1
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
2
|
Ranga PK, Fatma S, Athira MP, Velloth A, Ahmad F, Wadhave AB, Kumar V, Saini P, Anand RV. Tris(aryl)cyclopropenium Ion as Organic Lewis Acid Catalyst in Carbonyl Activation Reactions. Chem Asian J 2025:e202500131. [PMID: 40298038 DOI: 10.1002/asia.202500131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Although, in recent years, cyclopropenium salts have been explored as phase-transfer catalysts, electro-photocatalysts, H-bond donor catalysts, etc., and until now, they have not been utilized directly as Lewis acid catalysts in organic transformations. In this article, we demonstrate a "Proof of Concept" that the tris(aryl)cyclopropenium (TAC) carbocation could be utilized as an organic Lewis acid catalyst in some of the reactions involving carbonyl activation such as 1,2-addition reactions of aldehydes, 1,4-conjugate addition reactions of enones, and 1,6-vinylogous conjugate addition of dienones (p-quinone methides). The mode of activation of carbonyl group by cyclopropenium ion has been studied using NMR titrations and UV kinetics and further supported by computational calculations.
Collapse
Affiliation(s)
- Pavit Kumar Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Mangalassery P Athira
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Akshaykumar B Wadhave
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Vaibhav Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Piyush Saini
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| |
Collapse
|
3
|
Pfund B, Wenger OS. Excited Organic Radicals in Photoredox Catalysis. JACS AU 2025; 5:426-447. [PMID: 40017739 PMCID: PMC11862960 DOI: 10.1021/jacsau.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
Many important synthetic-oriented works have proposed excited organic radicals as photoactive species, yet mechanistic studies raised doubts about whether they can truly function as photocatalysts. This skepticism originates from the formation of (photo)redox-active degradation products and the picosecond decay of electronically excited radicals, which is considered too short for diffusion-based photoinduced electron transfer reactions. From this perspective, we analyze important synthetic transformations where organic radicals have been proposed as photocatalysts, comparing their theoretical maximum excited state potentials with the potentials required for the observed photocatalytic reactivity. We summarize mechanistic studies of structurally similar photocatalysts indicating different reaction pathways for some catalytic systems, addressing cases where the proposed radical photocatalysts exceed their theoretical maximum reactivity. Additionally, we perform a kinetic analysis to explain the photoinduced electron transfer observed in excited radicals on subpicosecond time scales. We further rationalize the potential anti-Kasha reactivity from higher excited states with femtosecond lifetimes, highlighting how future photocatalysis advancements could unlock new photochemical pathways.
Collapse
Affiliation(s)
- Björn Pfund
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Ma Y, Yu P, Qin R, He R, Zeng L, Shi L, Sun S, Liang D. Electrophotocatalytic Thiocyanation and Sulfonylation Cyclization of Unactivated Alkenes. J Org Chem 2025; 90:598-613. [PMID: 39695375 DOI: 10.1021/acs.joc.4c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
We report an electrophotocatalytic process that enables the thiocyanation and sulfonylation/cyclization of alkenes. It is applicable to a wide range of unactivated alkenes, using the inexpensive photocatalyst 2,4,6-triphenylpyrylium tetrafluoroborate (TPPT) to produce a diverse array of heterocycles containing sulfonyl and thiocyano groups with good functional group tolerance. The protocol operates under mild, chemical oxidant- and transition-metal-free, with a broad scope of substrates. Preliminary mechanistic studies suggest that the reaction involves a combination of electrolysis and the reductive quenching photocatalytic cycle of TPPT.
Collapse
Affiliation(s)
- Yingchun Ma
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Ruoyu Qin
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Run He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Li Zeng
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Shaoguang Sun
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
- Medical College, Panzhihua University, Panzhihua 617000, P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China
| |
Collapse
|
5
|
Lamb MC, Steiniger KA, Trigoura LK, Wu J, Kundu G, Huang H, Lambert TH. Electrophotocatalysis for Organic Synthesis. Chem Rev 2024; 124:12264-12304. [PMID: 39441982 DOI: 10.1021/acs.chemrev.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrocatalysis and photocatalysis have been the focus of extensive research efforts in organic synthesis in recent decades, and these powerful strategies have provided a wealth of new methods to construct complex molecules. Despite these intense efforts, only recently has there been a significant focus on the combined use of these two modalities. Nevertheless, the past five years have witnessed rapidly growing interest in the area of electrophotocatalysis. This hybrid strategy capitalizes on the enormous benefits of using photons as reagents while also employing an electric potential as a convenient and tunable source or sink of electrons. Research on this topic has led to a number of methods for C-H functionalization, reductive cross-coupling, and olefin addition among others. This field has also seen the use of a broad range of catalyst types, including both metal and organocatalysts. Of particular note has been work with open-shell photocatalysts, which tend to have comparatively large redox potentials. Electrochemistry provides a convenient means to generate such species, making electrophotocatalysis particularly amenable to this intriguing class of redox catalyst. This review surveys methods in the area of electrophotocatalysis as applied to organic synthesis, organized broadly into oxidative, reductive, and redox neutral transformations.
