1
|
Perveen S, Rahman T, Ali T, Wang L, Zhang J, Khan A. Molybdenum-Catalyzed Asymmetric Amination of α-Hydroxy Esters: Synthesis of α-Amino Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403437. [PMID: 40063505 PMCID: PMC12079543 DOI: 10.1002/advs.202403437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Indexed: 05/16/2025]
Abstract
Unnatural α-amino acids are found in a wide variety of bioactive compounds ranging from proteins to pharmaceutical agents to materials science. As a result, the investigation of efficient and simple methods for their synthesis is a major purpose in reaction development. In this study, it is found that a catalyst based on molybdenum, an earth-abundant transition metal, can facilitate the amination of readily accessible α-hydroxy esters to afford N-protected unnatural α-amino acid esters in high yield. This simple process also enables enantioselective amination, which proceeds through cooperative catalysis of chiral molybdenum complex with chiral phosphoric acid (CPA), and complements earlier procedures to the catalytic synthesis of this important class of compounds. The obtained protected α-amino acid ester products are directly useful or further utilized for the synthesis of commercially available drugs and analogs.
Collapse
Affiliation(s)
- Shahida Perveen
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Tahir Rahman
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Tariq Ali
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Lingyun Wang
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Junjie Zhang
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Ajmal Khan
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| |
Collapse
|
2
|
Hong F, Wang Y, Hammarback LA, Robertson CM, Bower JF. β-Quaternary α-Amino Acids via Iridium-Catalyzed Branched and Enantioselective Hydroalkylation of 1,1-Disubstituted Styrenes. Angew Chem Int Ed Engl 2025:e202504477. [PMID: 40265623 DOI: 10.1002/anie.202504477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/24/2025]
Abstract
A cationic Ir(I)-complex modified with the chiral diphosphine DM-SEGPHOS mediates the hydroalkylation of diverse α-methyl styrenes with N-aryl glycine derivatives. The processes occur with complete branched selectivity and high enantioselectivity. Styrenes possessing higher α-alkyl substituents also participate to provide the targets with moderate to excellent levels of diastereoselectivity. The products are readily advanced to β-quaternary α-amino acids that are inaccessible or cumbersome to access by other means. In broader terms, the study demonstrates how catalyst controlled C─H additions across alkenes can be used to execute the by-product-free construction of contiguous acyclic trisubstituted and quaternary centers.
Collapse
Affiliation(s)
- Fenglin Hong
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Yihong Wang
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - L Anders Hammarback
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
3
|
Alfonzo E, Hanley D, Li ZQ, Sicinski KM, Gao S, Arnold FH. Biocatalytic Synthesis of α-Amino Esters via Nitrene C-H Insertion. J Am Chem Soc 2024; 146:27267-27273. [PMID: 39331495 PMCID: PMC11575701 DOI: 10.1021/jacs.4c09989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
α-Amino esters are precursors to noncanonical amino acids used in developing small-molecule therapeutics, biologics, and tools in chemical biology. α-C-H amination of abundant and inexpensive carboxylic acid esters through nitrene transfer presents a direct approach to α-amino esters. Methods for nitrene-mediated amination of the protic α-C-H bonds in carboxylic acid esters, however, are underdeveloped. This gap arises because hydrogen atom abstraction (HAA) of protic C-H bonds by electrophilic metal-nitrenoids is slow: metal-nitrenoids preferentially react with polarity-matched, hydridic C-H bonds, even when weaker protic C-H bonds are present. This study describes the discovery and evolution of highly stable protoglobin nitrene transferases that catalyze the enantioselective intermolecular amination of the α-C-H bonds in carboxylic acid esters. We developed a high-throughput assay to evaluate the activity and enantioselectivity of mutant enzymes together with their sequences using the Every Variant Sequencing (evSeq) method. The assay enabled the identification of enantiodivergent enzymes that function at ambient conditions in Escherichia coli whole cells and whose activities can be enhanced by directed evolution for the amination of a range of substrates.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Deirdre Hanley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zi-Qi Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen M. Sicinski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Zhang C, Wu X, Qu J, Chen Y. A General Enantioselective α-Alkyl Amino Acid Derivatives Synthesis Enabled by Cobalt-Catalyzed Reductive Addition. J Am Chem Soc 2024; 146:25918-25926. [PMID: 39264330 DOI: 10.1021/jacs.4c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Enantioenriched unnatural amino acids represent a prevalent motif in organic chemistry, with profound applications in biochemistry, medicinal chemistry, and materials science. Herein, we report a cobalt-catalyzed aza-Barbier reaction of dehydroglycines with unactivated alkyl halides to afford unnatural α-amino esters with high enantioselectivity. This catalytic reductive alkylative addition protocol circumvents the use of moisture-, air-sensitive organometallic reagents, and stoichiometric chiral auxiliaries, enabling the conversion of a variety of primary, secondary, and even tertiary unactivated alkyl halides to α-alkyl-amino esters under mild conditions, thus leading to broad functional group tolerance. The expedient access to biologically active motifs demonstrates the practicality of this protocol by reducing the number of synthetic steps and enhancing the reaction efficiency.
