1
|
Wei W, Yang L, Zhang L, Wang S, Pan Y, Li H, Lu J. Construction of Anthracene-based Metal-Organic Framework Exhibiting Enhanced Singlet Oxygen Storage and Release Capabilities for Efficient Photodegradation of Phenolic Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411328. [PMID: 39937456 DOI: 10.1002/smll.202411328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Indexed: 02/13/2025]
Abstract
Controlling the generation and release of singlet oxygen (1O2) with high oxidation activity and long lifetime properties holds significant potential for efficient oxidation of permanent organic pollutants, tumor eradication, and targeted molecular oxidation. However, the conditions for controlled generation and release of 1O2 remain unclear. Hence, the novel anthracene-ligands based Zr-MOFs which use acetic acid (HAc) are constructed to optimize the surface defects and specific surface area exhibit ultrafast saturation adsorption capacity (362.60 mg g-1 in 60 s) and deep photodegradation performance toward bisphenol A (BPA) in water (50 ppm in 20 min) via Zr-DPA MOF-1HAc. Mechanistic studies have shown that MOFs are capable of generating high concentrations of 1O2, while anthracene ligands can rapidly store 1O2 and form endoperoxides (EPOs), which can be rapidly released under external light, heat, or chemical triggering conditions. Thus, high concentration of 1O2 is always involved in the oxidation reaction throughout the whole photodegradation process and ultimately achieves the complete mineralization of target phenolic pollutant molecules. This innovative strategy has important implications for generating, storing and controlling the release of 1O2 in the field of environmental engineering and chemical synthesis.
Collapse
Affiliation(s)
- Wanyu Wei
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Liujun Yang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Long Zhang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Shaoshuo Wang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Yicheng Pan
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Yamasaki N, Matsuhashi C, Uekusa H, Nakayama N, Obata S, Goto H, Maki S, Hirano T. Dual-Mode Emission and Solvent-Desorption Dependent Kinetic Properties of Crystalline-State Chemiluminescence Reaction of 9-Phenyl-10-(2-phenylethynyl)anthracene Endoperoxide. J Am Chem Soc 2025; 147:2455-2466. [PMID: 39668603 DOI: 10.1021/jacs.4c12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The chemiluminescence (CL) feature and reactivity of the aromatic endoperoxide 9-phenyl-10-(2-phenylethynyl)anthracene endoperoxide (PPEA-O2) were investigated in the crystalline state. For this, PPEA-O2 crystals were prepared using dichloromethane and n-hexane. These crystals exhibited an α-phase structure containing n-hexane as a crystal solvent. The crystal structure of nonperoxidic anthracene (i.e., PPEA) was also confirmed. After optimizing heating conditions to 120 °C for the thermolytic reaction of PPEA-O2 in crystals while maintaining the solid state, its CL characteristic and reactivity were investigated. Two key findings were derived: (1) dual-mode emission with maxima at 510 and 1275 nm and (2) distinct observation of CL emission at the first 2-3 min after the start of heating owing to the rapid thermolytic reaction coupled with n-hexane desorption. The 510 and 1275 nm emissions were attributed to the PPEA excimer and 1O2 (1Δg), respectively. We proposed a mechanism involving the triplet-triplet annihilation of the excited triplet states of PPEA to explain excimer production with postulated pathways for generating these triplet states from PPEA-O2. The rapid thermolytic reaction of PPEA-O2 in α-phase crystals with simultaneous n-hexane desorption was attributed to the formation of transient vacant spaces, which increased the molecular freedom necessary for the reaction ("transient vacant space effect"). Thus, the CL of PPEA-O2 proved useful for identifying characteristic reactivity and analyzing the luminescence mechanism of aromatic endoperoxides in the crystalline state.
