1
|
Pramanick PK, Zhao S, Ji HT, Chen X, Yang G. Pd(II)-Catalyzed Asymmetric [2+2] Annulation for the Construction of Chiral Benzocyclobutenes. Angew Chem Int Ed Engl 2025; 64:e202415927. [PMID: 39485640 DOI: 10.1002/anie.202415927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Asymmetric de novo synthesis of benzocyclobutenes (BCBs) via catalytic intermolecular reaction is highly desired for efficient access to this important class of compounds, yet such a strategy remains unmet challenge. Here, we report a Pd/Pyrox-catalyzed asymmetric [2+2] annulation between arylboronic acids and functionalized alkenes, providing an unprecedented efficient protocol to access various enantio-enriched BCBs in a modular and versatile manner under mild conditions. A broad substrate scope with excellent enantioselectivity has been achieved under the current protocol. The isolation and characterization of the key chiral palladacycle intermediate, together with DFT calculations, provides strong evidence for the catalytic pathway including an enantiodetermining arylpalladation step.
Collapse
Affiliation(s)
- Pranab K Pramanick
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shen Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao-Tian Ji
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangyang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Zhou L, Chen X, Peng Q, Li Z, Qiao S, Deng G, Liang Y, Lei M, Yang Y. A Cascade C(sp 3)-H Annulation Involving C(alkyl),C(alkyl)-Palladacycle Intermediates. Angew Chem Int Ed Engl 2024; 63:e202412336. [PMID: 39049725 DOI: 10.1002/anie.202412336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
C-H bond functionalization involving C,C-palladacycle intermediates provides a unique platform for developing novel reactions. However, the vast majority of studies have been limited to the transformations of C(aryl),C-palladacycles. In sharp contrast, catalytic reactions involving C(alkyl),C(alkyl)-palladacycles have rarely been reported. Herein, we disclose an unprecedented cascade C(sp3)-H annulation involving C(alkyl),C(alkyl)-palladacycles. In this protocol, alkene-tethered cycloalkenyl bromides undergo intramolecular Heck/C(sp3)-H activation to generate C(alkyl),C(alkyl)-palladacycles, which can be captured by α-bromoacrylic acids to afford tricyclic fused pyridinediones. In addition, this strategy can also be applied to indole-tethered cycloalkenyl bromides to construct pentacyclic fused pyridinediones via suquential Heck dearomatization/C(sp3)-H activation/decarboxylative cyclization. Notably, the removal of α-bromoacrylic acids in the reaction of alkene-tethered cycloalkenyl bromides can build an interesting tricyclic skeleton containing a four-membered ring. Preliminary mechanistic experiments indicate that five-membered C(alkyl),C(alkyl)-palladacycles serve as the key intermediates. Meanwhile, density functional theory (DFT) calculations have provided insights into the reaction pathway.
Collapse
Affiliation(s)
- Liwei Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, College of Pharmacy, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Xiahong Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qiong Peng
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiwei Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shujia Qiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Guobo Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yun Liang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
Li M, Gao F, Xu S, Miao DY, Chen DP, Li SX, Qiu YF, Quan ZJ, Wang XC, Liang YM. Nickel-Catalyzed Narasaka-Heck Cyclization Carbonylation of Unsaturated Oxime Esters with Arylboronic Acids. Org Lett 2024; 26:7834-7840. [PMID: 39235769 DOI: 10.1021/acs.orglett.4c02647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The Narasaka-Heck reaction is one of the most straightforward methods for constructing pyrroline derivatives. Herein, we report a novel nickel-catalyzed three-component carbonylation reaction, which cleverly realizes the continuous construction of C(sp3)-N bonds and C(sp3)-C(sp2) bonds and effectively promotes the synthesis of acyl-substituted pyrroline derivatives. Furthermore, this strategy not only expands the conversion pathway of γ,δ-unsaturated oxime esters but also provides a new method for the synthesis of nitrogen-containing heterocyclic compounds.
