1
|
Cheng YA, Chien SY, Chen PPY, Hsu IJ, Lee CM. Photoinduced NO production from a mononuclear {MnNO} 6 complex bearing a metal-diaryldisulphide ligand. Dalton Trans 2025; 54:7415-7424. [PMID: 40223644 DOI: 10.1039/d5dt00165j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A solution of six-coordinate [Mn(PS2)2] (1) is inert towards nitric oxide (NO) at room temperature. In the presence of a proton source such as p-toluenesulfonic acid or perchloric acid, however, the treatment of 1 with NO in the dark leads to the formation of {MnNO}6 [Mn(NO)(SPS-SPS)] (2) with a metal-diaryldisulphide ligand, as confirmed by several spectroscopy investigations, including single-crystal X-ray diffraction. A possible pathway for the formation of 2 was determined through theoretical studies and involves the following: (i) the thiolato sulphur in 1 interacts with H+ to generate an intermediate [Mn(PS2)(PS2H)]+ (A) with an S⋯H interaction; (ii) the reaction of A with NO yields HNO and an Mn(IV)-bound-thiyl radical species (B); and (iii) the nucleophilicity of the thiyl radical B to an adjacent thiolato sulphur produces a five-coordinate Mn(III)-diaryldisulphide species (C), which reacts with the generated HNO to yield 2. Complex 2 is sensitive to visible light. When photolysis of 2 in solution is performed, complex 1 is regenerated and NO is released, which is related to metal-disulphide/metal-thiolate interconversion.
Collapse
Affiliation(s)
- Yu-An Cheng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
2
|
Bunjes O, Rittmeier A, Hedman D, Hua SA, Paul LA, Meyer F, Ding F, Wenderoth M. Testing functional anchor groups for the efficient immobilization of molecular catalysts on silver surfaces. Commun Chem 2024; 7:107. [PMID: 38724592 PMCID: PMC11082172 DOI: 10.1038/s42004-024-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts. In this study, the complex fac-Re(S-Sbpy)(CO)3Cl (S-Sbpy = 3,3'-disulfide-2,2'-bipyridine), a sulfurated derivative of the prominent Re(bpy)(CO)3Cl class of CO2 reduction catalysts, was deposited onto the clean Ag(001) surface at room temperature. The complex is thermostable upon sublimation as supported by infrared absorption and nuclear magnetic resonance spectroscopy. Its anchoring process has been analyzed using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The growth behavior was directly contrasted to the one of the parent complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine). The sulfurated complex nucleates as single molecule at different surface sites and at molecule clusters. In contrast, for the parent complex nucleation only occurs in clusters of several molecules at specifically oriented surface steps. While this shows that surface immobilization of the sulfurated complex is more efficient as compared to the parent, symmetry analysis of the STM topographic data supported by DFT calculations indicates that more than 90% of the complexes adsorb in a geometric configuration very similar to the one of the parent complex.
Collapse
Affiliation(s)
- Ole Bunjes
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Alexandra Rittmeier
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Daniel Hedman
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Shao-An Hua
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Lucas A Paul
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, D-37077, Göttingen, Germany
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Martin Wenderoth
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, D-37077, Göttingen, Germany.
| |
Collapse
|
3
|
Franz J, Oelschlegel M, Zobel JP, Hua SA, Borter JH, Schmid L, Morselli G, Wenger OS, Schwarzer D, Meyer F, González L. Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer. J Am Chem Soc 2024; 146. [PMID: 38598687 PMCID: PMC11046484 DOI: 10.1021/jacs.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
We report a rhenium diimine photosensitizer equipped with a peripheral disulfide unit on one of the bipyridine ligands, [Re(CO)3(bpy)(S-Sbpy4,4)]+ (1+, bpy = 2,2'-bipyridine, S-Sbpy4,4 = [1,2]dithiino[3,4-c:6,5-c']dipyridine), showing anti-Kasha luminescence. Steady-state and ultrafast time-resolved spectroscopies complemented by nonadiabatic dynamics simulations are used to disclose its excited-state dynamics. The calculations show that after intersystem crossing the complex evolves to two different triplet minima: a (S-Sbpy4,4)-ligand-centered excited state (3LC) lying at lower energy and a metal-to-(bpy)-ligand charge transfer (3MLCT) state at higher energy, with relative yields of 90% and 10%, respectively. The 3LC state involves local excitation of the disulfide group into the antibonding σ* orbital, leading to significant elongation of the S-S bond. Intriguingly, it is the higher-lying 3MLCT state, which is assigned to display luminescence with a lifetime of 270 ns: a signature of anti-Kasha behavior. This assignment is consistent with an energy barrier ≥ 0.6 eV or negligible electronic coupling, preventing reaction toward the 3LC state after the population is trapped in the 3MLCT state. This study represents a striking example on how elusive excited-state dynamics of transition-metal photosensitizers can be deciphered by synergistic experiments and state-of-the-art calculations. Disulfide functionalization lays the foundation of a new design strategy toward harnessing excess energy in a system for possible bimolecular electron or energy transfer reactivity.