Collapse
Affiliation(s)
- Matthew C Lamb
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Leslie K Trigoura
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jason Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gourab Kundu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - He Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Deka H, Fridman N, Eisen MS. Temperature Dependence of the Ring Opening of Cyclopropene Imines on Thorium Metallocenes. Inorg Chem 2024; 63:9572-9578. [PMID: 38471108 PMCID: PMC11134510 DOI: 10.1021/acs.inorgchem.3c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The reactions of two highly strained cyclopropenimine ligands L1H and L2H (L1H = N1,N1,N2,N2-tetraisopropyl-3-iminocycloprop-1-ene-1,2-diamine, L2H = N1,N1,N2,N2-tetracyclohexyl-3-iminocycloprop-1-ene-1,2-diamine) with three thorium precursors Cp*2ThCl2, Cp*2Th(Cl)(CH3), and Cp*2Th(CH3)2 were studied. At -20 °C, L1H and L2H react with Cp*2ThCl2 to form Th1 (Th1 = Cp*2ThCl2(L1H)) and Th2 (Th2 = Cp*2ThCl2(L2H)), respectively, where the neutral ligand coordinates to the thorium metal center. Coordination of the ligand to the thorium metal center introduces aromaticity at the cyclopropene ring of the ligand. Reaction at room temperature results in the ring opening of the ligand to form Th3 (Th3 = Cp*2ThCl2((Z)-2,3-bis(diisopropylamino)acrylonitrile) and Th4 (Th4 = Cp*2ThCl2((Z)-2,3-bis(dicyclohexylamino)acrylonitrile), where the cyclopropenimine converts into a nitrile and coordinates to the thorium metal center. Reaction of L1H and L2H with Cp*2Th(Cl)(CH3) and/or Cp*2Th(CH3)2 at -20 °C results in a rapid methanolysis reaction and forms Cp*2Th(L1/L2)(CH3/Cl)-type complexes Th5 (Th5 = Cp*2Th(L1)(CH3)), Th6 (Th6 = Cp*2Th(L2)(CH3), Th7 (Th7 = Cp*2Th(L1)(Cl), and Th8 (Th8 = Cp*2Th(L2)(Cl). On the other hand, at room temperature, these reactions result in a ring opening of the ligand. Room-temperature reaction of L1H and L2H with Cp*2Th(CH3)2 results in Th9 (Th9 = Cp*2Th(CH3)((Z)-3-imino-N1,N1,N2,N2-tetraisopropylbut-1-ene-1,2-diamine) and Th10 (Th10 = Cp*2Th(CH3)((Z)-3-imino-N1,N1,N2,N2-tetracyclohexylbut-1-ene-1,2-diamine). Similarly, at room temperature, L1H and L2H react with Cp*2Th(Cl)(CH3) to form Th11 (Th11 = Cp*2Th(Cl)((Z)-3-imino- N1,N1,N2,N2-tetraisopropylbut-1-ene-1,2-diamine) and Th12 (Th12 = Cp*2Th(Cl)((Z)-3-imino-N1,N1,N2,N2-tetracyclohexylbut-1-ene-1,2-diamine). The ring-opening reaction is assisted by the nucleophilic attack of the thorium-coordinated methyl group to the highly strained cyclopropene imine carbon.
Collapse
Affiliation(s)
- Hemanta Deka
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa
City 3200003, Israel
- Department
of Chemistry, Goalpara College, Goalpara 783101, Assam, India
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa
City 3200003, Israel
| | - Moris S. Eisen
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa
City 3200003, Israel
| |
Collapse
|
7
|
Carneiro SN, Laffoon JD, Luo L, Sanford MS. Benchmarking Trisaminocyclopropeniums as Mediators for Anodic Oxidation Reactions. J Org Chem 2024; 89:6389-6394. [PMID: 38607957 DOI: 10.1021/acs.joc.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
This report benchmarks a tris(amino)cyclopropenium (TAC) salt as an electron-transfer mediator for anodic oxidation reactions in comparison to two known mediators: a triarylamine and a triarylimidazole derivative. The three mediators have redox potentials, diffusion coefficients, and heterogeneous electron transfer rates similar to those of glassy carbon electrodes in acetonitrile/KPF6. However, they differ significantly in their performance in two electro-organic reactions: anodic fluorination of a dithiane and anodic oxidation of 4-methoxybenzyl alcohol. These differences are rationalized based on variable stability in the presence of reaction components (e.g., NEt3·3HF, lutidine, and Cs2CO3) as well as very different rates of electron transfer with the organic substrate. Overall, this work highlights the advantages and disadvantages of each mediator and provides a foundation for expanding the applications of TACs in electro-organic synthesis moving forward.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua D Laffoon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
East NR, Naumann R, Förster C, Ramanan C, Diezemann G, Heinze K. Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light. Nat Chem 2024; 16:827-834. [PMID: 38332331 DOI: 10.1038/s41557-024-01446-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants. All these photocatalysts require high-energy light for excitation, and their oxidizing power has not been fully exploited due to energy dissipation before reaching the photoactive state. Here we demonstrate that the complex [Mn(dgpy)2]4+, based on Earth-abundant manganese and the tridentate 2,6-diguanidylpyridine ligand (dgpy), evolves to a luminescent doublet ligand-to-metal charge transfer (2LMCT) excited state (1,435 nm, 0.86 eV) with a lifetime of 1.6 ns after excitation with low-energy near-infrared light. This 2LMCT state oxidizes naphthalene to its radical cation. Substrates with extremely high oxidation potentials up to 2.4 V enable the [Mn(dgpy)2]4+ photoreduction via a high-energy quartet 4LMCT excited state with a lifetime of 0.78 ps, proceeding via static quenching by the solvent. This process minimizes free energy losses and harnesses the full photooxidizing power, and thus allows oxidation of nitriles and benzene using Earth-abundant elements and low-energy light.