Collapse
Affiliation(s)
- Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Fan Gao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shanmei Xu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Yu Miao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yi-Feng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Cao K, Han J, Ye W, Hu D, Ye Z, Yang J, Zhang J, Chen F. Enantioselective Aminosilylation of Alkenes by Palladium/Ming-Phos-Catalyzed Tandem Narasaka-Heck/Silylation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403470. [PMID: 38970207 PMCID: PMC11425962 DOI: 10.1002/advs.202403470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/08/2024] [Indexed: 07/08/2024]
Abstract
A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity. DFT study is conducted to probe the reaction pathway and the origin of the enantioselectivity, which revealed that the stereoinduction arises from the weak interaction between the aromatic ring of the substrate fragment and naphthyl group in the ligand.
Collapse
Affiliation(s)
- Kangning Cao
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University ShanghaiShanghai200433China
| | - Jie Han
- School of Chemical & Environmental ScienceShaanxi University of TechnologyHanzhong723001China
| | - Wenshao Ye
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Dejun Hu
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Zihao Ye
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Junfeng Yang
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Junliang Zhang
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
- Zhuhai Fudan Innovation InstituteZhuhai519000China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University ShanghaiShanghai200433China
| |
Collapse
|
5
|
Tsitopoulou M, Clemenceau A, Thesmar P, Baudoin O. 1,4-Pd Migration-Enabled Synthesis of Fused 4-Membered Rings. J Am Chem Soc 2024; 146:18811-18816. [PMID: 38968581 PMCID: PMC11258686 DOI: 10.1021/jacs.4c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
1,4-Palladium migration has been widely used for the functionalization of remote C-H bonds. However, this mechanism has been limited to aryl halide precursors. This work reports an unprecedented Pd0-catalyzed cyclobutanation protocol producing valuable fused cyclobutanes starting from cycloalkenyl (pseudo)halides. This reaction takes place via alkenyl-to-alkyl 1,4-Pd migration, followed by intramolecular Heck coupling. The method performs best with cyclohexenyl precursors, giving access to a variety of substituted bicyclo[4,2,0]octenes. Reactants containing an N-methyl or methoxy group give rise to fused azetidines or oxetanes, respectively, via the same mechanism. Kinetic and deuterium-labeling studies point to a rate-limiting C(sp3)-H activation step.
Collapse
Affiliation(s)
- Maria Tsitopoulou
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| | - Antonin Clemenceau
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| | - Pierre Thesmar
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| | - Olivier Baudoin
- Department of Chemistry, University
of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
6
|
Zhang W, Li Z, Hu H, Wang J, Xu ZF, Yu M, Li CY. Copper-Catalyzed Synthesis of Furan-Tethered Benzocyclobutenes via Carbene-Mediated 1,4-Sulfinate Migration-Annulation. Org Lett 2024; 26:5453-5457. [PMID: 38913009 DOI: 10.1021/acs.orglett.4c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A copper-catalyzed intramolecular cascade reaction of conjugated enynones has been achieved via a pivotal 1,4-sulfinate migration step. This process leverages a cost-effective and ecofriendly copper salt as catalyst, enabling the efficient construction of five- and four-membered rings in a rapid, sequential manner, producing furan-tethered benzocyclobutenes in good to excellent yields under mild conditions. The reaction is characterized by 100% atom economy, outstanding efficiency, and excellent diastereoselectivity in the cases studied. The robustness of this method is evidenced by its compatibility with air exposure and the use of undistilled, commercially available solvents, further enhancing its practicality.