Collapse
Affiliation(s)
- Norihisa Yamasaki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Chihiro Matsuhashi
- Coordinated Center for UEC Research Facilities, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan
| | - Naofumi Nakayama
- CONFLEX Corporation, Shinagawa Center Bldg. 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Shigeaki Obata
- CONFLEX Corporation, Shinagawa Center Bldg. 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Hitoshi Goto
- CONFLEX Corporation, Shinagawa Center Bldg. 6F, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
- Information and Media Center, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Shojiro Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Takashi Hirano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
3
|
Dong Q, Liu F, Wang J, Han E, Zhao H, Chen B, Li K, Yuan J, Jiang Z, Chen M, Li Y, Liu D, Lin Y, Wang P. Guest-Induced "Breathing-Helical" Dynamic System of a Porphyrinic Metallo-Organic Cage for Advanced Conformational Manipulation. Angew Chem Int Ed Engl 2025; 64:e202416327. [PMID: 39343746 DOI: 10.1002/anie.202416327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Host-guest dynamic systems in coordination-driven metallo-organic cages have gained significant attentions since their promising applications in chiral separation, drug delivery, and catalytical fields. To maximize guest-binding affinity, hosts adopting multiple conformations are widely investigated on their structural flexibility for guest accommodation. In this study, a novel metallo-organic cage S with breathing inner cavity and freely twisted side chains was proposed. Single-crystal X-ray diffraction analyses depicted a characteristic "breathing-helical" dynamic system on the semiflexible framework, which led to an unprecedent co-crystallisation of racemic and symmetric conformations via the encapsulation locking of C70 guests. By taking advantages of the high binding affinity, selective extraction of C70 was realized. This research provides new ideas for the modification on the helicities of metallo-organic cages, which could pave a new way for advanced conformational manipulation of supramolecular host systems.
Collapse
Affiliation(s)
- Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Fengxue Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ermeng Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Bangtang Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, Guangdong, 528300, China
| | - Pingshan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2025; 14:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
5
|
Guo S, Zhan WW, Yang FL, Zhou J, Duan YH, Zhang D, Yang Y. Enantiopure trigonal bipyramidal coordination cages templated by in situ self-organized D 2h-symmetric anions. Nat Commun 2024; 15:5628. [PMID: 38965215 PMCID: PMC11224320 DOI: 10.1038/s41467-024-49964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The control of a molecule's geometry, chirality, and physical properties has long been a challenging pursuit. Our study introduces a dependable method for assembling D3-symmetric trigonal bipyramidal coordination cages. Specifically, D2h-symmetric anions, like oxalate and chloranilic anions, self-organize around a metal ion to form chiral-at-metal anionic complexes, which template the formation of D3-symmetric trigonal bipyramidal coordination cages. The chirality of the trigonal bipyramid is determined by the point chirality of chiral amines used in forming the ligands. Additionally, these cages exhibit chiral selectivity for the included chiral-at-metal anionic template. Our method is broadly applicable to various ligand systems, enabling the construction of larger cages when larger D2h-symmetric anions, like chloranilic anions, are employed. Furthermore, we successfully produce enantiopure trigonal bipyramidal cages with anthracene-containing backbones using this approach, which would be otherwise infeasible. These cages exhibit circularly polarized luminescence, which is modulable through the reversible photo-oxygenation of the anthracenes.
Collapse
Affiliation(s)
- Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Wen Zhan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng-Lei Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Hao Duan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Guo XQ, Zhou LP, Hu SJ, Sun QF. Subtle adjustments for constructing multi-nuclear luminescent lanthanide organic polyhedra with triazole-based chelates. Dalton Trans 2024; 53:4772-4780. [PMID: 38363173 DOI: 10.1039/d3dt03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Controlled self-assembly of predetermined multi-nuclear lanthanide organic polyhedra (LOPs) still presents a challenge, primarily due to the unpredictable coordination numbers and labile coordination geometries of lanthanide ions. In this study, through introducing triazole-based chelates to increase the chelating angle of C2-symmetric linear ligands and stabilize the coordination geometry of Eu(III) centers, M4L6-type (M = EuIII, L = ligand) tetrahedra were efficiently synthesized, especially a biphenyl-bridged ligand which is well known to form M2L3-type helicates. A series of LOPs were formed and characterized by high-resolution electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS) and X-ray crystallography. Moreover, the europium complexes exhibit bright emission (luminescence quantum yield up to 42.4%) and circularly polarized luminescence properties (|glum| up to 4.5 × 10-2). This study provides a feasible strategy for constructing multi-nuclear luminescent LOPs towards potential applications.