Collapse
Affiliation(s)
- Nathan R East
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Charusheela Ramanan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | - Gregor Diezemann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
10
|
Sau SC, Schmitz M, Burdenski C, Baumert M, Antoni PW, Kerzig C, Hansmann MM. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts. J Am Chem Soc 2024; 146:3416-3426. [PMID: 38266168 DOI: 10.1021/jacs.3c12766] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.
Collapse
Affiliation(s)
- Samaresh C Sau
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Chris Burdenski
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Marcel Baumert
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| |
Collapse
|
11
|
Kang WJ, Zhang Y, Li B, Guo H. Electrophotocatalytic hydrogenation of imines and reductive functionalization of aryl halides. Nat Commun 2024; 15:655. [PMID: 38253534 PMCID: PMC10803379 DOI: 10.1038/s41467-024-45015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The open-shell catalytically active species, like radical cations or radical anions, generated by one-electron transfer of precatalysts are widely used in energy-consuming redox reactions, but their excited-state lifetimes are usually short. Here, a closed-shell thioxanthone-hydrogen anion species (3), which can be photochemically converted to a potent and long-lived reductant, is generated under electrochemical conditions, enabling the electrophotocatalytic hydrogenation. Notably, TfOH can regulate the redox potential of the active species in this system. In the presence of TfOH, precatalyst (1) reduction can occur at low potential, so that competitive H2 evolution can be inhibited, thus effectively promoting the hydrogenation of imines. In the absence of TfOH, the reducing ability of the system can reach a potency even comparable to that of Na0 or Li0, thereby allowing the hydrogenation, borylation, stannylation and (hetero)arylation of aryl halides to construct C-H, C-B, C-Sn, and C-C bonds.
Collapse
Affiliation(s)
- Wen-Jie Kang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| |
Collapse
|
12
|
Ioannou DI, Capaldo L, Sanramat J, Reek JNH, Noël T. Accelerated Electrophotocatalytic C(sp 3 )-H Heteroarylation Enabled by an Efficient Continuous-Flow Reactor. Angew Chem Int Ed Engl 2023; 62:e202315881. [PMID: 37972351 DOI: 10.1002/anie.202315881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Electrophotocatalytic transformations are garnering attention in organic synthesis, particularly for accessing reactive intermediates under mild conditions. Moving these methodologies to continuous-flow systems, or flow ElectroPhotoCatalysis (f-EPC), showcases potential for scalable processes due to enhanced irradiation, increased electrode surface, and improved mixing of the reaction mixture. Traditional methods sequentially link photochemical and electrochemical reactions, using flow reactors connected in series, yet struggle to accommodate reactive transient species. In this study, we introduce a new flow reactor concept for electrophotocatalysis (EPC) that simultaneously utilizes photons and electrons. The reactor is designed with a transparent electrode and employs cost-effective materials. We used this technology to develop an efficient process for electrophotocatalytic heteroarylation of C(sp3 )-H bonds. Importantly, the same setup can also facilitate purely electrochemical and photochemical transformations. This reactor represents a significant advancement in electrophotocatalysis, providing a framework for its application in flow for complex synthetic transformations.
Collapse
Affiliation(s)
- Dimitris I Ioannou
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- Supramolecular and Homogeneous Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Luca Capaldo
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Jiri Sanramat
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Joost N H Reek
- Supramolecular and Homogeneous Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Vanhoof JR, De Smedt PJ, Derhaeg J, Ameloot R, De Vos DE. Metal-Free Electrocatalytic Diacetoxylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311539. [PMID: 37724630 DOI: 10.1002/anie.202311539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
1,2-Dioxygenation of alkenes leads to a structural motif ubiquitous in organic synthons, natural products and active pharmaceutical ingredients. Straightforward and green synthesis protocols starting from abundant raw materials are required for facile and sustainable access to these crucial moieties. Especially industrially abundant aliphatic alkenes have proven to be arduous substrates in sustainable 1,2-dioxygenation methods. Here, we report a highly efficient electrocatalytic diacetoxylation of alkenes under ambient conditions using a simple iodobenzene mediator and acetic acid as both the solvent and an atom-efficient reactant. This transition metal-free method is applicable to a wide range of alkenes, even challenging feedstock alkenes such as ethylene and propylene, with a broad functional group tolerance and excellent faradaic efficiencies up to 87 %. In addition, this protocol can be extrapolated to alkenoic acids, resulting in cyclization of the starting materials to valuable lactone derivatives. With aromatic alkenes, a competing mechanism of direct anodic oxidation exists which enables reaction under catalyst-free conditions. The synthetic method is extensively investigated with cyclic voltammetry.