Collapse
Affiliation(s)
- Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Hong F, Aldhous TP, Kemmitt PD, Bower JF. A directed enolization strategy enables by-product-free construction of contiguous stereocentres en route to complex amino acids. Nat Chem 2024; 16:1125-1132. [PMID: 38565976 PMCID: PMC11230901 DOI: 10.1038/s41557-024-01473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Homochiral α-amino acids are widely used in pharmaceutical design as key subunits in chiral catalyst synthesis or as building blocks in synthetic biology. Many synthetic methods have been developed to access rare or unnatural variants by controlling the installation of the α-stereocentre. By contrast, and despite their importance, α-amino acids possessing β-stereocentres are much harder to synthesize. Here we demonstrate an iridium-catalysed protocol that allows the direct upconversion of simple alkenes and glycine derivatives to give β-substituted α-amino acids with exceptional levels of regio- and stereocontrol. Our method exploits the native directing ability of a glycine-derived N-H unit to facilitate Ir-catalysed enolization of the adjacent carbonyl. The resulting stereodefined enolate cross-couples with a styrene or α-olefin to install two contiguous stereocentres. The process offers very high levels of regio- and stereocontrol and occurs with complete atom economy. In broader terms, our reaction design offers a unique directing-group-controlled strategy for the direct stereocontrolled α-alkylation of carbonyl compounds, and provides a powerful approach for the synthesis of challenging contiguous stereocentres.
Collapse
Affiliation(s)
- Fenglin Hong
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Timothy P Aldhous
- Department of Chemistry, University of Liverpool, Liverpool, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | - Paul D Kemmitt
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - John F Bower
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Simonyan H, Palumbo R, Petrosyan S, Mkrtchyan A, Galstyan A, Saghyan A, Scognamiglio PL, Vicidomini C, Fik-Jaskólka M, Roviello GN. BSA Binding and Aggregate Formation of a Synthetic Amino Acid with Potential for Promoting Fibroblast Proliferation: An In Silico, CD Spectroscopic, DLS, and Cellular Study. Biomolecules 2024; 14:579. [PMID: 38785986 PMCID: PMC11118884 DOI: 10.3390/biom14050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range. Furthermore, cellular biological assays revealed its ability to enhance fibroblast cell growth, highlighting its potential for tissue regenerative applications. Circular dichroism (CD) spectroscopy showed the ability of the synthetic amino acid to bind serum albumins (using bovine serum albumin (BSA) as a model), and CD deconvolution provided insights into the changes in the secondary structures of BSA upon interaction with the amino acid ligand. Additionally, molecular docking using HDOCK software elucidated the most likely binding mode of the ligand inside the BSA structure. We also performed in silico oligomerization of the synthetic compound in order to obtain a model of aggregate to investigate computationally. In more detail, the dimer formation achieved by molecular self-docking showed two distinct poses, corresponding to the lowest and comparable energies, with one pose exhibiting a quasi-coplanar arrangement characterized by a close alignment of two aromatic rings from the synthetic amino acids within the dimer, suggesting the presence of π-π stacking interactions. In contrast, the second pose displayed a non-coplanar configuration, with the aromatic rings oriented in a staggered arrangement, indicating distinct modes of interaction. Both poses were further utilized in the self-docking procedure. Notably, iterative molecular docking of amino acid structures resulted in the formation of higher-order aggregates, with a model of a 512-mer aggregate obtained through self-docking procedures. This model of aggregate presented a cavity capable of hosting therapeutic cargoes and biomolecules, rendering it a potential scaffold for cell adhesion and growth in tissue regenerative applications. Overall, our findings highlight the potential of this synthetic amino acid for tissue regenerative therapeutics and provide valuable insights into its molecular interactions and aggregation behavior.