Collapse
Affiliation(s)
- Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
7
|
Jahović I, Yang Y, Ronson TK, Nitschke JR. Capture of Singlet Oxygen Modulates Host-Guest Behavior of Coordination Cages. Angew Chem Int Ed Engl 2023; 62:e202309589. [PMID: 37610599 PMCID: PMC10952966 DOI: 10.1002/anie.202309589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 08/24/2023]
Abstract
The anthracene panels of two tetrahedral MII 4 L6 cages, where MII =CoII or FeII , were found to react with photogenerated singlet oxygen (1 O2 ) in a hetero-Diels-Alder reaction. ESI-MS analysis showed the cobalt(II) cages to undergo complete transformation of all anthracene panels into endoperoxides, whereas the iron(II) congeners underwent incomplete conversion. The reaction was found to be partially reversible in the case of the 1-FeII cage. The dioxygen-cage cycloadducts were found to bind a set of guest molecules more weakly than the parent cages, with affinity dropping by more than two orders of magnitude in some cases. The light-driven cycloaddition reaction between cage and 1 O2 thus served as a stimulus for guest release and reuptake.
Collapse
Affiliation(s)
- Ilma Jahović
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Yuchong Yang
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | | |
Collapse
|
8
|
Yang Y, Ronson TK, Hou D, Zheng J, Jahović I, Luo KH, Nitschke JR. Hetero-Diels-Alder Reaction between Singlet Oxygen and Anthracene Drives Integrative Cage Self-Sorting. J Am Chem Soc 2023; 145:19164-19170. [PMID: 37610128 PMCID: PMC10485901 DOI: 10.1021/jacs.3c04228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/24/2023]
Abstract
A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.
Collapse
Affiliation(s)
- Yuchong Yang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Dingyu Hou
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jieyu Zheng
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Ilma Jahović
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Kai Hong Luo
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
9
|
Zhou MY, Yu ZS, Deng W, Lu HL, Niu XF, Tong J, Yu SY, Fujita M. [M 8L 4] 8+-Type Squares Self-Assembled by Dipalladium Corners and Bridging Aromatic Dipyrazole Ligands for Iodine Capture. Inorg Chem 2023. [PMID: 37320970 DOI: 10.1021/acs.inorgchem.3c00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Square-like metallamacrocyclic palladium(II) complexes [M8L4]8+ (1-7) were synthesized by reacting aromatic dipyrazole ligands (H2L1-H2L3 with pyromellitic arylimide-, 1,4,5,8-naphthalenetetracarboxylic arylimide-, and anthracene-based aromatic groups, respectively) with dipalladium corners ([(bpy)2Pd2(NO3)2](NO3)2, [(dmbpy)2Pd2(NO3)2](NO3)2, or [(phen)2Pd2(NO3)2](NO3)2, where bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, and phen = 1,10-phenanthroline) in aqueous solutions via metal-directed self-assembly. Metallamacrocycles 1-7 were fully characterized by 1H and 13C nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry, and the square structure of 7·8NO3- was further confirmed via single crystal X-ray diffraction. These square-like metallamacrocycles exhibit effective performance for iodine adsorption.
Collapse
Affiliation(s)
- Meng-Ying Zhou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zheng-Su Yu
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Wei Deng
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hong-Lin Lu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Fei Niu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jin Tong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Shu-Yan Yu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Makoto Fujita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Onda Y, Masai H, Terao J. Systematic Synthesis of Macrocycles Bearing up to Six 2,2'-Bipyridine Moieties through Self-Assembled Double Helix Structure. J Org Chem 2022; 87:13331-13338. [PMID: 36173111 DOI: 10.1021/acs.joc.2c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new synthetic strategy for macrocycles bearing multiple coordination moieties was developed. A self-assembled double helix structure, composed of two linear strands bearing 2,2'-bipyridine units and Cu(I) ions, provided access to macrocycles bearing a defined number of 2,2'-bipyridine moieties and a defined ring size, via an olefin-metathesis reaction between two linear strands in the helix. The double helix structure improved the selectivity of the macrocycle synthesis by bringing the reaction points in close proximity even in the case of large macrocycles.