Collapse
Affiliation(s)
- Jef R Vanhoof
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Pieter J De Smedt
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Jan Derhaeg
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Rob Ameloot
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Dirk E De Vos
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| |
Collapse
|
14
|
Yang K, Feng T, Qiu Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202312803. [PMID: 37698174 DOI: 10.1002/anie.202312803] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Despite widespread use of the deuterium isotope effect, selective deuterium labeling of chemical molecules remains a major challenge. Herein, a facile and general electrochemically driven, organic mediator enabled deuteration of styrenes with deuterium oxide (D2 O) as the economical deuterium source was reported. Importantly, this transformation could be suitable for various electron rich styrenes mediated by triphenylphosphine (TPP). The reaction proceeded under mild conditions without transition-metal catalysts, affording the desired products in good yields with excellent D-incorporation (D-inc, up to >99 %). Mechanistic investigations by means of isotope labeling experiments and cyclic voltammetry tests provided sufficient support for this transformation. Notably, this method proved to be a powerful tool for late-stage deuteration of biorelevant compounds.
Collapse
Affiliation(s)
- Keming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
15
|
Struwe J, Ackermann L. Photoelectrocatalyzed undirected C-H trifluoromethylation of arenes: catalyst evaluation and scope. Faraday Discuss 2023; 247:79-86. [PMID: 37466161 DOI: 10.1039/d3fd00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
During the last few years, photoelectrocatalysis has evolved as an increasingly viable tool for molecular synthesis. Despite several recent reports on the undirected C-H functionalization of arenes, thus far, a detailed comparison of different catalysts is still missing. To address this, more than a dozen different mediators were employed in the trifluoromethylation of (hetero-)arenes to compare them in their efficacies.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
16
|
Kong X, Chen Y, Chen X, Ma C, Chen M, Wang W, Xu YQ, Ni SF, Cao ZY. Organomediated electrochemical fluorosulfonylation of aryl triflates via selective C-O bond cleavage. Nat Commun 2023; 14:6933. [PMID: 37907478 PMCID: PMC10618246 DOI: 10.1038/s41467-023-42699-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China.
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Cheng Ma
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, 213164, Changzhou, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China.
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
17
|
Zhong PF, Tu JL, Zhao Y, Zhong N, Yang C, Guo L, Xia W. Photoelectrochemical oxidative C(sp 3)-H borylation of unactivated hydrocarbons. Nat Commun 2023; 14:6530. [PMID: 37845202 PMCID: PMC10579347 DOI: 10.1038/s41467-023-42264-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Organoboron compounds are of high significance in organic synthesis due to the unique versatility of boryl substituents to access further modifications. The high demand for the incorporation of boryl moieties into molecular structures has witnessed significant progress, particularly in the C(sp3)-H borylation of hydrocarbons. Taking advantage of special characteristics of photo/electrochemistry, we herein describe the development of an oxidative C(sp3)-H borylation reaction under metal- and oxidant-free conditions, enabled by photoelectrochemical strategy. The reaction exhibits broad substrate scope (>57 examples), and includes the use of simple alkanes, halides, silanes, ketones, esters and nitriles as viable substrates. Notably, unconventional regioselectivity of C(sp3)-H borylation is achieved, with the coupling site of C(sp3)-H borylation selectively located in the distal methyl group. Our method is operationally simple and easily scalable, and offers a feasible approach for the one-step synthesis of high-value organoboron building blocks from simple hydrocarbons, which would provide ample opportunities for drug discovery.