Collapse
Affiliation(s)
- Hayarpi Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Satenik Petrosyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Anna Mkrtchyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Armen Galstyan
- Department of Chemistry, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Ashot Saghyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | | | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marta Fik-Jaskólka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
7
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Wu X, Xia H, Gao C, Luan B, Wu L, Zhang C, Yang D, Hou L, Liu N, Xia T, Li H, Qu J, Chen Y. Modular α-tertiary amino ester synthesis through cobalt-catalysed asymmetric aza-Barbier reaction. Nat Chem 2024; 16:398-407. [PMID: 38082178 DOI: 10.1038/s41557-023-01378-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/20/2023] [Indexed: 03/07/2024]
Abstract
Unnatural chiral α-tertiary amino acids containing two different carbon-based substituents at the α-carbon centre are widespread in biologically active molecules. This sterically rigid scaffold is becoming a growing research interest in drug discovery. However, a robust protocol for chiral α-tertiary amino acid synthesis remains scarce due to the challenge of stereoselectively constructing sterically encumbered tetrasubstituted stereogenic carbon centres. Herein we report a cobalt-catalysed enantioselective aza-Barbier reaction of ketimines with various unactivated alkyl halides, including alkyl iodides, alkyl bromides and alkyl chlorides, enabling the formation of chiral α-tertiary amino esters with a high level of enantioselectivity and excellent functional group tolerance. Primary, secondary and tertiary organoelectrophiles are all tolerated in this asymmetric reductive addition protocol, which provides a complementary method for the well-exploited enantioselective nucleophilic addition with moisture- and air-sensitive organometallic reagents. Moreover, the three-component transformation of α-ketoester, amine and alkyl halide represents a formal asymmetric deoxygenative alkylamination of the carbonyl group.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hanyu Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenyang Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Haiyan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
9
|
Yajima T, Katayama A, Ito T, Kawada T, Yabushita K, Yasuda T, Ohta T, Katayama T, Utsumi N, Kayaki Y, Kuwata S. Asymmetric Reductive Amination of α-Keto Acids Using Ir-Based Hydrogen Transfer Catalysts: An Access to Unprotected Unnatural α-Amino Acids. Org Lett 2024; 26:1426-1431. [PMID: 38334425 DOI: 10.1021/acs.orglett.3c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A direct asymmetric reductive amination of α-keto acids catalyzed by Cp*Ir complexes bearing a chiral N-(2-picolyl)sulfonamidato ligand is described. The combined use of optically active 2-phenyglycinol as an aminating agent is effective for the chemo- and stereoselective transfer hydrogenation using formic acid. The subsequent elimination of the hydroxyethyl moiety by orthoperiodic acid can afford various unprotected α-amino acids in satisfactory isolated yields (20 examples) with excellent optical purities (up to >99% ee).
Collapse
Affiliation(s)
- Takaaki Yajima
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Akito Katayama
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Tsubasa Ito
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Takuma Kawada
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Kenya Yabushita
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Toshihisa Yasuda
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Takeshi Ohta
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Takeaki Katayama
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Noriyuki Utsumi
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
10
|
Zhou Z, Yang J, Yang B, Han Y, Zhu L, Xue XS, Zhu F. Photoredox Nickel-Catalysed Stille Cross-Coupling Reactions. Angew Chem Int Ed Engl 2023; 62:e202314832. [PMID: 37946607 DOI: 10.1002/anie.202314832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The Stille cross-coupling reaction is one of the most common strategies for the construction of C-C bonds. Despite notable strides in the advancement of the Stille reaction, persistent challenges persist in hindering its greener evolution. These challenges encompass multiple facets, such as the high cost of precious metals and ligands, the demand for various additives, and the slow reaction rate. In comparison to the dominant palladium-catalysed Stille reactions, cost-effective nickel-catalysed systems lag behind, and enantioconvergent Stille reactions of racemic stannanes remain undeveloped. Herein, we present a pioneering instance of nickel-catalysed enantioconvergent Stille cross-coupling reactions of racemic stannane reagents, resulting in the formation of C-C bonds in good to high yields with excellent stereoselectivity. This strategy provides a practical, scalable, and operationally straightforward method for the synthesis of C(sp3 )-C(sp3 ), C(sp3 )-C(sp2 ), and C(sp3 )-C(sp) bonds under exceptionally mild conditions (without additives and bases, ambient temperature). The innovative use of synergistic photoredox/nickel catalysis enables a novel single-electron transmetalation process of stannane reagents, providing a new research paradigm of Stille reactions.