Collapse
Affiliation(s)
- Wenzheng Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Ziwei Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Huiqin Hu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Jingwei Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Mingming Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| |
Collapse
|
7
|
Fogos WF, Lessa MD, de Carvalho da Silva F, de Carneiro JWM. Mechanistic insights into C(sp 2)-H activation in 1-Phenyl-4-vinyl-1H-1,2,3-triazole derivatives: a theoretical study with palladium acetate catalyst. J Mol Model 2024; 30:183. [PMID: 38782773 DOI: 10.1007/s00894-024-05987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT The activation of C-H bonds is a fundamental process in synthetic organic chemistry, which enables their replacement by highly reactive functional groups. Coordination compounds serve as effective catalysts for this purpose, as they facilitate chemical transformations by interacting with C-H bonds. A comprehensive understanding of the mechanism of activation of this type of bond lays the foundation for the development of efficient protocols for cross-coupling reactions. We explored the activation of C(sp2)-H bonds in 1-Phenyl-4-vinyl-1H-1,2,3-triazole derivatives with CH3, OCH3, and NO2 substituents in the para position of the phenyl ring, using palladium acetate as catalyst. The studied reaction is the first step for subsequent conjugation of the triazoles with naphthoquinones in a Heck-type reaction to create a C-C bond. The basic nitrogen atoms of the 1,2,3-triazole coordinate preferentially with the cationic palladium center to form an activated species. A concerted proton transfer from the terminal vinyl carbon to one of the acetate ligands with low activation energy is the main step for the C(sp2)-H activation. This study offers significant mechanistic insights for enhancing the effectiveness of C(sp2)-H activation protocols in organic synthesis. METHODS All calculations were performed using the Gaussian 09 software package and density functional theory (DFT). The structures of all reaction path components were fully optimized using the CAM-B3LYP functional with the Def2-SVP basis set. The optimized geometries were analyzed by computing the second-order Hessian matrix to confirm that the corresponding minimum or transition state was located. To account for solvent effects, the Polarizable Continuum Model of the Integral Equation Formalism (IEFPCM) with water as the solvent was used.
Collapse
Affiliation(s)
- Wagner F Fogos
- Department of Inorganic Chemistry, Institute of Chemistry, Fluminense Federal University, Niterói, Brazil.
| | - Milena D Lessa
- Department of Inorganic Chemistry, Institute of Chemistry, Fluminense Federal University, Niterói, Brazil
| | - Fernando de Carvalho da Silva
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista-, Niterói, RJ, 24020-141, Brazil
| | | |
Collapse
|
8
|
Arora R, Bajohr J, Lautens M. Rapid Assembly of Unsymmetrically Linked Bis-heterocycles via Palladium Domino Catalysis. Org Lett 2023; 25:9053-9057. [PMID: 38085822 DOI: 10.1021/acs.orglett.3c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A palladium-catalyzed domino reaction of alkene-tethered oxime esters is reported. This transformation uses an air-stable palladium precatalyst that initiates a Narasaka-Heck reaction, that is interrupted with a Pd(II)-promoted cyclization. Through this methodology, a novel class of unsymmetrical alkyl-linked bis-heterocycles were synthesized in yields up to 99%. The reaction is scalable up to 1.0 mmol, with simplified purification steps. This transformation expands the scope of accessible bis-heterocycles available through Narasaka-Heck reactions beyond C-H activation and direct anionic capture termination steps.
Collapse
Affiliation(s)
- Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
9
|
Sun H, He H, Ni SF, Guo W. Asymmetric (4+1) Annulations by Cascade Allylation and Transient σ-Alkyl-Pd(II) Initiated Allylic Csp 3 -H Activation. Angew Chem Int Ed Engl 2023:e202315438. [PMID: 37920927 DOI: 10.1002/anie.202315438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
A unique Pd-catalyzed approach for asymmetric (4+1) annulations via cascade allylation and transient σ-alkyl-Pd(II) initiated methylene Csp3 -H activation is reported. The enolate fragment derived from the decarboxylation of vinyl methylene carbonate is crucial to stabilize the key intermediate. These reactions enable the synthesis of various useful dihydrobenzofurans with excellent enantioselectivity, typically >95 : 5 er, and exclusive (Z)-stereoselectivity. Compared with the well-established annulations via Heck-type C-H activations, this protocol showcases a conceptually new way to generate σ-alkyl-Pd(II) species that could initiate challenging asymmetric Csp3 -H activations.