Collapse
Affiliation(s)
- Ping-Fu Zhong
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Nan Zhong
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
18
|
Liu M, Feng T, Wang Y, Kou G, Wang Q, Wang Q, Qiu Y. Metal-free electrochemical dihydroxylation of unactivated alkenes. Nat Commun 2023; 14:6467. [PMID: 37833286 PMCID: PMC10575955 DOI: 10.1038/s41467-023-42106-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Herein, a metal-free electrochemical dihydroxylation of unactivated alkenes is described. The transformation proceeds smoothly under mild conditions with a broad range of unactivated alkenes, providing valuable and versatile dihydroxylated products in moderate to good yields without the addition of costly transition metals and stoichiometric amounts of chemical oxidants. Moreover, this method can be applied to a range of natural products and pharmaceutical derivatives, further demonstrating its synthetic utility. Mechanistic studies have revealed that iodohydrin and epoxide intermediate are formed during the reaction process.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qiuyan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Qian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
19
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
20
|
Edgecomb JM, Alektiar SN, Cowper NGW, Sowin JA, Wickens ZK. Ketyl Radical Coupling Enabled by Polycyclic Aromatic Hydrocarbon Electrophotocatalysts. J Am Chem Soc 2023; 145:20169-20175. [PMID: 37676728 PMCID: PMC10787642 DOI: 10.1021/jacs.3c06347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Herein, we report a new class of electrophotocatalysts, polycyclic aromatic hydrocarbons, that promote the reduction of unactivated carbonyl compounds to generate versatile ketyl radical intermediates. This catalytic platform enables previously challenging intermolecular ketyl radical coupling reactions, including those that classic reductants (e.g., SmI2/HMPA) have failed to promote. More broadly, this study outlines an approach to fundamentally expand the array of reactive radical intermediates that can be generated via electrophotocatalysis by obviating the need for rapid mesolytic cleavage following substrate reduction.
Collapse
Affiliation(s)
- Joseph M. Edgecomb
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas G. W. Cowper
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jennifer A. Sowin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
22
|
Qian L, Shi M. Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chem Commun (Camb) 2023; 59:3487-3506. [PMID: 36857689 DOI: 10.1039/d3cc00437f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In recent years, with the development of organic synthetic chemistry, a variety of organic synthetic methods have been discovered and applied in practical production. Photochemistry and electrochemistry have been widely used in organic synthesis recently due to their advantages such as mild conditions and green and environmental protection and have now been developed into two of the most massive synthetic strategies in the field of organic synthesis. In order to further enhance the potential of photochemistry and electrochemistry and to overcome the limitations of each, organic synthetic chemists have worked to combine the two synthetic strategies together to develop photoelectrochemistry as a new synthetic method. Photoelectrochemistry achieves the complementary advantages and disadvantages of photochemistry and electrochemistry, avoids the problem of using stoichiometric oxidants or reductants in photochemistry and easy dimerization in electrochemistry, generates highly reactive reaction intermediates under mild conditions, and achieves reactions that are difficult to accomplish by single photochemistry or electrochemistry. This review summarizes the research progress in the field of photoelectrochemistry from the perspective of photoelectro-chemical catalysts in recent years, analyzes the catalytic mechanism of various catalysts in detail, and gives a brief outlook on the research direction and development prospects in this field.
Collapse
Affiliation(s)
- Ling Qian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
| |
Collapse
|
23
|
Electrochemical oxidative difunctionalization of diazo compounds with two different nucleophiles. Nat Commun 2023; 14:1476. [PMID: 36928311 PMCID: PMC10020561 DOI: 10.1038/s41467-023-37032-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
With the fast development of synthetic chemistry, the introduction of functional group into organic molecules has attracted increasing attention. In these reactions, the difunctionalization of unsaturated bonds, traditionally with one nucleophile and one electrophile, is a powerful strategy for the chemical synthesis. In this work, we develop a different path of electrochemical oxidative difunctionalization of diazo compounds with two different nucleophiles. Under metal-free and external oxidant-free conditions, a series of structurally diverse heteroatom-containing compounds hardly synthesized by traditional methods (such as high-value alkoxy-substituted phenylthioacetates, α-thio, α-amino acid derivatives as well as α-amino, β-amino acid derivatives) are obtained in synthetically useful yields. In addition, the procedure exhibits mild reaction conditions, excellent functional-group tolerance and good efficiency on large-scale synthesis. Importantly, the protocol is also amenable to the key intermediate of bioactive molecules in a simple and practical process.
Collapse
|
24
|
Yue H, Zhu C, Rueping M. Trisaminocyclopropenium ion (TAC +) enables contiguous CH bonds oxygenations via oxidative electrophotocatalysis. Sci Bull (Beijing) 2023:S2095-9273(23)00076-2. [PMID: 36774299 DOI: 10.1016/j.scib.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
25
|
Hampton C, Simonetti M, Leonori D. Olefin Dihydroxylation Using Nitroarenes as Photoresponsive Oxidants. Angew Chem Int Ed Engl 2023; 62:e202214508. [PMID: 36509705 PMCID: PMC10107662 DOI: 10.1002/anie.202214508] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Vicinal diols are abundant among natural and synthetic molecules, and also represent valuable intermediates throughout organic synthesis. Olefin dihydroxylation is an effective strategy to access these derivatives owing to the broad range and availability of alkene feedstocks. OsO4 is among the most used reagents to achieve this transformation, yet its high toxicity and cost remain concerning. Herein, we present a mechanistically distinct strategy for olefin dihydroxylation using nitroarenes as photoresponsive oxidants. Upon purple LEDs irradiation, these species undergo a [3+2]-photocycloaddition with a wide range of olefins to give stable 1,3,2-dioxazolidine intermediates. These species can be accumulated in solution and then reduced in situ to the desired diols, utilising readily accessible and easy to handle solid reagents as H2 surrogates.
