1
|
Yan XC, Tong H, Zhang NN, Gan ZK, Wang Y, Dong H, Zhang ZK, Li XW, Zhang FM. Electronic tuning of defect-rich ultrathin nitrogen-doped porous carbon nanosheets supported metal phthalocyanine catalysts for CO 2 electroreduction. J Colloid Interface Sci 2025; 696:137881. [PMID: 40381322 DOI: 10.1016/j.jcis.2025.137881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Electrocatalytic CO2 reduction (CO2RR) driven by renewable energy represents a promising technology toward carbon neutrality. Metal phthalocyanines (MPcs) exhibit promise as molecular catalysts for CO2RR, however, their practical application is hindered by intrinsic limitations: poor electrical conductivity, easy aggregation, and inadequate active sites accessibility. Herein, we report defect-rich ultrathin N-doped porous carbon nanosheets (UNPCS) synthesized via molten salt-assisted pyrolysis of two-dimensional ZIF-L, serving as an advanced substrate to immobilize molecularly dispersed MPcs. The UNPCS substrate synergistically combines carbon defects and N-dopants to tune the electronic structure of metals, while its hierarchical porosity and high specific surface area (1529.7 m2 g-1) facilitate mass transport and expose abundant active sites. The optimized CoPc@UNPCS achieves a current density of -24.7 mA cm-2 at -1.0 V vs. RHE, which is 15.3 times higher than that of pristine CoPc. The incorporation of Co/Fe diatomic sites in CoFePc@UNPCS further enhances performance, achieving a peak FECO of 95.9 % and sustaining FECO > 90 % over a broader potential range in an H-cell. Notably, an industrial-relevant current density of -222.3 mA cm-2 at -1.0 V vs. RHE over CoFePc@UNPCS was obtained in a flow cell. Density functional theory (DFT) calculations reveal that MPc@UNPCS (M = Co, Fe) lowers the energy barrier for *COOH formation while maintaining a low *CO desorption energy, thereby optimizing reaction kinetics. This work establishes a scalable synthesis strategy for diatomic site catalysts and elucidates the critical interplay between substrate engineering and electronic tuning in advancing CO2RR technologies.
Collapse
Affiliation(s)
- Xiao-Chun Yan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China; Harbin Dongsheng Metal Technology (Group) CO. LTD, Harbin 150090, PR China
| | - Hao Tong
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Nan-Nan Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Zi-Kang Gan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Hong Dong
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Zhong-Kai Zhang
- Harbin Dongsheng Metal Technology (Group) CO. LTD, Harbin 150090, PR China.
| | - Xue-Wen Li
- Nanjing Tech Univ, Key Lab Light Weight Mat, Nanjing 211816, PR China.
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| |
Collapse
|
2
|
Feng C, Zhong L. Theoretical understanding of CO 2 reduction products on nitrogen-doped graphene supported dual-atom catalysts. Phys Chem Chem Phys 2025; 27:9016-9026. [PMID: 40223774 DOI: 10.1039/d5cp00875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
In recent years, nitrogen-doped graphene supported dual-atom catalysts (DAC@NC) for the CO2 reduction reaction (CO2RR) have attracted widespread research interest. Although some DAC structures for deep reduction C1 products and C2 products have been proposed in previous theoretical calculations, the desired products are still difficult to be realized in experiments. This work systematically investigates the reaction pathways and products of CO2 reduction on bimetallic DAC@NC (M1-M2@NC, M1, M2 = Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, and Pt) by first-principles calculations. After excluding improper M1-M2@NC due to catalyst poisoning and hydrogen evolution competition, C-C coupling processes always have much higher free-energy increments than the corresponding hydrogenation, making it difficult to form multi-carbon structures. For most of the C1 intermediates on M1-M2@NC, the free-energy increments of C-C coupling are higher than 0.8 eV. Some C1 intermediates could couple with a second carbon, but this process is much more difficult than hydrogenation toward C1 products. This work reveals why C2 products are still difficult to be achieved for the CO2RR on M1-M2@NC and identifies the M1-M2 combinations for deep reduction C1 products (methane and methanol), which is inspiring for the future design of CO2RR catalysts.
Collapse
Affiliation(s)
- Chunyuan Feng
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Lixiang Zhong
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Zhang D, Liu X, Zhao Y, Zhang H, Rudnev AV, Li JF. In situ Raman spectroscopic studies of CO 2 reduction reactions: from catalyst surface structures to reaction mechanisms. Chem Sci 2025; 16:4916-4936. [PMID: 40007664 PMCID: PMC11848642 DOI: 10.1039/d5sc00569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) has gained widespread attention as an important technology for carbon cycling and sustainable chemistry. In situ Raman spectroscopy, due to its molecular structure, sensitive advantage and real-time monitoring capability, has become an effective tool for studying the reaction mechanisms and structure-performance relationships in eCO2RR. This article reviews recent advancements in the application of in situ Raman spectroscopy in eCO2RR research, focusing on its critical role in monitoring reaction intermediates, analyzing catalyst surface states, and optimizing catalyst design. Through systematic studies of different catalysts and reaction conditions, in situ Raman spectroscopy has revealed the formation and transformation pathways of various intermediates, deeply exploring their relationship with the active sites of the catalysts. Furthermore, the review discusses the integration of in situ Raman spectroscopy with other characterization techniques to achieve a more comprehensive understanding of the reaction mechanisms. Finally, we summarize the current challenges and opportunities in this research area and look ahead to the future applications of in situ Raman spectroscopy in the field of eCO2RR.
Collapse
Affiliation(s)
- Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Xuan Liu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Yu Zhao
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Hua Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences Leninsky Prospekt 31 119071 Moscow Russia
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| |
Collapse
|
4
|
Lu Y, Pang X, Li M, Liang M, Wang W, He Q, Qahramon Zarifzoda A, Chen F. In-Situ Preparation of Iron(II)-phthalocyanine@multi-Walled-CNTs Nanocomposite for Quasi-Solid-State Flexible Symmetric Supercapacitors with Long Cycling Life. CHEMSUSCHEM 2025; 18:e202401940. [PMID: 39384551 DOI: 10.1002/cssc.202401940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
The construction of supercapacitor electrode materials with exceptional performance is crucial to the commercialisation of flexible supercapacitors. Here, a novel in-situ precipitation technique was applied for constructing iron(II)-phthalocyanine (FePc) based nanocomposite as the electrode material in quasi-solid-state flexible supercapacitors. The highly redox-active FePc nanostructures were grown in the multi-walled-CNTs (MWCNTs) networks, which shows convenient electron/electrolyte ion transport pathways along with outstanding structural stability, leading to high energy storage and long cycling life. The electrode of FePc@MWCNTs delivered a higher specific capacity than that of individual MWCNTs and FePc. The quasi-solid-state symmetric flexible device that was constructed using FePc@MWCNTs electrode demonstrated impressive performance with a maximum energy density of 29.7 Wh kg-1 and a maximum power density of 4000 W kg-1. Moreover, the device demonstrated superior durability and flexibility, as evidenced by its exceptional cyclic stability (111.3 %) even after 30000 cycles at 8 A g-1. These results reveal that the FePc@MWCNTs nanocomposite prepared by this simple in-situ precipitation method is promising as electrode material for next-generation flexible wearable power sources.