Collapse
Affiliation(s)
- Haiyu Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an, 710045, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an, 710045, China
| |
Collapse
|
10
|
Ma X, Feng A, Zhang D. Origin of Enantio- and Chemoselectivity in the Synthesis of Spirocycles via Palladium/Xu-Phos-Catalyzed Cascade Heck/Remote C(sp 2)-H Alkylation: A Computational Mechanistic Study. J Phys Chem A 2023; 127:8882-8891. [PMID: 37830770 DOI: 10.1021/acs.jpca.3c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Density functional theory (DFT) calculations were performed to study the mechanism and factors affecting the enantio-, regio-, and chemoselectivities in the palladium/Xu-Phos-catalyzed cascade Heck/remote C(sp2)-H alkylation reaction. The active catalyst is found to be able to sustain coordination with P and S atoms and can adapt its coordination mode to accommodate the significant steric hindrance between the ligand and substrate, unlike previous findings that showed coordination with P and O atoms. The reaction is established to occur in sequence through the oxidative addition of the aryl iodide to Pd(0), intramolecular alkene insertion, C(sp2)-H bond activation, and C(sp2)-C(sp3) bond reductive elimination. The C(sp2)-C(sp3) bond reductive elimination is identified as the rate-determining step, and the intramolecular alkene insertion as the enantioselectivity-determining step. The high enantioselectivity originates from the stronger electronic interaction between the catalyst and substrate; the exclusive 5-exo-regioselectivity is due to the stronger nucleophilicity of the terminal alkene carbon atom, and the chemoselectivity of C-H activation over carboiodination is driven by thermodynamics.
Collapse
Affiliation(s)
- Xuexiang Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
11
|
Chen D, Li J, Zhang X, Liu G, Wang X, Liu Y, Liu X, Shan Y. Rapid Access to Fused Tetracyclic N-Heterocycles via Amino-to-Alkyl 1,5-Palladium Migration Coupled with Intramolecular C(sp 3)-C(sp 2) Coupling. Org Lett 2023; 25:6272-6277. [PMID: 37607048 DOI: 10.1021/acs.orglett.3c02034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An unprecedented route for the preparation of fused tetracyclic N-heterocycles is presented through the palladium-catalyzed cyclization of isocyanides with alkyne-tethered aryl iodides. In this transformation, a novel amino-to-alkyl 1,5-palladium migration/intramolecular C(sp3)-C(sp2) coupling sequence was observed first. More importantly, isocyanide exhibited three roles, serving simultaneously as a C1 synthon, a C1N1 synthon, and the donor of C(sp3) for C(sp3)-C(sp2) coupling, and the reaction was the sole successful example that achieved C(sp3)-H activation of isocyanide.
Collapse
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xin Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuan Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
12
|
Wei D, Lu HY, Miao HZ, Feng CG, Lin GQ, Liu Y. Pd-catalyzed intermolecular consecutive double Heck reaction "on water" under air: facile synthesis of substituted indenes. RSC Adv 2023; 13:19312-19316. [PMID: 37377870 PMCID: PMC10291873 DOI: 10.1039/d3ra03510g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
An efficient and environmentally benign method for the preparation of substituted indene derivatives has been developed by using water as the sole solvent. This reaction proceeded under air, tolerated a wide range of functional-groups and was easily scaled up. Bioactive natural products like indriline were synthesized via the developed protocol. Preliminary results demonstrate that the enantioselective variant can also be achieved.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Zhe Miao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
13
|
Wang R, Wang C. Asymmetric imino-acylation of alkenes enabled by HAT-photo/nickel cocatalysis. Chem Sci 2023; 14:6449-6456. [PMID: 37325152 PMCID: PMC10266448 DOI: 10.1039/d3sc01945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
By merging nickel-mediated facially selective aza-Heck cyclization and radical acyl C-H activation promoted by tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst, we accomplish an asymmetric imino-acylation of oxime ester-tethered alkenes with readily available aldehydes as the acyl source, enabling the synthesis of highly enantioenriched pyrrolines bearing an acyl-substituted stereogenic center under mild conditions. Preliminary mechanistic studies support a Ni(i)/Ni(ii)/Ni(iii) catalytic sequence involving the intramolecular migratory insertion of a tethered olefinic unit into the Ni(iii)-N bond as the enantiodiscriminating step.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
14
|
Abel-Snape X, Johnson CE, Imbriaco B, Lautens M. Synthesis of spirooxindoles via formal acetylene insertion into a common palladacycle intermediate. Chem Sci 2023; 14:5650-5655. [PMID: 37265736 PMCID: PMC10231318 DOI: 10.1039/d3sc01072d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
A palladium-catalyzed spirocyclization reaction is reported, which is proposed to arise via insertion of an oxabicycle into a palladacycle, formed from carbocyclization and a C-H functionalization sequence. Mechanistic studies suggest the insertion is diastereoselective and a post-catalytic retro-Diels-Alder step furnishes an alkene, wherein the oxibicycle has served as an acetylene surrogate. Aryl iodides and carbamoyl chlorides were compatible as starting materials under the same reaction conditions, enabling the convergent and complementary synthesis of spirooxindoles, as well as other azacycles. These spirooxindoles allowed further transformations that were previously unaccessible.