Collapse
Affiliation(s)
- Charlotte Hampton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Marco Simonetti
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
26
|
Shen T, Li YL, Ye KY, Lambert TH. Electrophotocatalytic oxygenation of multiple adjacent C-H bonds. Nature 2023; 614:275-280. [PMID: 36473497 PMCID: PMC10436356 DOI: 10.1038/s41586-022-05608-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Oxygen-containing functional groups are nearly ubiquitous in complex small molecules. The installation of multiple C-O bonds by the concurrent oxygenation of contiguous C-H bonds in a selective fashion would be highly desirable but has largely been the purview of biosynthesis. Multiple, concurrent C-H bond oxygenation reactions by synthetic means presents a challenge1-6, particularly because of the risk of overoxidation. Here we report the selective oxygenation of two or three contiguous C-H bonds by dehydrogenation and oxygenation, enabling the conversion of simple alkylarenes or trifluoroacetamides to their corresponding di- or triacetoxylates. The method achieves such transformations by the repeated operation of a potent oxidative catalyst, but under conditions that are sufficiently selective to avoid destructive overoxidation. These reactions are achieved using electrophotocatalysis7, a process that harnesses the energy of both light and electricity to promote chemical reactions. Notably, the judicious choice of acid allows for the selective synthesis of either di- or trioxygenated products.
Collapse
Affiliation(s)
- Tao Shen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Yi-Lun Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China.
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
27
|
Yang K, Wang Y, Luo S, Fu N. Electrophotochemical Metal-Catalyzed Enantioselective Decarboxylative Cyanation. Chemistry 2023; 29:e202203962. [PMID: 36638008 DOI: 10.1002/chem.202203962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
In contrast to the rapid growth of electrophotocatalysis in recent years, enantioselective catalytic reactions powered by this unique methodology remain rare. In this work, we report an electrophotochemical metal-catalyzed protocol for direct asymmetric decarboxylative cyanation of aliphatic carboxylic acids. The synergistic merging of electrophotochemical cerium catalysis and asymmetric electrochemical copper catalysis permits mild reaction conditions for the formation and utilization of the key carbon centered radicals by combining the power of light and electrical energy. Electrophotochemical cerium catalysis enables radical decarboxylation to produce alkyl radicals, which could be effectively intercepted by asymmetric electrochemical copper catalysis for the construction of C-CN bonds in a highly stereoselective fashion. This environmentally benign method smoothly converts a diverse array of arylacetic acids into the corresponding alkyl nitriles in good yields and enantioselectivities without using chemical oxidants or pre-functionalization of the acid substrates and can be readily scaled up.
Collapse
Affiliation(s)
- Kai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
28
|
Lai XL, Chen M, Wang Y, Song J, Xu HC. Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. J Am Chem Soc 2022; 144:20201-20206. [DOI: 10.1021/jacs.2c09050] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao-Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yuqi Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jinshuai Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
29
|
Abstract
Cyclopropenium ions are the smallest class of aromatic compounds, satisfying Hückel's rules of aromaticity with two π electrons within a three-membered ring. First prepared by Breslow in 1957, cyclopropenium ions have been found to possess extraordinary stability despite being both cationic and highly strained. In the 65 years since their first preparation, cyclopropenium ions have been the subject of innumerable studies concerning their synthesis, physical properties, and reactivity. However, prior to our work, the reactivity of these unique carbocations had not been exploited for reaction promotion or catalysis.Over the past 13 years, we have been exploring aromatic ions as unique and versatile building blocks for the development of catalysts for organic chemistry. A major portion of this work has been focused on leveraging the remarkable properties of the smallest of the aromatic ions─cyclopropeniums─as a design element in the invention of highly reactive catalysts. Indeed, because of its unique profile of hydrolytic stability, compact geometry, and relatively easy oxidizability, the cyclopropenium ring has proven to be a highly advantageous construction module for catalyst invention.In this Account, we describe some of our work using cyclopropenium ions as a key element in the design of novel catalysts. First, we discuss our early work aimed at promoting dehydrative reactions, starting with Appel-type chlorodehydrations of alcohols and carboxylic acids, cyclic ether formations, and Beckmann rearrangements and culminating in the realization of catalytic chlorodehydrations of alcohols and a catalytic Mitsunobu-type reaction. Next, we describe the development of cyclopropenimines as strong, neutral organic Brønsted bases and, in particular, the use of chiral cyclopropenimines for enantioselective Brønsted catalysis. We also describe the development of higher-order cyclopropenimine superbases. The use of tris(amino)cyclopropenium (TAC) ions as a novel class of phase-transfer catalysts is discussed for the reaction of epoxides with carbon dioxide. Next, we describe the formation of a cyclopropenone radical cation that has a portion of its spin density on the oxygen atom, leading to some peculiar metal ligand behavior. Finally, we discuss recent work that employs TAC electrophotocatalysts for oxidation reactions. The key intermediate for this chemistry is a TAC radical dication, which as an open-shell photocatalyst has remarkably strong excited-state oxidizing power. We describe the application of this strategy to transformations ranging from the oxidative functionalization of unactivated arenes to the regioselective derivatization of ethers, C-H aminations, vicinal C-H diaminations, and finally aryl olefin dioxygenations. Collectively, these catalytic platforms demonstrate the utility of charged aromatic rings, and cyclopropenium ions in particular, to enable unique advances in catalysis.