Collapse
Affiliation(s)
- Yongwang Lu
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Xin Pang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Minzhang Li
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Man Liang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Wei Wang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Qinyu He
- Guangzhou Institute of Science and Technology, Guangzhou, 510540, China
| | - Afzalshoh Qahramon Zarifzoda
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Fuming Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
- S.U. Umarov Physical-Technical Institute of the National Academy of Sciences of Tajikistan, Aini Ave. 299/1, Dushanbe, 734063, Tajikistan
| |
Collapse
|
5
|
Zeng H, Zou X, Han L, Gao M, Chen Z, Liu Y, Yang M, Li B, Liu M. Advancing the Preparation Strategy of High-Performance Integrated Electrodes for eCO 2RR via Sublimation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39996510 DOI: 10.1021/acsami.4c21322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The uniform dispersion and loading of phthalocyanine molecular catalysts on conductive carbon substrates are crucial for exposing their active sites. The significant amount of solvent needed to achieve appropriate dispersion of phthalocyanine leads to the risk of reaggregation during solvent evaporation. Hence, a solventless strategy is adopted by many to bypass the use of a solvent. In this study, we showcase the deposition of transition metal phthalocyanine (TMPc) molecules onto a self-supporting conductive carbon cloth electrode using an environmentally friendly sublimation technique for efficient electrocatalytic CO2 reduction. We meticulously investigated the preparation conditions, including the heating temperature and TMPc type, to assess their impact on the CO2 reduction activity. The as-prepared CC-CoPc-450 electrode demonstrated an outstanding comprehensive performance, showcasing a remarkable maximum CO Faradaic efficiency (FECO) of 97.1% at -0.86 V with a current density of 8.3 mA cm-2. The electrode exhibited excellent stability during the 16 h long-term eCO2RR process. Density functional theory (DFT) calculations demonstrated the role of d-orbitals in TM-N4 and the synergy with π-conjugation electrons in facilitating the efficient electron transfer process in eCO2RR. This study offers a fresh perspective on the eco-friendly dispersion of TMPcs on conductive substrates and provides insights into the design of π-species macrocyclic electrocatalyst electrodes.
Collapse
Affiliation(s)
- Hao Zeng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xiangbin Zou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Liu Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Muyao Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Zhaoyu Chen
- Laboratory for Space Environment and Physical Science, Research Center of Basic SpaceScience, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, PR China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Ming Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
6
|
Sun Y, Wang C, Li H, Wang K, Bai Q, Zhang G, Feng S, Wang L, Zhu Z, Sui N. sp Carbon Disrupting Axial Symmetry of Local Electric Field for Biomimetic Construction of Three-Dimensional Geometric and Electronic Structure in Nanozyme for Sensing and Microplastic Degradation. Angew Chem Int Ed Engl 2025; 64:e202418707. [PMID: 39714432 DOI: 10.1002/anie.202418707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The catalytic efficiency of natural enzymes depends on the precise electronic interactions between active centers and cofactors within a three-dimensional (3D) structure. Single-atom nanozymes (SAzymes) attempt to mimic this structure by modifying metal active sites with molecular ligands. However, SAzymes struggle to match the catalytic efficiency of natural enzymes due to constraints in active site proximity, quantity, and the inability to simulate electron transfer processes driven by internal electronic structures of natural enzymes. This study introduces a universal spatial engineering strategy in which molecular ligands are replaced with graphdiyne (GDY) to induce d-π orbital hybridization with copper nanoparticles (Cu NPs), leading to an asymmetric electron-rich distribution along the longitudinal axis that mimics the local electric field of natural laccase. Moreover, multiple sp bonds within GDY scaffold effectively anchor Cu NPs, facilitating the construction of 3D geometric structure similar to that of natural laccase. An enzymatic activity of 82.53 U mg-1 is achieved, 4.72 times higher than that of natural laccase. By reconstructing both 3D structures and local electric fields of natural enzymes through d-π orbital hybridization, this approach enhances electron interactions between cofactors, active centers, and substrates, and offers a versatile framework for biomimetic design of nanozymes.
Collapse
Affiliation(s)
- Yujian Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Chenguang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Haoxin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Kai Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Guoli Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Shuishui Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
7
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Li J, Zhang J. Thermal transport properties of defective graphene/graphyne van der Waals heterostructures elucidated via molecular dynamics and machine learning. NANOSCALE 2024; 16:17992-18004. [PMID: 39248410 DOI: 10.1039/d4nr02120g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Two-dimensional (2D) all-carbon van der Waals (vdW) heterostructures consisting of graphene and graphyne component layers are reported to have enormous application prospects. Understanding the thermal transport properties of such graphene/graphyne (G/GY) heterostructures is critical to control their performance and stability in prospective applications. In this study, using molecular dynamics simulations and a machine learning (ML) method, we investigate the thermal conductivity of pristine G/GY heterostructures and their defective counterparts. Our simulation results show a significant reduction in the thermal conductivity of G/GY heterostructures due to the presence of vacancies, which become more aggressive as the defect concentration increases. Besides the concentration, the distribution of defects is another important factor affecting the thermal conductivity of defective G/GY heterostructures. Moreover, the defect effect on the thermal conductivity of G/GY heterostructures is majorly determined by the defect characteristics of their graphene layer. Such an impact is found to originate from the changes in both phonon scattering and heat flux. Based on the ML method together with a transfer learning strategy, we also develop a convolutional neural network that can be used to quickly and effectively predict the thermal conductivities of massive possible structures of defective G/GY heterostructures.
Collapse
Affiliation(s)
- Jian Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China.
| | - Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Wang B, Ma J, Yang R, Meng B, Yang X, Zhang Q, Zhang B, Zhuo S. Bridging Nickel-MOF and Copper Single Atoms/Clusters with H-Substituted Graphdiyne for the Tandem Catalysis of Nitrate to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202404819. [PMID: 38728151 DOI: 10.1002/anie.202404819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.
