1
|
Rana G, Das S, Singha PK, Ali F, Maji R, Datta A. The effect of Cu(I)-doping on the photoinduced electron transfer from aqueous CdS quantum dots. J Chem Phys 2024; 161:024705. [PMID: 38990118 DOI: 10.1063/5.0218548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The doping of CdS quantum dots (QDs) with Cu(I) disrupts electron-hole correlation due to hole trapping by the dopant ion, post-photoexcitation. The present paper examines the effect of such disruption on the rate of photoinduced electron transfer (PET) from the QDs to methyl viologen (MV2+), with implications in their photocatalytic activity. A significantly greater efficiency of PL quenching by MV2+ is observed for the doped QDs than for the undoped ones. Interestingly, the Stern-Volmer plots constructed using PL intensities exhibit an upward curvature for both the cases, while the PL lifetimes remain unaffected. This observation is rationalized by considering the adsorption of the quencher on the surface of the QDs and ultrafast PET post-photoexcitation. Ultrafast transient absorption experiments confirm a faster electron transfer for the doped QDs. It is also realized that the transient absorption experiment yields a more accurate estimate of the binding constant of the quencher with the QDs, than the PL experiment.
Collapse
Affiliation(s)
- Gourab Rana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohan Maji
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Feng P, Wu J, Fan Z, Ma B, Li Y, Meng X, Ding Y. Boosting photocatalytic conversion of formic acid to CO over P-doped CdS. Chem Commun (Camb) 2023; 59:14253-14256. [PMID: 37991269 DOI: 10.1039/d3cc04586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In this work, NaH2PO2, Na2S2O3 and CdCl2 were used to synthesize P-doped CdS samples for the photocatalytic decomposition of formic acid to CO reaction. The CO production rates and selectivity of P-doped CdS are as high as 24.5 mmol g-1 h-1 and 92.4%, in which the rate is 7 times higher than that of the pure CdS. Multiple characterizations show that the P-doping increases the specific surface area, widens the band gap and shifts the energy band position of CdS, resulting in enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| | - Junhao Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| | - Zimeng Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| | - Baochun Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| | - Yuanyuan Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, No. 9 Xuefu Avenue, Chongqing 400067, China.
| | - Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, 666 Zijing Mountain South Road, Zhengzhou, 450006, China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhao HB, Huang JN, Qin Q, Chen HY, Kuang DB. In Situ Loading of Cu Nanocrystals on CsCuCl 3 for Selective Photoreduction of CO 2 to CH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302022. [PMID: 37461242 DOI: 10.1002/smll.202302022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Indexed: 11/09/2023]
Abstract
Rational design and facile synthesis of efficient environmentally friendly all-inorganic lead-free halide perovskite catalysts are of great significance in photocatalytic CO2 reduction. Aiming at photogenerated charge carrier separation and CO2 reaction dynamics, in this paper, a CsCuCl3 /Cu nanocrystals (NCs) heterojunction catalyst is designed and synthesized via a simple acid-etching solution process by using Cu2 O as the sacrificed template. Due to the disproportionation reaction of Cu2 O induced by concentrated hydrochloric acid, Cu NCs can be deposited onto the surface of CsCuCl3 microcrystals directly and tightly. As revealed by photoelectrochemical analysis, in situ Fourier transform infrared spectra, etc., the Cu NCs contribute a lot to extracting photoelectrons of CsCuCl3 to improve the charge separation efficiency, regulating the CO2 adsorption and activation, and also stabilizing the reaction intermediates. Therefore, CsCuCl3 /Cu heterojunction exhibits a total electron consumption rate of 58.77 µmol g-1 h-1 , which is 2.9-fold of that of single CsCuCl3 . Moreover, high CH4 selectivity of up to 92.7% is achieved, which is much higher than that of CsCuCl3 (50.4%) and most lead-free halide perovskite-based catalysts. This work provides an ingenious but simple strategy to rationally design cocatalysts in situ decorated perovskite catalysts for manipulating both the catalytic activity and the product selectivity.
Collapse
Affiliation(s)
- Hai-Bing Zhao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jia-Nan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qi Qin
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hong-Yan Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dai-Bin Kuang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
4
|
Thrupthika T, Nataraj D, Ramya S, Sangeetha A, Thangadurai TD. Induced UV photon sensing properties in narrow bandgap CdTe quantum dots through controlling hot electron dynamics. Phys Chem Chem Phys 2023; 25:25331-25343. [PMID: 37702661 DOI: 10.1039/d3cp02424e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Mn-doped CdTe (Mn-CdTe) quantum dot (QD) as well as quantum dot solid (QD solid) nanostructures are formed and the established structures are confirmed through HR-TEM analysis. The dynamics of charge carriers in both doped & undoped QD and QD solid structures were investigated by transient absorption (TA) spectroscopy. A slow band edge bleach recovery is obtained for Mn-doped CdTe QD and CdTe QD solid systems at room temperature. Additionally, a blue shifted broad bleach behaviour is identified for the Mn-CdTe QD solid system, which is attributed to hot exciton formation in the solid upon photoexcitation with a higher photon energy than the band gap energy (hν > Eg). This noteworthy process of generation of hot excitons and slow charge recombination occurs by means of a synergetic action of the Mn dopant in the host CdTe QD solid system as well as the extended electronic wave function between the coupled QD solid. Apart from the Mn-assisted delayed relaxation of hot electrons in the QD solid, a suppression in dark current as well as a high ION/IOFF ratio of 3203.12 at 1 V is observed in the Mn-CdTe QD-solid based photosensitized device in the visible region. Furthermore, we were able to improve the UV photon harvesting property in a narrow band gap Mn-CdTe QD solid through reducing the higher excited carrier's energy losses.