Collapse
Affiliation(s)
- Rebecca M Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022; 61:e202210201. [DOI: 10.1002/anie.202210201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Deng Pan
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
31
|
Huang H, Lambert TH. Regiodivergent Electrophotocatalytic Aminooxygenation of Aryl Olefins. J Am Chem Soc 2022; 144:18803-18809. [PMID: 36194776 PMCID: PMC10405276 DOI: 10.1021/jacs.2c08951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the regiodivergent aminooxygenation of aryl olefins under electrophotocatalytic conditions is described. The procedure employs a trisaminocyclopropenium (TAC) ion catalyst with visible light irradiation under a controlled electrochemical potential to convert aryl olefins to the corresponding oxazolines with high chemo- and diastereoselectivity. With the judicious choice between two inexpensive and abundant reagents, namely water and urethane, either 2-amino-1-ol or 1-amino-2-ol derivatives could be prepared from the same substrate. This method is amenable to multigram synthesis of the oxazoline products with low catalyst loadings.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
32
|
Tu HF, Jeandin A, Suero MG. Catalytic Synthesis of Cyclopropenium Cations with Rh-Carbynoids. J Am Chem Soc 2022; 144:16737-16743. [PMID: 36074785 PMCID: PMC9501905 DOI: 10.1021/jacs.2c07769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Herein, we report the first catalytic one-step synthesis of cyclopropenium cations (CPCs) with readily available alkynes and hypervalent iodine reagents as carbyne sources. Key to the process is the catalytic generation of a novel Rh-carbynoid that formally transfers monovalent cationic carbynes (:+C-R) to alkynes via an oxidative [2+1] cycloaddition. Our process is able to synthesize a new type of CPC substituted with an ester group that underpins the regioselective attack of a broad range of carbon and heteroatomic nucleophiles, thus providing a new platform for the synthesis of valuable cyclopropenes difficult or not possible to make by current methodologies.
Collapse
Affiliation(s)
- Hang-Fei Tu
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Aliénor Jeandin
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
33
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO
2
for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207746. [DOI: 10.1002/anie.202207746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
34
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue XS, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Zhiwei Zhao
- Nankai University College of Chemistry CHINA
| | - Deng Pan
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | | | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Song Xue
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
35
|
Wang Y, Li L, Fu N. Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Park SH, Jang J, Shin K, Kim H. Electrocatalytic Radical-Polar Crossover Hydroetherification of Alkenes with Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Steve H Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jieun Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
37
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO2 for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | | | | | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
38
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
39
|
Huang H, Steiniger KA, Lambert TH. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. J Am Chem Soc 2022; 144:12567-12583. [PMID: 35816101 DOI: 10.1021/jacs.2c01914] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light photocatalysis and electrocatalysis are two powerful strategies for the promotion of chemical reactions that have received tremendous attention in recent years. In contrast, processes that combine these two modalities, an area termed electrophotocatalysis, have until recently remained quite rare. However, over the past several years a number of reports in this area have shown the potential of combining the power of light and electrical energy to realize new catalytic transformations. Electrophotocatalysis offers the ability to perform photoredox reactions without the need for large quantities of stoichiometric or superstoichiometric chemical oxidants or reductants by making use of an electrochemical potential as the electron source or sink. In addition, electrophotocatalysis is readily amenable to the generation of open-shell photocatalysts, which tend to have exceptionally strong redox potentials. In this way, potent yet selective redox reactions have been realized under relatively mild conditions. This Perspective highlights recent advances in the area of electrophotocatalysis and provides some possible avenues for future work in this growing area.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
40
|
Xiao W, Wu J. Recent advance in carbocation-catalyzed reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Feng T, Wang S, Liu Y, Liu S, Qiu Y. Electrochemical Desaturative β‐Acylation of Cyclic
N
‐Aryl Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shouzhuo Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
42
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202110491. [PMID: 34787359 PMCID: PMC9299816 DOI: 10.1002/anie.202110491] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 12/25/2022]
Abstract
The two-electron reduced forms of perylene diimides (PDIs) are luminescent closed-shell species whose photochemical properties seem underexplored. Our proof-of-concept study demonstrates that straightforward (single) excitation of PDI dianions with green photons provides an excited state that is similarly or more reducing than the much shorter-lived excited states of PDI radical monoanions, which are typically accessible after biphotonic excitation with blue photons. Thermodynamically demanding photocatalytic reductive dehalogenations and reductive C-O bond cleavage reactions of lignin model compounds have been performed using sodium dithionite acts as a reductant, either in aqueous solution or in biphasic water-acetonitrile mixtures in the presence of a phase transfer reagent. Our work illustrates the concept of multi-electron reduction of a photocatalyst by a sacrificial reagent prior to irradiation with low-energy photons as a means of generating very reactive excited states.