Collapse
Affiliation(s)
- Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bocheng Meng
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
10
|
Jiao Z, Song D, Wei L, Ma M, Hua W, Zheng Z, Wang M, Su Y, Ke X, Lyu F, Deng Z, Zhong J, Peng Y. Robust Electrocatalytic CO 2 Reduction in Acid Enabled by "Molecularly Charged" Cobalt Phthalocyanine: A Profound Understanding from Electric Double Layer. J Phys Chem Lett 2024; 15:7342-7350. [PMID: 38989694 DOI: 10.1021/acs.jpclett.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Electrocatalytic CO2 reduction (eCO2R) in acid holds promise in renewable electricity-powered CO2 utilization with high efficiency, but the hydrogen evolution reaction (HER) often prevails and results in a low eCO2R selectivity. Here, using cobalt phthalocyanine/Ketjen black (CoPc/KB) as the model catalysts, we systematically study the effect of active site density, operational current density, and hydrated cations on the acidic eCO2R selectivity and decipher it through the componential dynamics of electric double layer (EDL). The optimal CoPc-4/KB demonstrates a near-unity CO Faradaic efficiency from 50 to 400 mA cm-2 and superb operational stability (>120 h) at 100 mA cm-2. Aided by in situ Raman and infrared spectroscopies, we reveal that the proper cations establish an electrostatic shield for mitigating bulk H+ penetration and mediate the interfacial water structure for suppressing HER. This study should elicit further profound thinking on robust eCO2R system design from the perspective of multiphasic and dynamic EDL.
Collapse
Affiliation(s)
- Zhenyang Jiao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Daqi Song
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Le Wei
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Mutian Ma
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Wei Hua
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Zhangyi Zheng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Min Wang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Yanhui Su
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Fenglei Lyu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
11
|
Ye J, Lu J, Yuan H, Wan Z, Wan X, Tang Y, Li L, Wen D. Monodispersed Molecular Phthalocyanine with Sulfur-Driven Electron Delocalization for Enhanced Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308285. [PMID: 38353330 DOI: 10.1002/smll.202308285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Indexed: 07/05/2024]
Abstract
Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.
Collapse
Affiliation(s)
- Jianqi Ye
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziqi Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarui Tang
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lanqing Li
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
12
|
Zhang T, Jiang Z, Rappe AM. Hydrogenation of Covalent Organic Framework Induces Conjugated π Bonds and Electronic Topological Transition to Enhance Hydrogen Evolution Catalysis. J Am Chem Soc 2024; 146:15488-15495. [PMID: 38776284 DOI: 10.1021/jacs.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Recently, many topological materials have been discovered as promising electrocatalysts in chemical conversion processes and energy storage. However, it remains unclear how the topological electronic states specifically modulate the catalytic reaction. Here, the two-dimensional metal phthalocyanine-based covalent organic framework (MPc-COF) is studied by ab initio thermodynamic calculations to clearly reveal the promotional effect on the electrochemical hydrogen evolution reaction (HER) induced by topological gapless bands (TGBs). We find that the prehydrogenated (and fluorinated) H4CdPc-COF(F) shows the best HER performance, with 0.016 V (near zero) overpotential. By tracking changes to the electronic structure and free energy as the prehydrogenation and HER processes occur, we are able to separately attribute the high HER efficiency in part due to the increase of the electron bath by donating electrons to the conjugated π bonds and also to the existence of TGBs. Specifically, the significant catalytic promotion by TGBs is proven to decrease the free energy by 0.218 eV to near zero. When the TGBs are destroyed, e.g., by replacing N with P and opening a band gap, the HER efficiency is reduced. This study opens avenues for deterministically harnessing topological band features to improve electrocatalysis.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhen Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Cui X, Wu M, Liu X, He B, Zhu Y, Jiang Y, Yang Y. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts. Chem Soc Rev 2024; 53:1447-1494. [PMID: 38164808 DOI: 10.1039/d3cs00727h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cost-effective and high-efficiency catalysts play a central role in various sustainable electrochemical energy conversion technologies that are being developed to generate clean energy while reducing carbon emissions, such as fuel cells, metal-air batteries, water electrolyzers, and carbon dioxide conversion. In this context, a recent climax in the exploitation of advanced earth-abundant catalysts has been witnessed for diverse electrochemical reactions involved in the above mentioned sustainable pathways. In particular, polymer catalysts have garnered considerable interest and achieved substantial progress very recently, mainly owing to their pyrolysis-free synthesis, highly tunable molecular composition and microarchitecture, readily adjustable electrical conductivity, and high stability. In this review, we present a timely and comprehensive overview of the latest advances in organic polymers as emerging materials for powerful electrocatalysts. First, we present the general principles for the design of polymer catalysts in terms of catalytic activity, electrical conductivity, mass transfer, and stability. Then, the state-of-the-art engineering strategies to tailor the polymer catalysts at both molecular (i.e., heteroatom and metal atom engineering) and macromolecular (i.e., chain, topology, and composition engineering) levels are introduced. Particular attention is paid to the insightful understanding of structure-performance correlations and electrocatalytic mechanisms. The fundamentals behind these critical electrochemical reactions, including the oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, oxygen evolution reaction, and hydrogen oxidation reaction, as well as breakthroughs in polymer catalysts, are outlined as well. Finally, we further discuss the current challenges and suggest new opportunities for the rational design of advanced polymer catalysts. By presenting the progress, engineering strategies, insightful understandings, challenges, and perspectives, we hope this review can provide valuable guidelines for the future development of polymer catalysts.
Collapse
Affiliation(s)
- Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
14
|
Shao P, Wan YM, Yi L, Chen S, Zhang HX, Zhang J. Enhancing Electroreduction CO 2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305199. [PMID: 37775943 DOI: 10.1002/smll.202305199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Indexed: 10/01/2023]
Abstract
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.
Collapse
Affiliation(s)
- Ping Shao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu-Mei Wan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Luocai Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shumei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
15
|
Tran KM, Shim J, Lee HK, Seo S, Haldar S, Lee H. Ultrasensitive Carbon Monoxide Gas Sensor at Room Temperature Using Fluorine-Graphdiyne. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56084-56094. [PMID: 38058106 DOI: 10.1021/acsami.3c11191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Currently, most carbon monoxide (CO) gas sensors work at high temperatures of over 150 °C. Developing CO gas sensors that operate at room temperature is challenging because of the sensitivity trade-offs. Here, we report an ultrasensitive CO gas sensor at room temperature using fluorine-graphdiyne (F-GDY) in which electrons are increased by light. The GDY films used as channels of field-effect transistors were prepared by using chemical vapor deposition and were characterized by using various spectroscopic techniques. With exposure to UV light, F-GDY showed a more efficient photodoping effect than hydrogen-graphdiyne (H-GDY), resulting in a larger negative shift in the charge neutral point (CNP) to form an n-type semiconductor and an increase in the Fermi level from -5.27 to -5.01 eV. Upon CO exposure, the negatively shifted CNP moved toward a positive shift, and the electrical current decreased, indicating electron transfer from photodoped GDYs to CO. Dynamic sensing experiments demonstrated that negatively charged F-GDY is remarkably sensitive to an electron-deficient CO gas, even with a low concentration of 200 parts per billion. This work provides a promising solution for enhancing the CO sensitivity at room temperature and expanding the application of GDYs in electronic devices.