Collapse
Affiliation(s)
- Yudai Onda
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Clennan EL. Aromatic Endoperoxides. Photochem Photobiol 2022; 99:204-220. [PMID: 35837947 DOI: 10.1111/php.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The fundamental aspects of aromatic endoperoxide chemistry are reviewed including their synthesis and reactions. The discussion will focus on factors that will both enhance and prevent the formation of aromatic endoperoxides, and on structural features that will provide control over their ability to release singlet oxygen. This approach recognizes the dual use of aromatic hydrocarbons as both precursors of endoperoxides and as valuable materials for incorporation in electronic and photonic devices. Improvement of the existing methods and development of new methods for the synthesis of endoperoxides is necessary as result of the demand to improve existing and to create new applications for these valuable materials. On the other hand, prevention of endoperoxide formation is crucial to inhibit irreversible oxidative degradation of aromatic hydrocarbons and to extend their lifetimes as useful organic semiconductors.
Collapse
Affiliation(s)
- Edward L Clennan
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
12
|
Zhang Z, Ma L, Fang F, Hou Y, Lu C, Mu C, Zhang Y, Liu H, Gao K, Wang M, Zhang Z, Li X, Zhang M. Porphyrin-Based Multicomponent Metallacage: Host-Guest Complexation toward Photooxidation-Triggered Reversible Encapsulation and Release. JACS AU 2022; 2:1479-1487. [PMID: 35783178 PMCID: PMC9241011 DOI: 10.1021/jacsau.2c00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of supramolecular hosts with effective host-guest properties is crucial for their applications. Herein, we report the preparation of a porphyrin-based metallacage, which serves as a host for a series of polycyclic aromatic hydrocarbons (PAHs). The association constant between the metallacage and coronene reaches 2.37 × 107 M-1 in acetonitrile/chloroform (ν/ν = 9/1), which is among the highest values in metallacage-based host-guest complexes. Moreover, the metallacage exhibits good singlet oxygen generation capacity, which can be further used to oxidize encapsulated anthracene derivatives into anthracene endoperoxides, leading to the release of guests. By employing 10-phenyl-9-(2-phenylethynyl)anthracene whose endoperoxide can be converted back by heating as the guest, a reversible controlled release system is constructed. This study not only gives a type of porphyrin-based metallacage that shows desired host-guest interactions with PAHs but also offers a photooxidation-responsive host-guest recognition motif, which will guide future design and applications of metallacages for stimuli-responsive materials.
Collapse
Affiliation(s)
- Zeyuan Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Lingzhi Ma
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Fang Fang
- Instrumental
Analysis Center of Shenzhen University, Shenzhen 518055, P. R. China
| | - Yali Hou
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chenjie Lu
- Key
Laboratory of Adsorption and Separation Materials and Technologies
of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chaoqun Mu
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yafei Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haifei Liu
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ke Gao
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zixi Zhang
- Department
of Dermatology, The First Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P.
R. China
| | - Xiaopeng Li
- College of
Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Mingming Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
13
|
Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications. INORGANICS 2022. [DOI: 10.3390/inorganics10070088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Due to its highly conjugated panel-like structure and unique photophysical and chemical features, anthracene has been widely used for fabricating attractive and functional supramolecular assemblies, including two-dimensional metallacycles and three-dimensional metallacages. The embedded anthracenes in these assemblies often show synergistic effects on enhancing the desired supramolecular and luminescent properties. This review focuses on the metallasupramolecular architectures with anthracene-containing building blocks, as well as their applications in host-guest chemistry, stimulus response, molecular sensing, light harvesting, and biomedical science.
