1
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Liu YG, Zhong Z, Tang Y, Wang H, Vummaleti SVC, Peng X, Peng P, Zhang X, Chi YR. Carbene-catalyzed chirality-controlled site-selective acylation of saccharides. Nat Commun 2025; 16:54. [PMID: 39746955 PMCID: PMC11697312 DOI: 10.1038/s41467-024-55282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated. Our investigation reveals that this intriguing selectivity shift stems from a combination of factors, including chirality match/mismatch and inter- / intramolecular hydrogen bonding between the NHC catalyst and saccharide substrates. These findings provide valuable insights into catalyst design and reaction engineering, highlighting potential applications in glycoside analysis, such as fluorescent labelling, α/β identification, orthogonal reactions, and selective late-stage modifications.
Collapse
Affiliation(s)
- Ying-Guo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
- Pingyuan laboratory, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zetao Zhong
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuyang Tang
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongling Wang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Sai Vikrama Chaitanya Vummaleti
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Xi Peng
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Peng Peng
- National Glycoengineering Research Centre, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Jinan, 250100, PR China
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
3
|
Yang W, Ramadan S, Zu Y, Sun M, Huang X, Yu B. Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages. Nat Prod Rep 2024; 41:1403-1440. [PMID: 38888170 DOI: 10.1039/d4np00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.
Collapse
Affiliation(s)
- Weizhun Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Yan Zu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Mengxia Sun
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
5
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
6
|
Zhao J, Ye F, Huang P, Wang P. Recent advances in chemical synthesis of O-linked glycopeptides and glycoproteins: An advanced synthetic tool for exploring the biological realm. Curr Opin Chem Biol 2023; 77:102405. [PMID: 37897925 DOI: 10.1016/j.cbpa.2023.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Glycoproteins play crucial roles in various biological processes. To investigate the relationship between glycan structure and function, researchers have employed various chemical methods to precisely synthesize homogeneous O-glycoproteins. This review summarizes the recent progress of their synthetic strategies, highlighting the significant advancements in this area.
Collapse
Affiliation(s)
- Jie Zhao
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen, 518057, China
| | - Farong Ye
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Huang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ping Wang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Wei T, Liu J, Li C, Tan Y, Wei R, Wang J, Wu H, Li Q, Liu H, Tang Y, Li X. Revealing the extracellular function of HMGB1 N-terminal region acetylation assisted by a protein semi-synthesis approach. Chem Sci 2023; 14:10297-10307. [PMID: 37772093 PMCID: PMC10530822 DOI: 10.1039/d3sc01109g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jinzheng Wang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Qingrong Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
8
|
Lin S, Mo Z, Wang P, He C. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis. J Am Chem Soc 2023. [PMID: 37470345 DOI: 10.1021/jacs.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
With the growing popularity of serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) in chemical protein synthesis, facile and general approaches for the preparation of peptide salicylaldehyde (SAL) esters are urgently needed, especially those viable for obtaining expressed protein SAL esters. Herein, we report the access of SAL ester surrogates from peptide hydrazides (obtained either synthetically or recombinantly) via nitrite oxidation and phenolysis by 3-(1,3-dithian-2-yl)-4-hydroxybenzoic acid (SAL(-COOH)PDT). The resulting peptide SAL(-COOH)PDT esters can be activated to afford the reactive peptide SAL(-COOH) esters for subsequent STL/CPL. While being operationally simple for both synthetic peptides and expressed proteins, the current strategy facilitates convergent protein synthesis and combined application of STL with NCL. The generality of the strategy is showcased by the N-terminal ubiquitination of the growth arrest and DNA damage-inducible protein (Gadd45a), the efficient synthesis of ubiquitin-like protein 5 (UBL-5) via a combined N-to-C NCL-STL strategy, and the C-to-N semisynthesis of a myoglobin (Mb) variant.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Wu H, Tan Y, Ngai WL, Li X. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chem Sci 2023; 14:1582-1589. [PMID: 36794182 PMCID: PMC9906654 DOI: 10.1039/d2sc05660g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Chemical synthesis of hydrophobic proteins presents a formidable task as they are often difficultly achieved via peptide synthesis, purification, and peptide ligation. Thus, peptide solubilizing strategies are needed to integrate with peptide ligation to achieve protein total synthesis. Herein, we report a tunable backbone modification strategy, taking advantage of the tunable stability of the Cys/Pen ligation intermediate, which allows for readily introducing a solubilizing tag for both peptide purification and ligation processes. The effectiveness of this strategy was demonstrated by the chemical synthesis of interleukin-2.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