Collapse
Affiliation(s)
- Kim My Tran
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Junoh Shim
- Department of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hyung-Kun Lee
- Electronics & Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Sohyeon Seo
- Creative Research Institute (CRI), Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Surajit Haldar
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
16
|
Yan T, Li X, Wang Z, Cai Q, Zhao J. Interface engineering of transition metal-nitrogen-carbon by graphdiyne for boosting the oxygen reduction/evolution reactions: A computational study. J Colloid Interface Sci 2023; 649:1-9. [PMID: 37331105 DOI: 10.1016/j.jcis.2023.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Exploring high-efficiency electrocatalysts to boost the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is pivotal to the large-scale applications for clean and renewable energy technologies, such as fuel cells, water splitting, and metal-air batteries. Herein, by means of density functional theory (DFT) computations, we proposed a strategy to modulate the catalytic activity of transition metal-nitrogen-carbon catalysts through their interface engineering with graphdiyne (TMNC/GDY). Our results revealed that these hybrid structures exhibit good stability and excellent electrical conductivity. Especially, CoNC/GDY was identified as a promising bifunctional catalyst for ORR/OER with rather low overpotentials in acidic conditions according to the constant-potential energy analysis. Moreover, the volcano plots were established to describe the activity trend of the ORR/OER on TMNC/GDY using the adsorption strength of the oxygenated intermediates. Remarkably, the d-band center and charge transfer of the TM active sites can be utilized to correlate the ORR/OER catalytic activity and their electronic properties. Our findings not only suggested an ideal bifunctional oxygen electrocatalyst, but also provided a useful strategy to obtain highly efficient catalysts by interface engineering of two-dimensional heterostructures.
Collapse
Affiliation(s)
- Tingyu Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Zhongxu Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| |
Collapse
|
17
|
Zhou S, Zhang LJ, Zhu L, Tung CH, Wu LZ. Amphiphilic Cobalt Phthalocyanine Boosts Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300923. [PMID: 37503663 DOI: 10.1002/adma.202300923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Due to the easy accessibility, chemical stability, and structural tunability of the macrocyclic skeleton, cobalt phthalocyanines immobilized on carbon supports offer an ideal research model for advanced electrochemical carbon dioxide reduction reaction (eCO2 RR). In this work, an amphiphilic cobalt phthalocyanine (TC-CoPc) is loaded on multiwalled carbon nanotubes to reveal the roles of hydrophilic/hydrophobic properties on catalytic efficiency. Surprisingly, the resultant electrode exhibits a CO Faradaic efficiency (FECO ) of 95% for CO2 RR with turnover frequency (TOF) of 29.4 s-1 at an overpotential of 0.585 V over long-term electrolysis in a H-type cell. In the membrane electrode assembly (MEA) device, the boosted transport of water vapor to the catalyst layer slows down carbonate crystallization and enhances the stability of the electrode, with FECO value of >99% over 27 h at -0.25 A, representing the best selectivity and stability among reported molecular catalysts in MEA devices. The amphiphilic cobalt phthalocyanine, which decreases interfacial charge and mass transfer resistance and maintains effective contact between active sites and the electrolyte, highlights the exceptional CO2 conversion from a molecular perspective.
Collapse
Affiliation(s)
- Shuai Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Li-Jun Zhang
- Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Lei Zhu
- Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Chen-Ho Tung
- Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Li-Zhu Wu
- Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
18
|
Zheng X, Chen S, Li J, Wu H, Zhang C, Zhang D, Chen X, Gao Y, He F, Hui L, Liu H, Jiu T, Wang N, Li G, Xu J, Xue Y, Huang C, Chen C, Guo Y, Lu TB, Wang D, Mao L, Zhang J, Zhang Y, Chi L, Guo W, Bu XH, Zhang H, Dai L, Zhao Y, Li Y. Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research. ACS NANO 2023. [PMID: 37471703 DOI: 10.1021/acsnano.3c03849] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Danyan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonggang Jiu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300350, P. R. China
| | - Dan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering and Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials, Soochow University, Soochow 1215031, P. R. China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Ren X, Zhao J, Li X, Shao J, Pan B, Salamé A, Boutin E, Groizard T, Wang S, Ding J, Zhang X, Huang WY, Zeng WJ, Liu C, Li Y, Hung SF, Huang Y, Robert M, Liu B. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO 2 reduction to methanol. Nat Commun 2023; 14:3401. [PMID: 37296132 DOI: 10.1038/s41467-023-39153-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.
Collapse
Affiliation(s)
- Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Junming Shao
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Aude Salamé
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Etienne Boutin
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Thomas Groizard
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Shifu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiong Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen-Yang Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chengyu Liu
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Marc Robert
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France.
- Institut Universitaire de France (IUF), F-75005, Paris, France.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
20
|
Wu X, Zhao JY, Sun JW, Li WJ, Yuan HY, Liu PF, Dai S, Yang HG. Isolation of Highly Reactive Cobalt Phthalocyanine via Electrochemical Activation for Enhanced CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207037. [PMID: 36879480 DOI: 10.1002/smll.202207037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/06/2023] [Indexed: 06/08/2023]
Abstract
Electrochemical CO2 -to-CO conversion offers an attractive and efficient route to recycle CO2 greenhouse gas. Molecular catalysts, like CoPc, are proved to be possible replacement for precious metal-based catalysts. These molecules, a combination of metal center and organic ligand molecule, may evolve into single atom structure for enhanced performance; besides, the manipulation of molecules' behavior also plays an important role in mechanism research. Here, in this work, the structure evolution of CoPc molecules is investigated via electrochemical-induced activation process. After numbers of cyclic voltammetry scanning, CoPc molecular crystals become cracked and crumbled, meanwhile the released CoPc molecules migrate to the conductive substrate. Atomic-scale HAADF-STEM proves the migration of CoPc molecules, which is the main reason for the enhancement in CO2 -to-CO performance. The as-activated CoPc exhibits a maximum FECO of 99% in an H-type cell and affords a long-term durability at 100 mA cm-2 for 29.3 h in a membrane electrode assembly reactor. Density-functional theory (DFT) calculation also demonstrates a favorable CO2 activation energy with such an activated CoPc structure. This work provides a different perspective for understanding molecular catalysts as well as a reliable and universal method for practical utilization.