Collapse
Affiliation(s)
- Xavier Abel-Snape
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Colton E Johnson
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Bianca Imbriaco
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
15
|
Yang JM, Lin YK, Sheng T, Hu L, Cai XP, Yu JQ. Regio-controllable [2+2] benzannulation with two adjacent C(sp 3)-H bonds. Science 2023; 380:639-644. [PMID: 37167386 PMCID: PMC10243499 DOI: 10.1126/science.adg5282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Regiocontrol in traditional cycloaddition reactions between unsaturated carbon compounds is often challenging. The increasing focus in modern medicinal chemistry on benzocyclobutene (BCB) scaffolds indicates the need for alternative, more selective routes to diverse rigid carbocycles rich in C(sp3) character. Here, we report a palladium-catalyzed double C-H activation of two adjacent methylene units in carboxylic acids, enabled by bidentate amide-pyridone ligands, to achieve a regio-controllable synthesis of BCBs through a formal [2+2] cycloaddition involving σ bonds only (two C-H bonds and two aryl-halogen bonds). A wide range of cyclic and acyclic aliphatic acids, as well as dihaloheteroarenes, are compatible, generating diversely functionalized BCBs and hetero-BCBs present in drug molecules and bioactive natural products.
Collapse
Affiliation(s)
- Ji-Min Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yu-Kun Lin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xin-Pei Cai
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
17
|
Xu F, Zhang D, Lu Q, Zhang R, Xia J. Rational design of fluorescent chemosensor for Pd 2+ based on the formation of cyclopalladated complex. Talanta 2023; 253:123967. [PMID: 36195028 DOI: 10.1016/j.talanta.2022.123967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
According to the assumption that the formation of C-Pd bond becomes a cyclopalladated complex (CPC), we designed and synthesized two C-N-N pincer ligands of BODIPY appended 2,2'-bipyridine derivatives (BP and BPB). It has been confirmed that the C-Pd bond does exist and plays a crucial role in "on-off" fluorescence behavior. Based on it, a coordination-induced fluorescence quenching sensor for Pd2+ was constructed. The results indicated that BP possessed high sensitivity and specificity for Pd2+ in solution. The limit of detection (LOD) of BP is determined to be 0.97 nM within a linear range between 1.0 and 50.0 nM, meanwhile, the platinum-group ions demonstrate no interference. The bio-imaging application of BP was investigated and it exhibited a promising vitro test for fluorescent imaging of Pd2+ ions in MCF-7 cells. Meanwhile, BPB coated sensor label for Pd2+ was set up. The visible color variation was displayed under UV light with increasing concentrations of Pd2+. Briefly speaking, fluorescence probes of BP and BPB offer new approaches for Pd2+ detection in a lab and on-site test, as well as the vivo imaging. Then, with the aid of (TD)DFT calculation, the internal reason for the optical difference between the two ligands was disclosed. This concept of CPC containing a Pd-C covalent bond provides a promising perspective of coordination fluorescence sensors.
