamide on umpolung reactivity, radical reactions and asymmetric synthesis have been recently reviewed. This review provides an overall scenic view into the gold catalyzed transformation of ynamides. The ynamides reactivity towards nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils; oxygen atom-transfer reagents, like nitrones, sulfoxides, and pyridine N-oxides; and carbon nucleophiles under gold catalysis are herein uncovered. The scope as well the mechanistic insights of each reaction is also briefed.
Collapse
Affiliation(s)
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| |
Collapse
|
16
|
Deng Y, Zhang J, Bankhead B, Markham JP, Zeller M. Photoinduced oxidative cyclopropanation of ene-ynamides: synthesis of 3-aza[ n.1.0]bicycles via vinyl radicals. Chem Commun (Camb) 2021; 57:5254-5257. [PMID: 33973595 DOI: 10.1039/d1cc02016a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first photoinduced synthesis of polyfunctionalized 3-aza[n.1.0]bicycles from readily available ene-ynamides and 2,6-lutidine N-oxide using an organic acridinium photocatalyst is reported. Applying a photocatalytic strategy to the reactive distonic cation vinyl radical intermediate from ynamide, a series of bio-valuable 3-azabicycles, including diverse 3-azabicyclio[4.1.0]heptanes and 3-azabicyclo[5.1.0]octanes that are challenging to accomplish using traditional methods, have been successfully synthesized in good to high yields under mild and metal-free conditions. Mechanistic studies are consistent with the photocatalyzed single-electron oxidation of ene-ynamide and the intermediacy of a putative cationic vinyl radical in this transformation. Importantly, this strategy provides new access to the development of photocatalytic vinyl radical cascades for the synthesis of structurally sophisticated substrates.
Collapse
Affiliation(s)
- Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, Indiana 46202, USA.
| | - Jason Zhang
- Chemistry Department, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Bradley Bankhead
- Chemistry Department, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Jonathan P Markham
- Chemistry Department, Western Kentucky University, Bowling Green, KY 42101, USA
| | | |
Collapse
|