Collapse
Affiliation(s)
- Julia Franz
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Manuel Oelschlegel
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Shao-An Hua
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Jan-Hendrik Borter
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Lucius Schmid
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Giacomo Morselli
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Dirk Schwarzer
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
- Vienna Research
Platform for Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Brás EM, Zimmermann C, Fausto R, Suhm MA. Benchmarking the anisotropy of nitroxyl radical solvation with IR spectroscopy. Phys Chem Chem Phys 2024; 26:5822-5829. [PMID: 38314587 DOI: 10.1039/d3cp05668f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Two simple nitroxyl radicals, di-tert-butyl nitroxyl (DTBN) and 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) are solvated by one or two water, methanol, tert-butyl alcohol or phenol molecules. The resulting low temperature IR spectra of the vacuum-isolated microsolvates in the OH stretching range are assigned based on harmonic DFT predictions for closed shell solvent dimers and trimers and their offset from experiment, to minimise theory-guided assignment bias. Systematic conformational preferences for the first and second solvent molecule are observed, depending on the conformational rigidity of the radical. These assignments are collected into an experimental benchmark data set and used to assess the spectral predicting power of different DFT approaches. The goal is to find inexpensive computational methods which provide reliable spectral predictions for this poorly explored class of microsolvates.
Collapse
Affiliation(s)
- Elisa M Brás
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Charlotte Zimmermann
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Ataköy Campus, Bakirköy 34156, Istanbul, Turkey
| | - Martin A Suhm
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Lowe GA. Enabling artificial photosynthesis systems with molecular recycling: A review of photo- and electrochemical methods for regenerating organic sacrificial electron donors. Beilstein J Org Chem 2023; 19:1198-1215. [PMID: 37592934 PMCID: PMC10428615 DOI: 10.3762/bjoc.19.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
This review surveys advances in the literature that impact organic sacrificial electron donor recycling in artificial photosynthesis. Systems for photocatalytic carbon dioxide reduction are optimized using sacrificial electron donors. One strategy for coupling carbon dioxide reduction and water oxidation to achieve artificial photosynthesis is to use a redox mediator, or recyclable electron donor. This review highlights photo- and electrochemical methods for recycling amines and NADH analogues that can be used as electron donors in artificial photosynthesis. Important properties of sacrificial donors and recycling strategies are also discussed. Compounds from other fields, such as redox flow batteries and decoupled water splitting research, are introduced as alternative recyclable sacrificial electron donors and their oxidation potentials are compared to the redox potentials of some model photosensitizers. The aim of this review is to act as a reference for researchers developing photocatalytic systems with sacrificial electron donors, and for researchers interested in designing new redox mediator and recyclable electron donor species.
Collapse
Affiliation(s)
- Grace A Lowe
- van ’t Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
6
|
Matsubara Y, Ishitani O. Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Cheng YY, Cui CX. Theoretical study on hydrogen transfer in the dissociation of dimethyl disulfide radical cations. Phys Chem Chem Phys 2023; 25:3780-3788. [PMID: 36644933 DOI: 10.1039/d2cp05395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen transfer (HT) is of crucial importance in biochemistry and atmospheric chemistry. Here, HT processes involved in the dissociation reaction of dimethyl disulfide radical cations (DMDS˙+, CH3SSCH3˙+) are investigated using quantum chemical calculations. Four HTs from the C to S atom and one HT from the S to S atom are observed and the most probable paths are proposed in the dissociation channel from DMDS˙+ to CHnS+ (n = 2-4). The mechanisms of all these five HTs are described as hydrogen atom transfer (HAT) and four of them are accompanied by electron transfer (ET). Considering the catalytic effect of water molecules existing in organisms and the atmosphere, five HT processes in the dissociation of the [DMDS + H2O]˙+ complex are further explored, which show lower free energy barriers. With the participation of water molecules acting as a base, two HTs from the C to the S atom, which have the largest decrease in energy barriers, are characterized as concerted proton-coupled electron transfer (cPCET). These results can be extended to understand the mechanism of the HT process during the dissociation of disulfide and help provide a strategy to design a rare cPCET mechanism for the activation of the C-H bond.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China.