Collapse
Affiliation(s)
- Zhenghong Zhou
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jimin Yang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yang Han
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Wang J, Shen X, Chen X, Bao Y, He J, Lu Z. Cobalt-Catalyzed Enantioconvergent Negishi Cross-Coupling of α-Bromoketones. J Am Chem Soc 2023. [PMID: 37906733 DOI: 10.1021/jacs.3c09807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cobalt-catalyzed enantioconvergent cross-coupling of α-bromoketones with aryl zinc reagents is achieved to access chiral ketones bearing α-tertiary stereogenic centers with high enantioselectivities. The more challenging and sterically hindered α-bromoketones bearing a 2-fluorophenyl group or β-secondary and tertiary alkyl chains could also be well-tolerated. Adjusting the electronic effect of chiral unsymmetric N,N,N-tridentate ligands is critical for improving the reactivity and selectivity of this transformation, which is beneficial for further studies of asymmetric 3d metal catalysis via ligand modification. The control experiments and kinetic studies illustrated that the reaction involved radical intermediates and the reductive elimination was a rate-determining step.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
13
|
Huang C, Wu D, Li Y, Yin G. Asymmetric anti-Selective Borylalkylation of Terminal Alkynes by Nickel Catalysis. J Am Chem Soc 2023; 145:18722-18730. [PMID: 37582178 DOI: 10.1021/jacs.3c05969] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Selective transformation of alkyne triple bonds to double bonds serves as an efficient platform to construct substituted alkenes. While significant advances have been made in its spatiotemporal regulation, achieving a multicomponent enantioselective reaction that requires multifaceted selectivity issues to be overcome is still uncommon. Here, we report an unprecedented asymmetric anti-stereoselective borylcarbofunctionalization of terminal alkynes by nickel catalysis. The utilization of an inexpensive chiral diamine ligand enables the three-component cross-coupling of terminal alkynes, a diboron reagent, and prochiral alkyl electrophiles with high levels of regio-, stereo-, and enantioselectivities. This reaction provides an efficient protocol to access enantioenriched alkenyl esters bearing an α-stereogenic center, is remarkably practical, and has a broad scope and an outstanding functional group compatibility. In addition, the value of this method has been highlighted in a diversity of follow-up stereoretentive derivatizations and the stereoselective concise synthesis of complex drug molecules.
Collapse
Affiliation(s)
- Chengmi Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Dong Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
14
|
Rinu PXT, Philip RM, Anilkumar G. Low-cost transition metal catalysed Negishi coupling: an update. Org Biomol Chem 2023; 21:6438-6455. [PMID: 37522832 DOI: 10.1039/d3ob00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The Negishi coupling is a significant C-C bond-forming reaction to access synthetically valuable organic compounds. In recent years, researchers have developed sustainable first-row transition metal (Fe, Co, Ni and Cu) based complexes in place of the conventional Pd catalyst for this reaction. Several such low-cost metal-based catalysts showed high efficiency and potential application in natural product synthesis. This review focuses on the recent achievements in low-cost transition metal-based Negishi coupling reactions, covering reports from 2016.
Collapse
Affiliation(s)
| | - Rose Mary Philip
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India.
| |
Collapse
|
15
|
Zhao WT, Shu W. Enantioselective Csp3-Csp3 formation by nickel-catalyzed enantioconvergent cross-electrophile alkyl-alkyl coupling of unactivated alkyl halides. SCIENCE ADVANCES 2023; 9:eadg9898. [PMID: 37418514 DOI: 10.1126/sciadv.adg9898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
The pervasive occurrence of saturated stereogenic carbon centers in pharmaceuticals, agrochemicals, functional organic materials, and natural products has stimulated great efforts toward the construction of such saturated carbon centers. We report a reaction mode for the enantioselective construction of alkyl-alkyl bond to access saturated stereogenic carbon centers by asymmetric reductive cross-coupling between different alkyl electrophiles in good yields with great levels of enantioselectivity. This reaction mode uses only alkyl electrophiles for enantioselective Csp3-Csp3 bond-formation, rendering reductive alkyl-alkyl cross-coupling as an alternative to traditional alkyl-alkyl cross-coupling reactions between alkyl nucleophiles and alkyl electrophiles to access saturated stereogenic carbon centers without the use of organometallic reagents. The reaction displays a broad scope for two alkyl electrophiles with good functional group tolerance. Mechanistic studies reveal that the reaction undergoes a single electron transfer that enabled the reductive coupling pathway to form the alkyl-alkyl bond.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Rao ZX, Chen PB, Xu J, Wang Q, Tang HT, Liang Y, Pan YM. Direct Conversion of CO 2 in Lime Kiln Waste Gas Catalyzed by a Copper-Based N-heterocyclic Carbene Porous Polymer. CHEMSUSCHEM 2023; 16:e202300170. [PMID: 36828776 DOI: 10.1002/cssc.202300170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Indexed: 06/10/2023]
Abstract
Industrial waste gas is one of the major sources of atmospheric CO2 , yet the direct conversion of the low concentrations of CO2 in waste gases into high value-added chemicals have been a great challenge. Herein, a copper-based N-heterocyclic carbene porous polymer catalyst (Cu@NHC-1) for the direct conversion of low concentration CO2 into oxazolidinones was successfully fabricated via a facile copolymerization process followed by the complexation with Cu(OAc)2 . A continuous flow device was designed to deliver a continuous and stable carbon source for the reaction. Due to the triple synergistic effect of its porous structure, nitrogen activation sites and catalytic Cu center, Cu@NHC-1 shows highly efficient and selective adsorption, activation, and conversion of the low concentration CO2 (30 vol%). Its practical application potential is demonstrated by the ability to successfully convert the CO2 in lime kiln waste gas into oxazolidinones in satisfactory yields under mild conditions.