Collapse
Affiliation(s)
- Thankappan Thrupthika
- Quantum Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India.
| | - Devaraj Nataraj
- Quantum Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India.
- UGC-CPEPA Centre for Advanced Studies in Physics for the Development of Solar Energy Materials and Devices, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Subramaniam Ramya
- Quantum Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India.
| | - Arumugam Sangeetha
- Quantum Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India.
| | - T Daniel Thangadurai
- KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641 407, India.
| |
Collapse
|
5
|
Wang CW, Liu X, Qiao T, Khurana M, Akimov AV, Son DH. Photoemission of the Upconverted Hot Electrons in Mn-Doped CsPbBr 3 Nanocrystals. NANO LETTERS 2022; 22:6753-6759. [PMID: 35939549 DOI: 10.1021/acs.nanolett.2c02342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hot electrons play a crucial role in enhancing the efficiency of photon-to-current conversion or photocatalytic reactions. In semiconductor nanocrystals, energetic hot electrons capable of photoemission can be generated via the upconversion process involving the dopant-originated intermediate state, currently known only in Mn-doped cadmium chalcogenide quantum dots. Here, we report that Mn-doped CsPbBr3 nanocrystals are an excellent platform for generating hot electrons via upconversion that can benefit from various desirable exciton properties and the structural diversity of metal halide perovskites (MHPs). Two-dimensional Mn-doped CsPbBr3 nanoplatelets are particularly advantageous for hot electron upconversion due to the strong exciton-dopant interaction mediating the upconversion process. Furthermore, nanoplatelets reveal evidence for the hot electron upconversion via long-lived dark excitons in addition to bright excitons that may enhance the upconversion efficiency. This study establishes the feasibility of hot electron upconversion in MHP hosts and demonstrates the potential merits of two-dimensional MHP nanocrystals in the upconversion process.
Collapse
Affiliation(s)
- Chih-Wei Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaohan Liu
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Tian Qiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mohit Khurana
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Alexey V Akimov
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Center for Nanomedicine, Institute for Basic Science and Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Deng Y, Wan C, Li C, Wang Y, Mu X, Liu W, Huang Y, Wong PK, Ye L. Synergy Effect between Facet and Zero-Valent Copper for Selectivity Photocatalytic Methane Formation from CO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Deng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Chuan Wan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Chao Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Yongye Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaoyang Mu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Wei Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, 443007 Yichang, China
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, P. R. China
| | - Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, 443007 Yichang, China
| |
Collapse
|
8
|
Li X, Wang M, Wang R, Shen M, Wu P, Fu Z, Zhu M, Zhang L. A distinctive semiconductor-metalloid heterojunction: unique electronic structure and enhanced CO 2 photoreduction activity. J Colloid Interface Sci 2022; 615:821-830. [PMID: 35180630 DOI: 10.1016/j.jcis.2022.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
Increasing the concentration and separation ability of charge carriers in photocatalysts has still been a crucial issue and challenge to achieve high CO2 photoreduction performance. Here, we construct a distinctive heterojunction between semiconductor (CeO2) and metalloid (CuS). It has been discovered that, different from conventional semiconductor and Schottky heterojunctions, in this system, electrons (esc-) located at the conduction band (CB) of CeO2 will transfer to the Fermi level in partially occupied band (CB) of CuS and accumulate there. Then, together with transition electrons (etr-) excited from the CB below Fermi level or fully filled band (B-1) of CuS, these esc- will further transfer to the lowest unoccupied band (B1) of CuS, finally participate in CO2 reduction reaction. Because the concentration and separation efficiency of charge carriers has been obviously increased, this heterojunction exhibits remarkably enhanced CO2 photoreduction performance. In-situ FTIR was conducted to explore the reaction process and the changes of intermediates on the surface of this catalyst during CO2 photoreduction. Given that this type of heterojunction can only be established between a semiconductor and a metalloid and exhibits special electron transfer behavior, this work really provides an unconventional strategy for the design of photocatalysts with superior CO2 photoreduction activity.
Collapse
Affiliation(s)
- Xiaoyao Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Min Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China.
| | - Rongyan Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Meng Shen
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Ping Wu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Zhengqian Fu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Min Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Lingxia Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, PR China.
| |
Collapse
|
9
|
The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Wang C, Orrison C, Son DH. Hot electrons generated from Mn‐doped quantum dots via upconversion for photocatalysis applications. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chih‐Wei Wang
- Department of Chemistry Texas A&M University College Station Texas USA
| | - Connor Orrison
- Department of Chemistry Texas A&M University College Station Texas USA
| | - Dong Hee Son
- Department of Chemistry Texas A&M University College Station Texas USA
| |
Collapse
|