Collapse
Affiliation(s)
- Feng Xu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qingyi Lu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Rui Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Instituted and Technology, Wuhan, 400073, Hubei, China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
18
|
Suzuki M, Terada M, Nakamura I. Copper-catalyzed [1,3]-nitrogen rearrangement of O-aryl ketoximes via oxidative addition of N–O bond in inverse electron flow †. Chem Sci 2023; 14:5705-5711. [PMCID: PMC10231427 DOI: 10.1039/d3sc00874f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The [1,3]-nitrogen rearrangement reactions of O-aryl ketoximes were promoted by N-heterocyclic carbene (NHC)-copper catalysts and BF3·OEt2 as an additive, affording ortho-aminophenol derivatives in good yields. The reaction of substrates with electron-withdrawing substituents on the phenol moiety are accelerated by adding silver salt and modifying the substituent at the nitrogen atom. Density functional theory calculations suggest that the rate-determining step of this reaction is the oxidative addition of the N–O bond of the substrate to the copper catalyst. The negative ρ values of the substituent at both the oxime carbon and phenoxy group indicate that the donation of electrons by the oxygen and nitrogen atoms accelerates the oxidative addition. [1,3]-Nitrogen rearrangement reactions of O-aryl ketoximes was catalytically promoted by IPrCuBr and BF3·OEt2. The oxidative addition of the N–O bond to the Cu catalyst is accelerated by donation of electrons from both nitrogen and oxygen atoms.![]()
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| |
Collapse
|
19
|
Jing C, Jones BT, Adams RJ, Bower JF. Cyclopropane-Fused N-Heterocycles via Aza-Heck-Triggered C(sp 3)-H Functionalization Cascades. J Am Chem Soc 2022; 144:16749-16754. [PMID: 36083505 PMCID: PMC9501755 DOI: 10.1021/jacs.2c08304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Unique examples of aza-Heck-based C(sp3)–H
functionalization
cascades are described. Under Pd(0)-catalyzed conditions, the aza-Heck-type
cyclization of N-(pentafluorobenzoyloxy)carbamates
generates alkyl–Pd(II) intermediates that effect C(sp3)–H palladation en route to cyclopropanes. Key factors that
control the site selectivity of the cyclopropanation process have
been elucidated such that selective access to a wide range of ring-
or spiro-fused systems can be achieved.
Collapse
Affiliation(s)
- Changcheng Jing
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Benjamin T Jones
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ross J Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
20
|
Xue D, Ge Q, Zhi X, Song S, Shao L. Metal-free radical cascade cyclization of 2-isocyanoaryl thioethers with alcohols: Synthesis of 2-hydroxyalkyl benzothiazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. One-Pot Synthesis of Multifunctionalized 1-Pyrrolines from 2-Alkyl-2 H-azirines and Diazocarbonyl Compounds. J Org Chem 2022; 87:8835-8840. [PMID: 35732058 DOI: 10.1021/acs.joc.2c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel strategy for the synthesis of 1-pyrrolines based on formal [4 + 1] annulation of 2-alkyl-2H-azirines with diazocarbonyl compounds has been developed. This one-pot approach includes the Rh(II)-catalyzed formation of 4-alkyl-2-azabuta-1,3-dienes, followed by the DBU-promoted cyclization, and features a good substrate tolerance. The 1-pyrrolines containing an ester group at the C3 were prepared in a three-step one-pot procedure starting from 5-alkoxyisoxazoles. The cyclization of 2-azabutadienes to 1-pyrrolines most likely proceeds via the 6π electrocyclization of a conjugated NH-azomethine ylide.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
22
|
Hou M, Zhang Z, Lai X, Zong Q, Jiang X, Guan M, Qi R, Qiu G. Photoredox/Iron Dual-Catalyzed Insertion of Acyl Nitrenes into C-H Bonds. Org Lett 2022; 24:4114-4118. [PMID: 35666621 DOI: 10.1021/acs.orglett.2c01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, the use of N-acyloxybenzamides as efficient acyl nitrene precursors under photoredox/iron dual catalysis is reported. The resulting acyl nitrenes could be captured by various types of C-H bonds and S- or P-containing molecules. Mechanism investigations suggested that the formation of the acyl nitrene from the N-acyloxybenzamide occurs by a photoredox process, and it is believed that in this redox process oxidative N-H bond cleavage of the N-acyloxybenzamide occurs prior to reductive N-O bond cleavage of the N-acyloxybenzamide.