Collapse
Affiliation(s)
- Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ji Wei Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
21
|
Yu F, Zhou Z, You Y, Zhan J, Yao T, Zhang LH. Tuning the Hydroxyl Density of MXene to Regulate the Electrochemical Performance of Anchored Cobalt Phthalocyanine for CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24346-24353. [PMID: 37184859 DOI: 10.1021/acsami.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Precise electronic state regulation through coordination environment optimization by metal-support interaction is a promising strategy to facilitate catalysis reaction, while the limited density of functional groups in the bulk substrate restricts the regulation degree. Herein, different sizes of Ti3C2Tx MXene with hydroxyl (-OH) terminal including the MXene layer (ML-OH, 3 μm), the MXene nanosheet (MNS-OH, 600 nm), and the MXene quantum dot (MQD-OH, 8 nm) were prepared to anchor CoPc, and the effect of -OH density on the performance of electrochemical CO2 reduction was systematically investigated. Notably, a linear relationship was established by plotting reactivity vs hydroxyl density. With the highest -OH density, CoPc/MQD-OH exhibits a superior Faradaic efficiency for CO formation (FECO) of ∼100% at -0.9 to -1.0 V vs RHE and a high FECO of >90% over a wide potential window from -0.8 to -1.4 V. The mechanism exploration shows that the axial coordination interaction of the -OH terminal with Co increases the electron density of the Co site, thus promoting the adsorption and activation of CO2. This work provides a new insight into designing of molecular catalysts with high efficiency and tunable structure for other electrochemical conversions.
Collapse
Affiliation(s)
- Fengshou Yu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Zhixiang Zhou
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Yang You
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Jiayu Zhan
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Tong Yao
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Lu-Hua Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P.R. China
| |
Collapse
|
22
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
23
|
Li M, Xu J, Qi F, Wang Y, Yan C, Xu J. Facile preparation of tetrafluoro-substituted cobalt phthalocyanine nanorods attached on carbon nanotubes for efficient electrocatalytic CO2 reduction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
24
|
Zhang C, Yuan L, Liu C, Li Z, Zou Y, Zhang X, Zhang Y, Zhang Z, Wei G, Yu C. Crystal Engineering Enables Cobalt-Based Metal-Organic Frameworks as High-Performance Electrocatalysts for H 2O 2 Production. J Am Chem Soc 2023; 145:7791-7799. [PMID: 36896469 DOI: 10.1021/jacs.2c11446] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Metal-organic frameworks (MOFs) with highly adjustable structures are an emerging family of electrocatalysts in two-electron oxygen reduction reaction (2e-ORR) for H2O2 production. However, the development of MOF-based 2e-ORR catalysts with high H2O2 selectivity and production rate remains challenging. Herein, an elaborate design with fine control over MOFs at both atomic and nano-scale is demonstrated, enabling the well-known Zn/Co bimetallic zeolite imidazole frameworks (ZnCo-ZIFs) as excellent 2e-ORR electrocatalysts. Experimental results combined with density functional theory simulation have shown that the atomic level control can regulate the role of water molecules participating in the ORR process, and the morphology control over desired facet exposure adjusts the coordination unsaturation degree of active sites. The structural regulation at two length scales leads to synchronous control over both the kinetics and thermodynamics for ORR on bimetallic ZIF catalysts. The optimized ZnCo-ZIF with a Zn/Co molar ratio of 9/1 and predominant {001} facet exposure exhibits a high 2e- selectivity of ∼100% and a H2O2 yield of 4.35 mol gcat-1 h-1. The findings pave a new avenue toward the development of multivariate MOFs as advanced 2e-ORR electrocatalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zimeng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zhiqiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Li Y, Ren L, Li Z, Wang T, Wu Z, Wang Z. Harnessing Nickel Phthalocyanine-Based Electrochemical CNT Sponges for Ammonia Synthesis from Nitrate in Contaminated Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53884-53892. [PMID: 36420862 DOI: 10.1021/acsami.2c16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical reduction of nitrate to ammonia is of great interest in water treatment with regard to the conversion of contaminants to value-added products, which requires the development of advanced electrodes to achieve high selectivity, stability, and Faradaic efficiency (FE). Herein, nickel phthalocyanine was homogeneously doped into the fiber of a carbon nanotube (CNT) sponge, enabling the production of an electrode with high electrochemical double-layer capacitance (CDL) and a large electrochemically active surface area (ECSA). The as-prepared NiPc-CNT sponge could achieve 97.6% nitrate removal, 88.4% ammonia selectivity, and 86.8% FE at a nitrate concentration of 50 mg-N L-1 under an optimized potential of -1.2 V (vs Ag/AgCl). Meanwhile, the ammonia selectivity could be further improved at the high nitrate concentration. Density functional theory calculations showed that the exposure of Ni-N4 active sites could effectively suppress the hydrogen evolution reaction and dinitrogen generation, enhancing the ammonia selectivity and Faradaic efficiency. Overall, this work sheds light on the conversion of nitrate to ammonia on the metal phthalocyanine-based electrode, offering a novel strategy for managing nitrate in wastewater.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| |
Collapse
|
26
|
Kong X, Liu G, Tian S, Bu S, Gao Q, Liu B, Lee CS, Wang P, Zhang W. Coupling Cobalt Phthalocyanine Molecules on 3D Nitrogen-Doped Vertical Graphene Arrays for Highly Efficient and Robust CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204615. [PMID: 36319471 DOI: 10.1002/smll.202204615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metallic phthalocyanines (MePcs) have shown their potential as catalysts for CO2 reduction reactions (CO2 RR). However, their low conductivity, easy agglomeration, and poor stability enslave the further progress of their CO2 RR applications. Herein, an integrated heterogeneous molecular catalyst through anchoring CoPc molecules on 3D nitrogen-doped vertical graphene arrays (NVG) on carbon cloth (CC) is reported. The CoPc-NVG/CC electrodes exhibit superior performance for reducing CO2 to CO with a Faradic efficiency of above 97.5% over a wide potential range (99% at an optimal potential), a very high turnover frequency of 35800 h-1 , and decent stability. It is revealed that NVG interacts with CoPc to form highly efficient channels for electron transfer from NVG to CoPc, facilitating the Co(II)/Co(I) redox of CO2 reduction. The strong coupling effect between NVG and CoPc molecules not only endows CoPc with high intrinsic activity for CO2 RR, but also enhances the stability of electrocatalysts under high potentials. This work paves an efficient approach for developing high-performance heterogeneous catalysts by using rationally designed 3D integrated graphene arrays to host molecular metallic phthalocyanines so as to ameliorate their electronic structures and engineer stable active sites.