Collapse
Affiliation(s)
- Han Li
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
43
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Li
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
44
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Hussein AA, Ma Y, Moustafa GAI. Predominance of the second cycle in homogeneous Os-catalyzed dihydroxylation: the nature of Os( vi) → Os( viii) reoxidation and unprecedented roles of amine- N-oxides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02107a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our detailed DFT study of Os-catalyzed alkene dihydroxylation revealed that the reaction predominantly proceeds via a second cycle initiated by the formation of a putative Os(viii)trioxoglycolate as a highly reactive intermediate.
Collapse
Affiliation(s)
- Aqeel A. Hussein
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | - Yumiao Ma
- BSJ Institue, Haidian, Beijing, 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, People's Republic of China
| | - Gamal A. I. Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Chemistry, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| |
Collapse
|
46
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Huang S, Su X, Wu Y, Xiong XG, Liu Y. Promoting halogen-bonding catalyzed living radical polymerization through ion-pair strain. Chem Sci 2022; 13:11352-11359. [PMID: 36320570 PMCID: PMC9533465 DOI: 10.1039/d2sc04196k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Discovering efficient catalysts is highly desired in expanding the application of halogen-bonding catalysis. We herein report our findings on applying triaminocyclopropenium (TAC) iodides as highly potent catalysts for halogen-bonding catalyzed living radical polymerization. Promoted by the unique effect of ion-pair strain between the TAC cation and the iodide anion, the TAC iodides showed high catalytic efficiency in the halogen-bonding catalysis toward radical generation, and surpassed the previously reported organic iodide catalysts. With the TAC iodide as catalyst, radical polymerization with a living feature was successfully realized, which shows general applicability with a variety of monomers and produced block copolymers. In addition, the TAC-iodides also showed promising feasibility in catalyzing the radical depolymerization of iodo-terminated polymethacrylates. Noteworthily, the catalytic capacity of the TAC iodides is demonstrated to be closely related to the electronic properties of the TAC cation, which offers a molecular platform for further catalyst screening and optimization. Promoted by the unique effect of ion-pair strain between the triaminocyclopropenium (TAC) cation and its iodide counter-anion, the TAC iodides showed high catalytic efficiency in the halogen-bonding catalysis toward radical polymerization.![]()
Collapse
Affiliation(s)
- Shiwen Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xinjian Su
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yanzhen Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
48
|
Feng T, Wang S, Liu Y, Liu S, Qiu Y. Electrochemical Desaturative β-Acylation of Cyclic N-Aryl Amines. Angew Chem Int Ed Engl 2021; 61:e202115178. [PMID: 34878215 DOI: 10.1002/anie.202115178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Herein, we disclose a straightforward, robust, and simple route to access β-substituted desaturated cyclic amines via an electrochemically driven desaturative β-functionalization of cyclic amines. This transformation is based on multiple single-electron oxidation processes using catalytic amounts of ferrocene. The reaction proceeds in the absence of stoichiometric amounts of electrolyte under mild conditions, affording the desired products with high chemo- and regioselectivity. The reaction was tolerant of a broad range of substrates and also enables late-stage β-C(sp3 )-H acylation of potentially valuable products. Preliminary mechanistic studies using cyclic voltammetry reveal the key role of ferrocene as a redox mediator in the reaction.
Collapse
Affiliation(s)
- Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shouzhuo Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
49
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
50
|
Ranga PK, Ahmad F, Singh G, Tyagi A, Vijaya Anand R. Recent advances in the organocatalytic applications of cyclopropene- and cyclopropenium-based small molecules. Org Biomol Chem 2021; 19:9541-9564. [PMID: 34704583 DOI: 10.1039/d1ob01549d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of novel small molecule-based catalysts for organic transformations has increased noticeably in the last two decades. A very recent addition to this particular research area is cyclopropene- and cyclopropenium-based catalysts. At one point in time, particularly in the mid-20th century, much attention was focused on the structural aspects and physical properties of cyclopropene-based compounds. However, a paradigm shift was observed in the late 20th century, and the focus shifted to the synthetic utility of these compounds. In fact, a wide range of cyclopropene derivatives have been found serving as valuable synthons for the construction of carbocycles, heterocycles and other useful organic compounds. In the last few years, the catalytic applications of cyclopropene/cyclopropenium-based compounds have been uncovered and many synthetic protocols have been developed using cyclopropene-based compounds as organocatalysts. Therefore, the main objective of this review is to highlight recent developments in the catalytic applications of cyclopropene-based small molecules in different areas of organocatalysis such as phase-transfer catalysis (PTC), Brønsted base catalysis, hydrogen-bond donor catalysis, nucleophilic carbene catalysis, and electrophotocatalysis developed within the past two decades.
Collapse
Affiliation(s)
- Pavit K Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Akshi Tyagi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| |
Collapse
|