Collapse
Affiliation(s)
- Ming Hou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhide Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Qianshou Zong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China
| | - Meng Guan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Rui Qi
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
23
|
Wei WX, Kong X, Jiao RQ, Li XS, Wang CT, Li Y, Liang YM. Regioselective synthesis of spirocyclic pyrrolines via a palladium-catalyzed Narasaka-Heck/C-H activation/[4 + 2] annulation cascade reaction. Chem Sci 2022; 13:6348-6354. [PMID: 35733897 PMCID: PMC9159093 DOI: 10.1039/d2sc01887j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
A novel palladium-catalyzed spirocyclization through sequential Narasaka-Heck cyclization, C-H activation and [4 + 2] annulation has been developed. In this reaction, cheap and readily available 2-chlorobenzoic acid or ethyl phenylpropiolate was employed as the C2 insertion unit to react with γ,δ-unsaturated oxime ester. The key step in this transformation is the regioselective insertion of the C2 synthon into the spiro-palladacycle intermediate that is formed by the δ-C-H activation process, thereby efficiently assembling a series of spirocyclic pyrrolines with high regiocontrol. Furthermore, density functional theory (DFT) calculations and control experiments were performed to gain some insights into the reaction mechanism.
Collapse
Affiliation(s)
- Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 P. R. China
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
24
|
Fujii T, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Modular Synthesis of Benzocyclobutenes via Pd(II)-Catalyzed Oxidative [2+2] Annulation of Arylboronic Acids with Alkenes. J Am Chem Soc 2022; 144:8920-8926. [PMID: 35561421 DOI: 10.1021/jacs.2c03565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Benzocyclobutenes (BCBs) are highly valuable compounds in organic synthesis, medicinal chemistry, and materials science. However, catalytic modular synthesis of functionalized BCBs from easily accessible starting materials remains limited. We report herein an efficient synthesis of diversely functionalized BCBs by a Pd(II)-catalyzed formal [2+2] annulation between arylboronic acids and alkenes in the presence of N-fluorobenzenesulfonimide (NFSI). An intermolecular carbopalladation followed by palladium oxidation, intramolecular C(sp2)-H activation by a transient C(sp3)-Pd(IV) species, and selective carbon-carbon (C-C) bond-forming reductive elimination from a high-valent five-membered palladacycle is proposed to account for the reaction outcome. Kinetically competent oxidation of alkylPd(II) to alkylPd(IV) species is important to avoid the formation of a Heck adduct. The reaction forges two C-C bonds of the cyclobutene core and is compatible with a wide range of functional groups. No chelating bidentate directing group in the alkene part is needed for this transformation.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Chen ZH, Sun RZ, Yao F, Hu XD, Xiang LX, Cong H, Liu WB. Enantioselective Nickel-Catalyzed Reductive Aryl/Alkenyl-Cyano Cyclization Coupling to All-Carbon Quaternary Stereocenters. J Am Chem Soc 2022; 144:4776-4782. [PMID: 35263101 DOI: 10.1021/jacs.2c01237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An enantioselective nickel-catalyzed intramolecular reductive cross-coupling of C(sp2) electrophiles and cyano groups is reported. Enantioenriched CN-containing all-carbon quaternary stereocenters are assembled by desymmetrizing cyclization of aryl/alkenyl halide-tethered malononitriles. The use of an organic reductant, (EtO)2MeSiH, is crucial to the enantioselectivity and reactivity. Applications of the method are demonstrated through the synthesis of bioactive molecules and their cyanated analogues and the total synthesis of the natural product diomuscinone. This study exhibits the potential of desymmetrizing reductive coupling strategies to access structurally rigid and synthetically versatile molecules from readily available starting materials.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Rui-Ze Sun
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fei Yao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Dong Hu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Long-Xue Xiang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
26
|
Chen P, Wang ZY, Wang JX, Peng XS, Wong HNC. Remote C(sp 3)–H activation: palladium-catalyzed intermolecular arylation and alkynylation with organolithiums and terminal alkynes. Org Chem Front 2022. [DOI: 10.1039/d2qo00584k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,4-palladium shift is regarded as one of the solutions towards the challenging remote C(sp3)–H activation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhi-Yong Wang
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jia-Xin Wang
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, China
| | - Xiao-Shui Peng
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, China
| | - Henry N. C. Wong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, China
| |
Collapse
|
27
|
Zhang H, Yang D, Zhao XF, Niu JL, Song MP. Cobalt-catalyzed C(sp3)-H bond functionalization to access indole derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we develop an efficient method of cobalt-catalyzed C(sp3)-H bond functionalization to synthesize indole derivatives. The highlight of this protocol is accomplished by the sequential C-H activation. This “cobalt/ organic...