Collapse
Affiliation(s)
- Zhi-Xiu Rao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Pei-Bo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Jin Xu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Qing Wang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of, Guangxi Normal University, Guilin, 541004, Guangxi, P. R. China
| | - Ying Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of, Guangxi Normal University, Guilin, 541004, Guangxi, P. R. China
| |
Collapse
|
17
|
Sierra S, Dalmau D, Alegre-Requena JV, Pop A, Silvestru C, Marín ML, Boscá F, Urriolabeitia EP. Synthesis of Bis(amino acids) Containing the Styryl-cyclobutane Core by Photosensitized [2+2]-Cross-cycloaddition of Allylidene-5(4 H)-oxazolones. Int J Mol Sci 2023; 24:ijms24087583. [PMID: 37108745 PMCID: PMC10140832 DOI: 10.3390/ijms24087583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The irradiation of 2-aryl-4-(E-3'-aryl-allylidene)-5(4H)-oxazolones 1 with blue light (456 nm) in the presence of [Ru(bpy)3](BF4)2 (bpy = 2,2'-bipyridine, 5% mol) gives the unstable cyclobutane-bis(oxazolones) 2 by [2+2]-photocycloaddition of two oxazolones 1. Each oxazolone contributes to the formation of 2 with a different C=C bond, one of them reacting through the exocyclic C=C bond, while the other does so through the styryl group. Treatment of unstable cyclobutanes 2 with NaOMe/MeOH produces the oxazolone ring opening reaction, affording stable styryl-cyclobutane bis(amino acids) 3. The reaction starts with formation of the T1 excited state of the photosensitizer 3[Ru*(bpy)3]2+, which reacts with S0 of oxazolones 1 through energy transfer to give the oxazolone T1 state 3(oxa*)-1, which is the reactive species and was characterized by transient absorption spectroscopy. Measurement of the half-life of 3(oxa*)-1 for 1a, 1b and 1d shows large values for 1a and 1b (10-12 μs), while that of 1d is shorter (726 ns). Density functional theory (DFT) modeling displays strong structural differences in the T1 states of the three oxazolones. Moreover, study of the spin density of T1 state 3(oxa*)-1 provides clues to understanding the different reactivity of 4-allylidene-oxazolones described here with respect to the previously reported 4-arylidene-oxazolones.
Collapse
Affiliation(s)
- Sonia Sierra
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Juan V Alegre-Requena
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Alexandra Pop
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Cristian Silvestru
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Maria Luisa Marín
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 València, Spain
| | - Francisco Boscá
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 València, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
18
|
Hioki Y, Costantini M, Griffin J, Harper KC, Merini MP, Nissl B, Kawamata Y, Baran PS. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis. Science 2023; 380:81-87. [PMID: 37023204 DOI: 10.1126/science.adf4762] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023]
Abstract
The Kolbe reaction forms carbon-carbon bonds through electrochemical decarboxylative coupling. Despite more than a century of study, the reaction has seen limited applications owing to extremely poor chemoselectivity and reliance on precious metal electrodes. In this work, we present a simple solution to this long-standing challenge: Switching the potential waveform from classical direct current to rapid alternating polarity renders various functional groups compatible and enables the reaction on sustainable carbon-based electrodes (amorphous carbon). This breakthrough enabled access to valuable molecules that range from useful unnatural amino acids to promising polymer building blocks from readily available carboxylic acids, including biomass-derived acids. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around the electrodes and the crucial role of acetone as an unconventional reaction solvent for Kolbe reaction.