Collapse
Affiliation(s)
- Xin Kong
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guiyang Liu
- Lab of New Materials for Power Sources, Honghe University, Mengzi, 661100, China
| | - Suan Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shuyu Bu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qili Gao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100089, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
27
|
Polyaniline Anchoring Environment Facilitates Highly Efficient CO2 Electroreduction of Cobalt Phthalocyanine over a Wide Potential Window. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Gu H, Shi G, Zhong L, Liu L, Zhang H, Yang C, Yu K, Zhu C, Li J, Zhang S, Chen C, Han Y, Li S, Zhang L. A Two-Dimensional van der Waals Heterostructure with Isolated Electron-Deficient Cobalt Sites toward High-Efficiency CO 2 Electroreduction. J Am Chem Soc 2022; 144:21502-21511. [DOI: 10.1021/jacs.2c07601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huoliang Gu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Guoshuai Shi
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Honghao Zhang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Chunlei Yang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Ke Yu
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Chenyuan Zhu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Liming Zhang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| |
Collapse
|
29
|
Sun X, Duan M, Li R, Meng Y, Bai Q, Wang L, Liu M, Yang Z, Zhu Z, Sui N. Ultrathin Graphdiyne/Graphene Heterostructure as a Robust Electrochemical Sensing Platform. Anal Chem 2022; 94:13598-13606. [PMID: 36124415 DOI: 10.1021/acs.analchem.2c03387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Graphdiyne (GDY) has been considered as an appealing electrode material for electrochemical sensing because of its alkyne-rich structure and high degrees of π-conjugation, which shows great affinity to heavy metal ions and pollutant molecules via d-π and π-π interactions. However, the low surface area and poor conductivity of bulk GDY limit its electrochemical performance. Herein, a two-dimensional ultrathin GDY/graphene (GDY/G) nanostructure was synthesized and used as an electrode material for electrochemical sensing. Graphene plays the role of an epitaxy template for few-layered GDY growth and conductive layers. The formed few-layered GDY with a high surface area possesses abundant affinity sites toward heavy metal ions (Cd2+, Pb2+) and toxic molecules, for example, nitrobenzene and 4-nitrophenol, via d-π and π-π interactions, respectively. Moreover, hemin as a key part of the enzyme catalytic motif was immobilized on GDY/G via π-π interactions. The artificial enzyme mimic hemin/GDY/G-modified electrode exhibited promising ascorbic acid and uric acid detection performance with excellent sensitivity and selectivity, a good linear range, and reproducibility. More importantly, real sample detection and the feasibility of this electrochemical sensor as a wearable biosensor were demonstrated.
Collapse
Affiliation(s)
- Xiuchao Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Menglu Duan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Rongteng Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yuan Meng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Manhong Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43 0AL, United Kingdom
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
30
|
Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat Commun 2022; 13:5227. [PMID: 36064713 PMCID: PMC9445080 DOI: 10.1038/s41467-022-32937-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hexahedral Rh nanocrystals. Experimental results reveal the formation of stable sp-C~Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.
Collapse
|
31
|
Narendra Kumar AV, Muthu Prabhu S, Shin WS, Yadav KK, Ahn Y, Abdellattif MH, Jeon BH. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Chang Q, Liu Y, Lee JH, Ologunagba D, Hwang S, Xie Z, Kattel S, Lee JH, Chen JG. Metal-Coordinated Phthalocyanines as Platform Molecules for Understanding Isolated Metal Sites in the Electrochemical Reduction of CO 2. J Am Chem Soc 2022; 144:16131-16138. [PMID: 36007154 DOI: 10.1021/jacs.2c06953] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Single-atom catalysts (SACs) of non-precious transition metals (TMs) often show unique electrochemical performance, including the electrochemical carbon dioxide reduction reaction (CO2RR). However, the inhomogeneity in their structures makes it difficult to directly compare SACs of different TM for their CO2RR activity, selectivity, and reaction mechanisms. In this study, the comparison of isolated TMs (Fe, Co, Ni, Cu, and Zn) is systematically investigated using a series of crystalline molecular catalysts, namely TM-coordinated phthalocyanines (TM-Pcs), to directly compare the intrinsic role of the TMs with identical local coordination environments on the CO2RR performance. The combined experimental measurements, in situ characterization, and density functional theory calculations of TM-Pc catalysts reveal a TM-dependent CO2RR activity and selectivity, with the free energy difference of ΔG(*HOCO) - ΔG(*CO) being identified as a descriptor for predicting the CO2RR performance.
Collapse
Affiliation(s)
- Qiaowan Chang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yumeng Liu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ju-Hyeon Lee
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Damilola Ologunagba
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.,Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shyam Kattel
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Ji Hoon Lee
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.,School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.,Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
33
|
Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Yang Y, Yang Z, Zhang C, Zhou J, Liu S, Cao Q. Single-Atom Catalysts Supported on the Graphene/Graphdiyne Heterostructure for Effective CO 2 Electroreduction. Inorg Chem 2022; 61:12012-12022. [PMID: 35862301 DOI: 10.1021/acs.inorgchem.2c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical reduction of CO2 to high-energy chemicals is a promising strategy for achieving carbon-neutral energy circulation. However, designing high-performance electrocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. In this work, by means of density functional theory calculations, we systematically investigate the transition metal (TM) anchored on the nitrogen-doped graphene/graphdiyne heterostructure (TM-N4@GRA/GDY) as a single-atom catalyst for CO2 electroreduction applications. The computational results show that Co-N4@GRA/GDY exhibits remarkable activity with a low limiting potential of -0.567 V for the reduction of CO2 to CH4. When the charged Co-N4@GRA/GDY system is immersed in a continuum solvent, the reaction barrier decreases to 0.366 eV, which is ascribed to stronger electron transfer between GDY and transition metal atoms in the GRA/GDY heterostructure. In addition, the GRA/GDY heterostructure system significantly weakens the linear scaling relationship between the adsorption free energy of key CO2 reduction intermediates, which leads to a catalytic activity that is higher than that of the single-GRA system and thus greatly accelerates the CO2RR. The electronic structure analysis reveals that the appropriate d-π interaction will affect the d orbital electron distribution, which is directly relevant to the selectivity and activity of catalysis. We hope these computational results not only provide a potential electrocatalyst candidate but also open up an avenue for improving the catalytic performance for efficient electrochemical CO2RR.