Collapse
|
14
|
Wang YS, Sun LY, Wang YY, Han YF. Phase-mediated controllable intramolecular and intermolecular photocycloadditions assisted by supramolecular templates. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Dong X, Zhang C, Dai X, Wang Q, Zhang YM, Xu X, Liu Y. Induced Near-Infrared Emission and Controlled Photooxidation based on Sulfonated Crown Ether in Water. Chemistry 2022; 28:e202200005. [PMID: 35129237 DOI: 10.1002/chem.202200005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 12/12/2022]
Abstract
Regulation of physio-chemical properties and reaction activities via noncovalent methodology has become one of increasingly significant topics in supramolecular chemistry and showed inventive applications in miscellaneous fields. Herein, we demonstrate that sulfonated crown ether can form very stable host-guest complexes with a series of push-pull-type photosensitizers, eventually leading to the dramatic fluorescence enhancement in visible and near-infrared regions. Meanwhile, severe suppression in singlet oxygen (1 O2 ) production is found, mainly due to the higher energy barriers between the excited single and triple states upon host-guest complexation. Moreover, such complexation-induced tuneable 1 O2 generation systems has been utilized in adjusting the photochemical oxidation reactions of polycyclic aromatic hydrocarbons (anthracene) and sulfides ((methylthio)benzene) in water. This supramolecularly controlled photooxidation based on the selective molecular binding of crown ether with photosensitizers may provide a feasible and applicable strategy for monitoring and modulating many photocatalysis processes in aqueous phase.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cong Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qi Wang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
17
|
Chaudhry MT, Ota S, Lelj F, MacLachlan MJ. Breathing Room: Restoring Free Rotation in a Schiff-Base Macrocycle through Endoperoxide Formation. Org Lett 2021; 23:9538-9542. [PMID: 34870998 DOI: 10.1021/acs.orglett.1c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrocyclization is a popular method for preparing hosts, but it can have unintended effects, like limiting molecular free rotation to yield mixtures of inseparable isomers. We report a [3 + 3] Schiff-base macrocycle (1) with anthracene bridges. Restricted rotation about the phenyl-anthracene bonds leads 1 to exist as a mixture of conformations (1Cs and 1C3v). Macrocycle 1 was photooxidized to tris(endoperoxide) adduct 4, alleviating restricted rotation. These results were supported by spectroscopic, structural, and computational analyses.
Collapse
Affiliation(s)
- Mohammad T Chaudhry
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seiya Ota
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Francesco Lelj
- La.M.I. and LaSCAMM INSTM Sezione Basilicata, Dipartimento di Chimica, Università della Basilicta, Via dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan.,Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
18
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Zhou L, Wu B, Chen Y, Gong J, Wang J, Dai G, Chi C, Wang Q. Synthesis and Properties of Aza-Ovalene with Six Zigzag Edges. Org Lett 2021; 23:8640-8644. [PMID: 34643399 DOI: 10.1021/acs.orglett.1c03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ovalene's nitrogenated derivative with all zigzag edges and nitrogen atom doping at the periphery has been developed via one-step nitrogenation of formylbisanthene. Because of nitrogen incorporation, these molecules show greatly decreased highest occupied molecular orbital levels, enhanced intermolecular interactions, and a reversible acid response. Aza-ovalene also exhibits a diatropic ring current along the periphery. This work provides rare examples of all-zigzag-edged N-polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Boming Wu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Yuanyuan Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jianye Gong
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jianguo Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Gaole Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
20
|