10
|
Wu H, Wei T, Ngai WL, Zhou H, Li X. Ligation Embedding Aggregation Disruptor Strategy Enables the Chemical Synthesis of PD-1 Immunoglobulin and Extracellular Domains. J Am Chem Soc 2022; 144:14748-14757. [PMID: 35918891 DOI: 10.1021/jacs.2c05350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chemical synthesis of proteins with aggregable or colloidal peptide segments presents a formidable task, as such peptides prove to be difficult for both solid-phase peptide synthesis and peptide ligation. To address this issue, we have developed ligation embedding aggregation disruptor (LEAD) as an effective strategy for the chemical synthesis of difficult-to-obtain proteins. The N,O/S-benzylidene acetals generated from Ser/Thr ligation and Cys/Pen ligation are found to effectively disrupt peptide aggregation, and they can be carried for sequential ligations toward protein synthesis. The effectiveness and generality of this strategy have been demonstrated with total syntheses of programmed cell death protein 1 immunoglobulin like V-type domain and extracellular domain.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
11
|
Li T, Zhang Y, Li T, Zhuang H, Wang F, Wang N, Schmidt RR, Peng P. Divergent Synthesis of Core m1, Core m2 and Core m3
O
‐Mannosyl
Glycopeptides via a Chemoenzymatic Approach. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Haoru Zhuang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | | | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
12
|
Hossain F, Nishat S, Andreana PR. Synthesis of malformin‐A
1
, C, a glycan, and an aglycon analog: Potential scaffolds for targeted cancer therapy. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering University of Toledo Toledo Ohio USA
| | - Sharmeen Nishat
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering University of Toledo Toledo Ohio USA
- Department of Chemistry Bangladesh University of Engineering & Technology (BUET) Dhaka Bangladesh
| | - Peter R. Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering University of Toledo Toledo Ohio USA
| |
Collapse
|
13
|
Li Y, Heng J, Sun D, Zhang B, Zhang X, Zheng Y, Shi WW, Wang TY, Li JY, Sun X, Liu X, Zheng JS, Kobilka BK, Liu L. Chemical Synthesis of a Full-Length G-Protein-Coupled Receptor β 2-Adrenergic Receptor with Defined Modification Patterns at the C-Terminus. J Am Chem Soc 2021; 143:17566-17576. [PMID: 34663067 DOI: 10.1021/jacs.1c07369] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The β2-adrenergic receptor (β2AR) is a G-protein-coupled receptor (GPCR) that responds to the hormone adrenaline and is an important drug target in the context of respiratory diseases, including asthma. β2AR function can be regulated by post-translational modifications such as phosphorylation and ubiquitination at the C-terminus, but access to the full-length β2AR with well-defined and homogeneous modification patterns critical for biochemical and biophysical studies remains challenging. Here, we report a practical synthesis of differentially modified, full-length β2AR based on a combined native chemical ligation (NCL) and sortase ligation strategy. An array of homogeneous samples of full-length β2ARs with distinct modification patterns, including a full-length β2AR bearing both monoubiquitination and octaphosphorylation modifications, were successfully prepared for the first time. Using these homogeneously modified full-length β2AR receptors, we found that different phosphorylation patterns mediate different interactions with β-arrestin1 as reflected in different agonist binding affinities. Our experiments also indicated that ubiquitination can further modulate interactions between β2AR and β-arrestin1. Access to full-length β2AR with well-defined and homogeneous modification patterns at the C-terminus opens a door to further in-depth mechanistic studies into the structure and dynamics of β2AR complexes with downstream transducer proteins, including G proteins, arrestins, and GPCR kinases.
Collapse
Affiliation(s)
- Yulei Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jie Heng
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Demeng Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Baochang Zhang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei-Wei Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tong-Yue Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiu-Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoou Sun
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Sun Z, Li X. Studies on
2‐Formylphenylboronic Acid‐Based
Ser/Thr Ligation and Cys/Pen Ligation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR 999077 China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|