Collapse
Affiliation(s)
- Yuta Hioki
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | | | - Jeremy Griffin
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | - Kaid C Harper
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | | | - Benedikt Nissl
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Brösamlen D, Oestreich M. Enantio- and Regioconvergent Synthesis of γ-Stereogenic Vinyl Germanes and Their Use as Masked Vinyl Halides. Org Lett 2023; 25:1901-1906. [PMID: 36960614 DOI: 10.1021/acs.orglett.3c00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
A nickel-catalyzed enantio- and regioconvergent alkylation of regioisomeric mixtures of racemic germylated allylic electrophiles with alkyl nucleophiles is reported. Key to success is a newly developed hept-4-yl-substituted Pybox ligand that enables accessing various chiral γ-germyl α-alkyl allylic building blocks in excellent yields and enantioselectivities. The reason for the regioconvergence is the steering effect of the bulky germyl group. The resulting vinyl germanes can be easily halodegermylated without racemization of the allylic stereocenter to afford synthetically valuable γ-stereogenic vinyl halides.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
20
|
Zhou J, Wang D, Xu W, Hu Z, Xu T. Enantioselective C(sp 3)-C(sp 3) Reductive Cross-Electrophile Coupling of Unactivated Alkyl Halides with α-Chloroboronates via Dual Nickel/Photoredox Catalysis. J Am Chem Soc 2023; 145:2081-2087. [PMID: 36688920 DOI: 10.1021/jacs.2c13220] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Substantial advances in enantioconvergent C(sp3)-C(sp3) bond formations have been made with nickel-catalyzed cross-coupling of racemic alkyl electrophiles with organometallic reagents or nickel-hydride-catalyzed hydrocarbonation of alkenes. Herein, we report an unprecedented enantioselective C(sp3)-C(sp3) reductive cross-coupling by the direct utilization of two different alkyl halides with dual nickel/photoredox catalysis system. This highly selective coupling of racemic α-chloroboronates and unactivated alkyl iodides furnishes chiral secondary alkyl boronic esters, which serve as useful and important intermediates in the realm of organic synthesis and enable a desirable protocol to fast construction of enantioenriched complex molecules.
Collapse
Affiliation(s)
- Jun Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
21
|
Lamartina CW, Chartier CA, Lee S, Shah NH, Rovis T. Modular Synthesis of Unnatural Peptides via Rh(III)-Catalyzed Diastereoselective Three-Component Carboamidation Reaction. J Am Chem Soc 2023; 145:1129-1135. [PMID: 36576945 PMCID: PMC10580301 DOI: 10.1021/jacs.2c10793] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report a modular peptide ligation methodology that couples dioxazolones, arylboronic acids, and acrylamides to construct amide bonds in a diastereoselective manner under mild conditions, facilitated by Rh(III) catalysis. By converting the C-terminus of one peptide into a dioxazolone and the N-terminus of a second peptide into an acrylamide, the two pieces can be bridged by an arylboronic acid to construct unnatural phenylalanine, tyrosine, and tryptophan residues at the junction point with diastereoselectivity for their corresponding d-stereocenters. The reaction exhibits excellent functional group tolerance with a large substrate scope and is compatible with a wide array of protected amino acid residues that are utilized in Fmoc solid phase peptide synthesis. The methodology is applied to the synthesis of six diastereomeric proteasome inhibitor analogs, as well as the ligation of two 10-mer oligopeptides to construct a 21-mer polypeptide with an unnatural phenylalanine residue at the center.
Collapse
Affiliation(s)
| | - Cassandra A. Chartier
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sumin Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
22
|
Recent Advances in Nickel-Catalyzed C-C Cross-Coupling. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Knowles OJ, Johannissen LO, Crisenza GEM, Hay S, Leys D, Procter DJ. A Vitamin B 2 -Photocatalysed Approach to Methionine Analogues. Angew Chem Int Ed Engl 2022; 61:e202212158. [PMID: 36250805 PMCID: PMC10100050 DOI: 10.1002/anie.202212158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2 ) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.
Collapse
Affiliation(s)
- Oliver J. Knowles
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Linus O. Johannissen
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | | | - Sam Hay
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
24
|
Knowles OJ, Johannissen LO, Crisenza GEM, Hay S, Leys D, Procter DJ. A Vitamin B 2-Photocatalysed Approach to Methionine Analogues. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212158. [PMID: 38505624 PMCID: PMC10946832 DOI: 10.1002/ange.202212158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/11/2022]
Abstract
Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.
Collapse
Affiliation(s)
- Oliver J. Knowles
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Linus O. Johannissen
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | | | - Sam Hay
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
25
|
Qi X, Jambu S, Ji Y, Belyk KM, Panigrahi NR, Arora PS, Strotman NA, Diao T. Late-Stage Modification of Oligopeptides by Nickel-Catalyzed Stereoselective Radical Addition to Dehydroalanine. Angew Chem Int Ed Engl 2022; 61:e202213315. [PMID: 36175367 PMCID: PMC9773866 DOI: 10.1002/anie.202213315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Radical addition to dehydroalanine (Dha) represents an appealing, modular strategy to access non-canonical peptide analogues for drug discovery. Prior studies on radical addition to the Dha residue of peptides and proteins have demonstrated outstanding functional group compatibility, but the lack of stereoselectivity has limited the synthetic utility of this approach. Herein, we address this challenge by employing chiral nickel catalysts to control the stereoselectivity of radical addition to Dha on oligopeptides. The conditions accommodate a variety of primary and secondary electrophiles to introduce polyethylene glycol, biotin, halo-tag, and hydrophobic and hydrophilic side chains to the peptide. The reaction features catalyst control to largely override substrate-based control of stereochemical outcome for modification of short peptides. We anticipate that the discovery of chiral nickel complexes that confer catalyst control will allow rapid, late-stage modification of peptides featuring nonnatural sidechains.