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
8
|
Schmid L, Fokin I, Brändlin M, Wagner D, Siewert I, Wenger OS. Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Chemistry 2022; 28:e202202386. [PMID: 36351246 PMCID: PMC10098965 DOI: 10.1002/chem.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Abstract
The activation of N2 , CO2 or H2 O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Igor Fokin
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Mathis Brändlin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
9
|
Lee CH, Lin DJ, Pan HR, Wu J, Liu HK, Hsu HF. Reversible Conversion of Disulfide/Dithiolate Occurring at a Vanadium(IV) Center: A Biomimetic System for Redox Exchange in Vanabin. Inorg Chem 2022; 61:19882-19889. [PMID: 36441974 DOI: 10.1021/acs.inorgchem.2c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ascidians use a class of cysteine-rich proteins generally referred to as vanabins to reduce vanadium ions, one of the many biological processes that involve the redox conversion between disulfide and dithiolate mediated by transition-metal ions. To further understand the nature of disulfide/dithiolate exchange facilitated by a vanadium center, we report herein a six-coordinate non-oxido VIV complex containing an unbound disulfide moiety, [VIV(PS3″)(PS1″S-S)] (1) (PS3″ = [P(C6H3-3-Me3Si-2-S)3]3-, where PS1″S-S is a disulfide form of PS3″). Complex 1 is obtained from a reaction of previously reported [VV(PS3″)(PS2″SH)] (2) (PS2″SH = [P(C6H3-3-Me3Si-2-SH)(C6H3-3-Me3Si-2-S)2] with TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) via hydrogen atom transfer. Importantly, complex 1 can be reduced by two electrons to form an eight-coordinate VIV complex, [VIV(PS3″)2]2- (4). The reaction can be reversed through a two-electron oxidation process to regenerate complex 1. The redox pathways both proceed through a common intermediate, [V(PS3″)2]- (3), that has been previously reported as a resonance form of VV-dithiolate and a VIV-(thiolate)(thiyl-radical) species. This work demonstrates an unprecedented example of reversible disulfide/dithiolate interconversion mediated by a VIV center, as well as provides insights into understanding the function of VV reductases in vanabins.
Collapse
Affiliation(s)
- Cheng-Hsun Lee
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ding-Jyun Lin
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Ruei Pan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - John Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
10
|
Synthesis of 6-mercapto-2-phosphinoylpyridines and their rhenium carbonyl derivatives. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Bruch QJ, Tanushi A, Müller P, Radosevich AT. Metal-Ligand Role Reversal: Hydride-Transfer Catalysis by a Functional Phosphorus Ligand with a Spectator Metal. J Am Chem Soc 2022; 144:21443-21447. [PMID: 36378626 PMCID: PMC9712262 DOI: 10.1021/jacs.2c10200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydride transfer catalysis is shown to be enabled by the nonspectator reactivity of a transition metal-bound low-symmetry tricoordinate phosphorus ligand. Complex 1·[Ru]+, comprising a nontrigonal phosphorus chelate (1, P(N(o-N(2-pyridyl)C6H4)2) and an inert metal fragment ([Ru] = (Me5C5)Ru), reacts with NaBH4 to give a metallohydridophosphorane (1H·[Ru]) by P-H bond formation. Complex 1H·[Ru] is revealed to be a potent hydride donor (ΔG°H-,exp < 41 kcal/mol, ΔG°H-,calc = 38 ± 2 kcal/mol in MeCN). Taken together, the reactivity of the 1·[Ru]+/1H·[Ru] pair comprises a catalytic couple, enabling catalytic hydrodechlorination in which phosphorus is the sole reactive site of hydride transfer.