Collapse
Affiliation(s)
- Yun Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Ziqian Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Canyu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jiao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| |
Collapse
|
35
|
In Operando Identification of In Situ Formed Metalloid Zinc
δ+
Active Sites for Highly Efficient Electrocatalyzed Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2022; 61:e202202298. [DOI: 10.1002/anie.202202298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 01/16/2023]
|
36
|
Sun Q, Jia C, Zhao Y, Zhao C. Single atom-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Shi G, Xie Y, Du L, Fu X, Chen X, Xie W, Lu T, Yuan M, Wang M. Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO
2
Reduction to CH
4. Angew Chem Int Ed Engl 2022; 61:e202203569. [DOI: 10.1002/anie.202203569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Guodong Shi
- College of Science Henan University of Technology Zhengzhou 450001 China
| | - Yunlong Xie
- Institute of Advanced Materials Hubei Normal University Huangshi 435002 China
| | - Lili Du
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xinliang Fu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaojie Chen
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Wangjing Xie
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Tong‐Bu Lu
- School of Materials Science and Engineering Institute for New Energy Materials & Low Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Mei Wang
- School of Materials Science and Engineering Institute for New Energy Materials & Low Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
38
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
39
|
Lyu F, Hua W, Wu H, Sun H, Deng Z, Peng Y. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Frustrated Lewis pairs in situ formation in B-based porous aromatic frameworks for efficient o-phenylenediamine cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Xu H, Xu G, Chen L, Shi J. Self-Co-Electrolysis for Co-Production of Phosphate and Hydrogen in Neutral Phosphate Buffer Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200058. [PMID: 35262982 DOI: 10.1002/adma.202200058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The spontaneous reaction between Zn and H2 O is of critical importance and could plausibly be used to produce H2 gas, especially under neutral conditions. However, this reaction has long been overlooked owing to its sluggish kinetics and Zn consumption. Herein, a unique self-co-electrolysis system (SCES) is reported, which uses a Zn anode, a CoP-based catalytic cathode, and a neutral phosphate buffer solution (PBS) as the electrolyte. In this SCES, Zn is not only a sacrificial anode but also an important precursor of high-value-added NaZnPO4 . Additionally, the composition and phase structure of NaZnPO4 can be well regulated. In this study, a high-performance N,Cu-CoP/carbon cloth (CC) catalyst is synthesized to catalyze the cathodic hydrogen evolution reaction (HER) at an especially low overpotential of 64.7 mV at 10 mA cm- 2 . H2 gas (13.7 mL cm- 2 h- 1 ) and NaZnPO4 (3.73 mg cm- 2 h- 1 ) are obtained at the cathode and anode, respectively, in the N,Cu-CoP/CC||Zn SCES spontaneously. Moreover, the SCES has a favorable open-circuit voltage (OCV) of 0.79 V and a maximum power density of 1.83 mW cm- 2 . Density functional theory (DFT) calculations are performed to elucidate the electronic structure and HER catalytic mechanism of the N and Cu co-doped CoP catalysts.
Collapse
Affiliation(s)
- Heng Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Guanxing Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ding-xi Road 1295, Shanghai, 200050, P. R. China
| |
Collapse
|
42
|
Du Y, Zheng X, Xue Y, Li Y. Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Zhang XY, Li WJ, Chen J, Wu XF, Liu YW, Mao F, Yuan HY, Zhu M, Dai S, Wang HF, Hu P, Sun C, Liu PF, Yang H. Operando Metalloid Znδ+ Active Sites for Highly Efficient Carbon Dioxide Reduction Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Yu Zhang
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Wen Jing Li
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jiacheng Chen
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Xue Feng Wu
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Yuan Wei Liu
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Fangxin Mao
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Hai Yang Yuan
- East China University of Science and Technology School of Materials Science and Engineering CHINA
| | - Minghui Zhu
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Sheng Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Hai Feng Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - P. Hu
- Queen's University Belfast School of Chemistry and Chemical Engineering UNITED KINGDOM
| | - Chenghua Sun
- Swinburne University of Technology Department of Chemistry and Biotechnology AUSTRALIA
| | - Peng Fei Liu
- East China University of Science and Technology School of Materials Science and Engineering 130 Meilong Road, Xuhui District, Shanghai 200237 Shanghai CHINA
| | - Huagui Yang
- East China University of Science and Technology School of Materials Science and Engineering Road Meilong 130 200237 Shanghai CHINA
| |
Collapse
|
44
|
Gou Z, Qu H, Liu H, Ma Y, Zong L, Li B, Xie C, Li Z, Li W, Wang L. Coupling of N-Doped Mesoporous Carbon and N-Ti 3 C 2 in 2D Sandwiched Heterostructure for Enhanced Oxygen Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106581. [PMID: 35229469 DOI: 10.1002/smll.202106581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
2D heterostructures provide a competitive platform to tailor electrical property through control of layer structure and constituents. However, despite the diverse integration of 2D materials and their application flexibility, tailoring synergistic interlayer interactions between 2D materials that form electronically coupled heterostructures remains a grand challenge. Here, the rational design and optimized synthesis of electronically coupled N-doped mesoporous defective carbon and nitrogen modified titanium carbide (Ti3 C2 ) in a 2D sandwiched heterostructure, is reported. First, a F127-polydopamine single-micelle-directed interfacial assembly strategy guarantees the construction of two surrounding mesoporous N-doped carbon monolayers assembled on both sides of Ti3 C2 nanosheets. Second, the followed ammonia post-treatment successfully introduces N elements into Ti3 C2 structure and more defective sites in N-doped mesoporous carbon. Finally, the oxygen reduction reaction (ORR) and theoretical calculation prove the synergistic coupled electronic effect between N-Ti3 C2 and defective N-doped carbon active sites in the 2D sandwiched heterostructure. Compared with the control 2D samples (0.87-0.88 V, 4.90-5.15 mA cm-2 ), the coupled 2D heterostructure possesses the best onset potential of 0.90 V and limited density current of 5.50 mA cm-2 . Meanwhile, this catalyst exhibits superior methanol tolerance and cyclic durability. This design philosophy opens up a new thought for tailoring synergistic interlayer interactions between 2D materials.