Collapse
Affiliation(s)
- Xiaoxu Qi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Subramanian Jambu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Yining Ji
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Kevin M Belyk
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Nihar R Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Neil A Strotman
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
26
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
27
|
Yu H, Zhang Q, Zi W. Enantioselective Three‐Component Photochemical 1,4‐Bisalkylation of 1,3‐Butadiene with Pd/Cu Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208411. [DOI: 10.1002/anie.202208411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300071 China
| |
Collapse
|
28
|
Yu H, Zhang Q, Zi W. Enantioselective Three‐Component Photochemical 1,4‐Bisalkylation of 1,3‐Butadiene with Pd/Cu Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huimin Yu
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Qinglong Zhang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry Chemistry Department of Nankai University 94 Weijin Rd. 300071 Tianjin CHINA
| |
Collapse
|
29
|
Hu L, Wang Y, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022; 61:e202202552. [DOI: 10.1002/anie.202202552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuan‐Zheng Wang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lei Xu
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
30
|
Korch KM, Hayes JC, Kim RS, Sampson J, Kelly AT, Watson DA. Selected Ion Monitoring Using Low-Cost Mass Spectrum Detectors Provides a Rapid, General, and Accurate Method for Enantiomeric Excess Determination in High-Throughput Experimentation. ACS Catal 2022; 12:6737-6745. [PMID: 36743967 PMCID: PMC9894240 DOI: 10.1021/acscatal.2c01628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-Throughput Experimentation (HTE) workflows are efficient means of surveying a broad array of chiral catalysts in the development of catalytic asymmetric reactions. However, use of traditional HPLC-UV/vis methodology to determine enantiomeric excess (ee) from the resulting reactions is often hampered by co-elution of other reaction components, resulting in erroneous ee determination when crude samples are used, and ultimately requiring product isolation prior to ee analysis. In this study, using four published reactions selected as model systems, we demonstrate that the use of LC-MS, SFC-MS, and selected ion monitoring (SIM) mass chromatography provides a highly accurate means to determine ee of products in crude reaction samples using commonplace, low-cost MS detectors. By using ion selection, co-eluting signals can be deconvoluted to provide accurate integrations of the target analytes. We also show that this method is effective for samples lacking UV/vis chromophores, making it ideal for HTE workflows in asymmetric catalysis.
Collapse
Affiliation(s)
- Katerina M. Korch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob C. Hayes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Raphael S. Kim
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jessica Sampson
- High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,Corresponding Authors Donald A. Watson – Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States, ; Jessica Sampson – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States. ; Austin T. Kelly – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,
| | - Austin T. Kelly
- High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,Corresponding Authors Donald A. Watson – Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States, ; Jessica Sampson – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States. ; Austin T. Kelly – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,
| | - Donald A. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States,Corresponding Authors Donald A. Watson – Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States, ; Jessica Sampson – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States. ; Austin T. Kelly – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,
| |
Collapse
|
31
|
Cui N, Lin T, Wang YE, Wu J, Han Y, Xu X, Xue F, Xiong D, Walsh PJ, Mao J. Nickel-Catalyzed Reductive Coupling of γ-Metalated Ketones with Unactivated Alkyl Bromides. Org Lett 2022; 24:3987-3992. [PMID: 35639094 DOI: 10.1021/acs.orglett.2c01390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed reductive cross-coupling reaction of aryl cyclopropyl ketones with easily accessible unactivated alkyl bromides to access aryl alkyl ketones has been developed. This strategy facilitates access to various of γ-alkyl-substituted ketones via ring opening of cyclopropyl ketones (26 examples, 50-90% yield). Initial mechanistic studies revealed that the reaction proceeds via radical cleavage of the alkyl bromide.
Collapse
Affiliation(s)
- Ning Cui
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.,Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jian Wu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuheng Han
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xinyang Xu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
32
|
Ni-electrocatalytic Csp 3-Csp 3 doubly decarboxylative coupling. Nature 2022; 606:313-318. [PMID: 35381598 DOI: 10.1038/s41586-022-04691-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 12/26/2022]
Abstract
Cross-coupling between two similar or identical functional groups to form a new C-C bond is a powerful tool to rapidly assemble complex molecules from readily available building units, as seen with olefin cross-metathesis or various types of cross-electrophile coupling1,2. The Kolbe electrolysis involves the oxidative electrochemical decarboxylation of alkyl carboxylic acids to their corresponding radical species followed by recombination to generate a new C-C bond3-12. As one of the oldest known Csp3-Csp3 bond-forming reactions, it holds incredible promise for organic synthesis, yet its use has been almost non-existent. From the perspective of synthesis design, this transformation could allow one to agnostically execute syntheses without regard to polarity or neighbouring functionality just by coupling ubiquitous carboxylates13. In practice, this promise is undermined by the strongly oxidative electrolytic protocol used traditionally since the nineteenth century5, thereby severely limiting its scope. Here, we show how a mildly reductive Ni-electrocatalytic system can couple two different carboxylates by means of in situ generated redox-active esters, termed doubly decarboxylative cross-coupling. This operationally simple method can be used to heterocouple primary, secondary and even certain tertiary redox-active esters, thereby opening up a powerful new approach for synthesis. The reaction, which cannot be mimicked using stoichiometric metal reductants or photochemical conditions, tolerates a range of functional groups, is scalable and is used for the synthesis of 32 known compounds, reducing overall step counts by 73%.