Mansoor IF, Dutton KG, Rothschild DA, Remsing RC, Lipke MC. Uptake, Trapping, and Release of Organometallic Cations by Redox-Active Cationic Hosts. J Am Chem Soc 2021; 143:16993-17003. [PMID: 34596386 DOI: 10.1021/jacs.1c06121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host-guest chemistry of metal-organic nanocages is typically driven by thermodynamically favorable interactions with their guests such that uptake and release of guests can be controlled by switching this affinity on or off. Herein, we achieve this effect by reducing porphyrin-walled cationic nanoprisms 1a12+ and 1b12+ to zwitterionic states that rapidly uptake organometallic cations Cp*2Co+ and Cp2Co+, respectively. Cp*2Co+ binds strongly (Ka = 1.3 × 103 M-1) in the neutral state 1a0 of host 1a12+, which has its three porphyrin walls doubly reduced and its six (bipy)Pt2+ linkers singly reduced (bipy = 2,2'-bipyridine). The less-reduced states of the host 1a3+ and 1a9+ also bind Cp*2Co+, though with lower affinities. The smaller Cp2Co+ cation binds strongly (Ka = 1.7 × 103 M-1) in the 3e- reduced state 1b9+ of the (tmeda)Pt2+-linked host 1b12+ (tmeda = N,N,N',N'-tetramethylethylenediamine). Upon reoxidation of the hosts with Ag+, the guests become trapped to provide unprecedented metastable cation-in-cation complexes Cp*2Co+@1a12+ and Cp2Co+@1b12+ that persist for >1 month. Thus, dramatic kinetic effects reveal a way to confine the guests in thermodynamically unfavorable environments. Experimental and DFT studies indicate that PF6- anions kinetically stabilize Cp*2Co+@1a12+ through electrostatic interactions and by influencing conformational changes of the host that open and close its apertures. However, when Cp*2Co+@1a12+ was prepared using ferrocenium (Fc+) instead of Ag+ to reoxidize the host, dissociation was accelerated >200× even though neither Fc+ nor Fc have any observable affinity for 1a12+. This finding shows that metastable host-guest complexes can respond to subtler stimuli than those required to induce guest release from thermodynamically favorable complexes.
Collapse
Affiliation(s)
- Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
21
|
Yu HJ, Zhou Q, Dai X, Shen FF, Zhang YM, Xu X, Liu Y. Photooxidation-Driven Purely Organic Room-Temperature Phosphorescent Lysosome-Targeted Imaging. J Am Chem Soc 2021; 143:13887-13894. [PMID: 34410118 DOI: 10.1021/jacs.1c06741] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The construction of host-guest-binding-induced phosphorescent supramolecular assemblies has become one of increasingly significant topics in biomaterial research. Herein, we demonstrate that the cucurbit[8]uril host can induce the anthracene-conjugated bromophenylpyridinium guest to form a linear supramolecular assembly, thus facilitating the enhancement of red fluorescence emission by the host-stabilized charge-transfer interactions. When the anthryl group is photo-oxidized to anthraquinone, the obtained linear nanoconstructs can be readily converted into the homoternary inclusion complex, accompanied by the emergence of strong green phosphorescence in aqueous solution. More intriguingly, dual organelle-targeted imaging abilities have been also distinctively achieved in nuclei and lysosomes after undergoing photochemical reaction upon UV irradiation. This photooxidation-driven purely organic room-temperature phosphorescence provides a convenient and feasible strategy for supramolecular organelle identification to track specific biospecies and physiological events in the living cells.
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
22
|
Abstract
The synthesis of kekulene and its higher homologues is a challenging task in organic chemistry. The first successful synthesis and characterization of the parent kekulene were reported by Diederich and Staab in 1978. Herein, we report the facile preparation of a series of edge-extended kekulenes by bismuth(III) triflate-catalyzed cyclization of vinyl ethers from the properly designed macrocyclic precursors. Their molecular structures were confirmed by X-ray crystallographic analysis and NMR spectroscopy. Their size- and symmetry-dependent electronic structures (frontier molecular orbitals, aromaticity) and physical properties (optical and electrochemical) were investigated by various spectroscopic measurements, assisted by theoretical calculations. Particularly, the acene-like units along each zigzag edge demonstrate a dominant local aromatic character. Our studies provide an easy synthetic strategy toward various fully fused carbon nanostructures and give some insights into the electronic properties of cycloarenes.
Collapse
Affiliation(s)
- Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xuhui Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|