Collapse
Affiliation(s)
- Zhaolin Gou
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huiqi Qu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
| | - Hanfang Liu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yiru Ma
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lingbo Zong
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bin Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai, Shanghai, 200433, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao, 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
45
|
Yuan M, Shi G, Xie Y, Du L, Fu X, Chen X, Xie W, Lu TB, Wang M. Constructing Cu‐C Bond in Graphdiyne‐Regulated Cu Single Atom Electrocatalyst for CO2 Reduction to CH4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjian Yuan
- Nankai University College of Chemistry College of Chemistry Weijin Road 94, Nankai District 300071 Tianjin CHINA
| | - Guodong Shi
- Henan University of Technology College of Science 请选择 CHINA
| | - Yunlong Xie
- Hubei Normal University Institute of Advanced Materials CHINA
| | - Lili Du
- Nankai University college of Chemistry CHINA
| | - Xinliang Fu
- Nankai University college of Chemistry CHINA
| | | | | | - Tong-Bu Lu
- Tianjin University of Technology school of materials science and engineering CHINA
| | - Mei Wang
- Tianjin University of Technology school of materials science and engineering CHINA
| |
Collapse
|
46
|
Abstract
As a new member of carbon allotropes, graphdiyne (GDY) has the characteristics of being one-atom-thick with two-dimensional layers comprising sp and sp2 hybridized carbon atoms, and represents a trend in the development of carbon materials. Its unique chemical and electronic structures give GDY many unique and fascinating properties such as rich chemical bonds, highly conjugated and super-large π structures, infinitely distributed pores and high inhomogeneity of charge distribution. GDY has entered a period of rapid development, especially with the significant emergence of fundamental research and applied research achievements over the past five years. As one of the frontiers of chemistry and materials science, graphdiyne was listed in the Top 10 research areas in the 2020 Research Frontiers report and was jointly released in the Top 10 in the world by Clarivate and the Chinese Academy of Sciences. The research results have shown the great potential of GDY in the applications of energy, catalysis, environmental science, electronic devices, detectors, biomedicine and therapy, etc. Scientists are eager to explore and fully reveal the new properties, discover new scientific concepts and phenomena, discover the new conversion modes and mechanisms of GDY in photoelectricity, energy, and catalysis, etc., and build the important scientific value of new conversion devices. This review covers research on the foundation and application of GDY, such as the controlled preparation of new methods of GDY and GDY-based materials, studies on new mechanisms and properties in chemistry and physics, and the foundation and applications in energy, catalysis, photoelectric and devices.
Collapse
Affiliation(s)
- Yan Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuxin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
47
|
Niu K, Zuo Z, Lu X, Zou L, Chen J. Ultrathin graphdiyne nanosheets confining Cu quantum dots as robust electrocatalyst for biosensing featuring remarkably enhanced activity and stability. Biosens Bioelectron 2022; 205:114111. [PMID: 35219022 DOI: 10.1016/j.bios.2022.114111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
There is an urgent need for developing electrochemical biosensor based on the acetylcholinesterase (AChE) inhibition to real-time analysis of organophosphorus pesticides (OPs), but it is suffered from the sluggish electrode kinetics and high oxidation potential toward signal species. Herein, a nanocomposite of ultrafine Cu quantum dots (QD) uniformly loaded on three-dimensional ultrathin graphdiyne (GDY) nanosheets (denoted as Cu@GDY) was synthesized via a one-step strategy, which showing high-density of active sites with persistent stability. Then an AChE biosensor based on Cu@GDY was fabricated to detect OPs, and the results revealed that the Cu@GDY nanocomposite can significantly amplifies electrochemical signal and reduces the oxidation potential for OPs. The strong interaction between active site of Cu@GDY and thiocholine signal species caused rapid analyte aggregation and decreased the reaction activation energy of thiocholine electro-oxidation. Benefiting from the excellent catalytic activity of Cu@GDY nanocomposite and reasonable regulation of enzyme inhibition kinetics, the biosensor achieved rapid and sensitive detection of OPs with a detection limit of 1 μg L-1 for paraoxon. Furthermore, the biosensor demonstrated great reproducibility, good stability and high recovery rate for OPs detection in real samples. Cu@GDY based sensor also displayed high catalytic activities and good selectivity to the non-enzymatic detection of glucose in alkaline medium. Cu@GDY offers a versatile and promising platform for sensors and biosensors featuring remarkably enhanced activity and stability, and can be applied to many other fields as desirable electrocatalyst.
Collapse
Affiliation(s)
- Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.
| | - Lili Zou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
48
|
Zhang Y, Zhou Q, Wang P, Zhao Y, Gong F, Sun WY. Hydroxy-Group-Functionalized Single Crystal of Copper(II)-Porphyrin Complex for Electroreduction CO 2 to CH 4. CHEMSUSCHEM 2022; 15:e202102528. [PMID: 35023312 DOI: 10.1002/cssc.202102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Purposefully developing crystalline materials at molecular level to improve the selectivity of electroreduction CO2 to CH4 is still rarely studied. Herein, a single crystal of copper(II) complex with hydroxy groups was designed and synthesized, namely 5,10,15,20-tetrakis(3,4-dihydroxyphenyl)porphyrin copper(II) (Cu-PorOH), which could serve as a highly efficient heterogeneous electrocatalyst for electroreduction of CO2 toward CH4 . In 0.5 m KHCO3 , Cu-PorOH gave a high faradaic efficiency of 51.3 % for CH4 and drove a partial current density of 23.2 mA cm-2 at -1.5 V versus the reversible hydrogen electrode in H-cell. The high performance was greatly promoted by the hydroxy groups in Cu-PorOH, which could not only form stable three-dimensional frameworks through hydrogen-bonding interactions but also stabilize the intermediate species by hydrogen bonds, as supported by density functional theory calculations. This work provides an effective avenue in exploring crystalline catalysts for CO2 reduction at molecular level.
Collapse
Affiliation(s)
- Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qiang Zhou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
49
|
Ahsan MA, He T, Noveron JC, Reuter K, Puente-Santiago AR, Luque R. Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chem Soc Rev 2022; 51:812-828. [PMID: 35022644 DOI: 10.1039/d1cs00498k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low dimensional electrocatalytic heterostructures have recently attracted significant attention in the catalysis community due to their highly tuneable interfaces and exciting electronic features, opening up new possibilities for effective nanometric control of both the charge carriers and energetic states of several intermediate catalytic species. In-depth understanding of electrocatalytic routes at the interface between two or more low-dimensional nanostructures has triggered the development of heterostructure nanocatalysts with extraordinary properties for water splitting reactions, NRR and CO2RR. This tutorial review provides an overview of the most recent advances in synthetic strategies for 0D-1D, 0D-2D, and 2D-2D nanoheterostructures, discussing key aspects of their electrocatalytic performances from experimental and computational perspectives as well as their applications towards the development of overall water splitting and Zn-air battery devices.
Collapse
Affiliation(s)
- Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Tianwei He
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Juan C Noveron
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. .,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Alain R Puente-Santiago
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia
| |
Collapse
|
50
|
Wang W, Zhang K, Xu T, Yao Y. Local environment-mediated efficient electrocatalysis of CO 2 to CO on Zn nanosheets. Dalton Trans 2022; 51:17081-17088. [DOI: 10.1039/d2dt03112d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polytetrafluoroethylene-modified Zn nanosheets inhibit the hydrogen evolution reaction and then enhance the selectivity for electrochemical CO2-to-CO conversion.
Collapse
Affiliation(s)
- Wenyuan Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kai Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tao Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|