Collapse
|
33
|
Hu L, Wang YZ, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Le’an Hu
- Southern University of Science and Technology Chemistry CHINA
| | - Yuan-Zheng Wang
- Southern University of Science and Technology Chemistry CHINA
| | - Lei Xu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Qin Yin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
34
|
Geng J, Sun D, Song Y, Tong W, Wu F. Ni-Catalyzed Asymmetric Reductive Alkenylation of α-Chlorosulfones with Vinyl Bromides. Org Lett 2022; 24:1807-1811. [PMID: 35234038 DOI: 10.1021/acs.orglett.2c00217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A nickel-catalyzed enantioconvergent reductive cross-coupling of α-chlorosulfones with vinyl bromides is described here. This strategy enables the enantioselective construction of chiral allylic sulfones from simple α-chlorosulfones and vinyl bromides. The mild reaction conditions lead to excellent functional group compatibility, as evidenced by the broad substrate scope and tolerance of complex bioactive molecules. Our preliminary mechanistic study suggests that this enantioselective vinylation process operates through a radical intermediate.
Collapse
Affiliation(s)
- Jingjing Geng
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Deli Sun
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Yanhong Song
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Weiqi Tong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Fan Wu
- Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
35
|
Shekhar S, Ahmed TS, Ickes AR, Haibach MC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
36
|
Miao H, Ling H, Shevchenko N, Mascal M. Generation of Organozinc Nucleophiles Based on the Biomass-Derived Platform Molecule 5-(Chloromethyl)furfural. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haoqian Miao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Huitao Ling
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Nikolay Shevchenko
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Mark Mascal
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
37
|
Ren Q, Zhang D, Zheng L. DFT studies on the mechanisms of enantioselective Ni-catalyzed reductive coupling reactions to form 1,1-diarylalkanes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Zhou JY, Tian R, Zhu YM. Nickel-Catalyzed Selective Decarbonylation of α-Amino Acid Thioester: Aminomethylation of Mercaptans. J Org Chem 2021; 86:12148-12157. [PMID: 34397221 DOI: 10.1021/acs.joc.1c01480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nickel-catalyzed aminomethylation of mercaptans has been disclosed that offers efficient and expedient access to synthesize α-aminosulfides. The intramolecular fragment coupling shows excellent chemoselectivity. This transformation shows good functional-group compatibility, tolerates a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents in this process, and can serve as a powerful synthetic tool for the synthesis of α-aminosulfides at a gram scale. Thus, the newly developed methodology enables a facile route for C-S bond formation in a straightforward fashion.
Collapse
Affiliation(s)
- Jing-Ya Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Qi R, Wang C, Huo Y, Chai H, Wang H, Ma Z, Liu L, Wang R, Xu Z. Visible Light Induced Cu-Catalyzed Asymmetric C(sp 3)-H Alkylation. J Am Chem Soc 2021; 143:12777-12783. [PMID: 34351761 DOI: 10.1021/jacs.1c05890] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The asymmetric functionalization of C-H is one of the most attractive strategies in asymmetric synthesis. In the past decades, catalytic enantioselective C(sp3)-H functionalization has been intensively studied and successfully applied in various asymmetric bond formations, whereas asymmetric C(sp3)-H alkylation was not well developed. Photoredox catalysis has recently emerged as an efficient way to synthesize organic compounds under mild conditions. Despite many photoinduced stereoselective reactions that have been achieved, the related enantioselective C(sp3)-C(sp3) coupling is challenging, especially of the photocatalytic asymmetric C(sp3)-H radical alkylation. Here, we report a visible light induced Cu catalyzed asymmetric sp3 C-H alkylation, which is effective for coupling with unbiased primary, secondary, and tertiary alkyl fragments in high enantioselectivities. This reaction would provide a new approach for the synthesis of important molecules such as unnatural α-amino acids and late-stage functionalization of bioactive compounds, and will be useful for modern peptide synthesis and drug discovery.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yumei Huo
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chai
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongying Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zijian Ma
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Zhaoqing Xu
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|