Collapse
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Akira Tanushi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Oelschlegel M, Hua SA, Schmid L, Marquetand P, Bäck A, Borter JH, Lücken J, Dechert S, Wenger OS, Siewert I, Schwarzer D, González L, Meyer F. Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties. Inorg Chem 2022; 61:13944-13955. [PMID: 36001121 DOI: 10.1021/acs.inorgchem.2c01930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular systems combining light harvesting and charge storage are receiving great attention in the context of, for example, artificial photosynthesis and solar fuel generation. As part of ongoing efforts to develop new concepts for photoinduced proton-coupled electron transfer (PCET) reactivities, we report a cyclometallated iridium(III) complex [Ir(ppy)2(S-Sbpy)](PF6) ([1]PF6) equipped with our previously developed sulfurated bipyridine ligand S-Sbpy. A new one-step synthetic protocol for S-Sbpy is developed, starting from commercially available 2,2'-bipyridine, which significantly facilitates the use of this ligand. [1]+ features a two-electron reduction with potential inversion (|E1| > |E2|) at moderate potentials (E1 = -1.12, E2 = -1.11 V versus. Fc+/0 at 253 K), leading to a dithiolate species [1]-. Protonation with weak acids allows for determination of pKa = 23.5 in MeCN for the S-H···S- unit of [1H]. The driving forces for both the H atom and the hydride transfer are calculated to be ∼60 kcal mol-1 and verified experimentally by reaction with a suitable H atom and a hydride acceptor, demonstrating the ability of [1]+ to serve as a versatile PCET reagent, albeit with limited thermal stability. In MeCN solution, an orange emission for [1]PF6 from a triplet-excited state was found. Density functional calculations and ultrafast absorption spectroscopy are used to give insight into the excited-state dynamics of the complex and suggest a significantly stretched S-S bond for the lowest triplet-state T1. The structural responsiveness of the disulfide unit is proposed to open an effective relaxation channel toward the ground state, explaining the unexpectedly short lifetime of [1]+. These insights as well as the quantitative ground-state thermochemistry data provide valuable information for the use of S-Sbpy-functionalized complexes and their disulfide-/dithiol-directed PCET reactivity.
Collapse
Affiliation(s)
- Manuel Oelschlegel
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Shao-An Hua
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Lucius Schmid
- Department of Chemistry, University of Basel, CH-4056Basel, Switzerland
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Anna Bäck
- Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Jan-Hendrik Borter
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Jana Lücken
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, CH-4056Basel, Switzerland
| | - Inke Siewert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| |
Collapse
|
13
|
Siewert I. Electrochemical CO 2 Reduction Catalyzed by Binuclear LRe 2(CO) 6Cl 2 and LMn 2(CO) 6Br 2 Complexes with an Internal Proton Source. Acc Chem Res 2022; 55:473-483. [PMID: 35077152 DOI: 10.1021/acs.accounts.1c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of certain commodity chemicals, e.g., methanol and acetic acid, relies on CO, which is currently mainly produced by the combustion of carbon or natural gas. Photo- or electrochemical conversion of atmospheric CO2 to CO represents an attractive alternative strategy as this approach is carbon-neutral. Such photo- or electrochemically formed CO can also be used in the Fischer-Tropsch process forming liquid hydrocarbons for energy storage applications. The multiple electroreduction of CO2 is preferably coupled with proton transfer steps as this requires less energy than the single outer-sphere 1e- reduction of CO2.In 1984 and 2011, it was shown that [(Lbpy)Re(CO)3Cl] (1) and [(Lbpy)Mn(CO)3Br] (2), respectively, mediate the electrochemical 2e-/2H+ reduction of CO2 forming CO and water (Lbpy = 2,2'-bipyridine). Since proton management is crucial for catalysis, recently the impact of internal proton sources close to the axial position in such complexes has been investigated. However, binuclear complexes have been used rarely as mediators although it has been shown very early for 1 that electron management is also important: the 2e-/2H+ reduction pathway with 1 exhibits a higher reaction rate than going via the singly reduced species, though the pathway requires a higher overpotential. In this Account, we focus on recent developments of binuclear LMn2(CO)6 and LRe2(CO)6 mediators with an internal phenol group in the electroreduction of CO2. In contrast to mononuclear derivatives, for which the impact of the internal proton source on catalysis is very diverse, we always observed a higher reaction rate and for the Mn complexes also a lower overpotential with the binuclear complexes compared to the mononuclear variants. Spectroscopic, electrochemical, and computational studies on the mono- and binuclear complexes shed light on their reactivity under reductive conditions, elucidated the structure of reduced species, unraveled the kinetics for catalytically productive and unproductive (side) reactions, and allowed us to derive some hypothesis on the CO2 reduction mechanism. Finally, I emphasize that the electrohydrogenation of the polar double bonds by the binuclear complex LMn2(CO)6 with a central phenol unit is not restricted to CO2 but is also applicable to organic compounds with C═O bonds.
Collapse
Affiliation(s)
- Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| |
Collapse
|