Collapse
|
28
|
Xu W, Brown LE, Porco JA. Divergent, C-C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. J Org Chem 2021; 86:16485-16510. [PMID: 34730970 PMCID: PMC8783553 DOI: 10.1021/acs.joc.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A divergent approach to C-C bond forming macrocycle construction is described. Modular sulfonylhydrazone and derived pyridotriazole substrates with three key building blocks have been constructed and cyclized to afford diverse macrocyclic frameworks. Broad substrate scope and functional group tolerance have been demonstrated. In addition, site-selective postfunctionalization allowed for further diversification of macrocyclic cores.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
29
|
Hui C, Brieger L, Strohmann C, Antonchick AP. Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. J Am Chem Soc 2021; 143:18864-18870. [PMID: 34748319 PMCID: PMC8603356 DOI: 10.1021/jacs.1c10175] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a contractive synthesis of multisubstituted cyclobutanes containing multiple stereocenters from readily accessible pyrrolidines using iodonitrene chemistry. Mediated by a nitrogen extrusion process, the stereospecific synthesis of cyclobutanes involves a radical pathway. Unprecedented unsymmetrical spirocyclobutanes were prepared successfully, and a concise, formal synthesis of the cytotoxic natural product piperarborenine B is reported.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Lukas Brieger
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany.,Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| |
Collapse
|
30
|
Xu Y, Yu C, Zhang X, Fan X. Synthesis of Indolyl-Tethered Spiro[cyclobutane-1,1'-indenes] through Cascade Reactions of 1-(Pyridin-2-yl)-1 H-indoles with Alkynyl Cyclobutanols. Org Lett 2021; 23:8510-8515. [PMID: 34652921 DOI: 10.1021/acs.orglett.1c03200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein is an efficient and unprecedented synthesis of indolyl-tethered spiro[cyclobutane-1,1'-indenes] through the cascade reaction of 1-(pyridin-2-yl)-1H-indoles with alkynyl cyclobutanols. Mechanistic experiments implicate a sequential process in which 1-(pyridin-2-yl)-1H-indole first undergoes an alkenylation with alkynyl cyclobutanol followed by an intramolecular Friedel-Crafts reaction to give the title products. The utility of this novel protocol was reflected by the ample substrate scope, high chemo- and regioselectivity, removable directing group, and scalable preparation. In addition, the product thus obtained can be further derivatized quite efficiently.
Collapse
Affiliation(s)
- Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
31
|
Jones BT, García-Cárceles J, Caiger L, Hazelden IR, Lewis RJ, Langer T, Bower JF. Complex Polyheterocycles and the Stereochemical Reassignment of Pileamartine A via Aza-Heck Triggered Aryl C-H Functionalization Cascades. J Am Chem Soc 2021; 143:15593-15598. [PMID: 34546043 PMCID: PMC8485351 DOI: 10.1021/jacs.1c08615] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Structurally complex
benzo- and spiro-fused N-polyheterocycles
can be accessed via intramolecular Pd(0)-catalyzed alkene 1,2-aminoarylation
reactions. The method uses N-(pentafluorobenzoyloxy)carbamates
as the initiating motif, and this allows aza-Heck-type alkene amino-palladation
in advance of C–H palladation of the aromatic component. The
chemistry is showcased in the first total synthesis of the complex
alkaloid (+)-pileamartine A, which has resulted in the reassignment
of its absolute stereochemistry.
Collapse
Affiliation(s)
- Benjamin T Jones
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | | | - Lewis Caiger
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Ian R Hazelden
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Richard J Lewis
- Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE 43183 Mölndal, Sweden
| | - Thomas Langer
- Chemical Development, Pharmaceutical Technology & Development, Operations, Astra Zeneca, Charter Way, Macclesfield, SK10 2NA, United Kingdom
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
32
|
Shi WY, Ding YN, Zheng N, Gou XY, Zhang Z, Chen X, Luan YY, Niu ZJ, Liang YM. Highly regioselective and stereoselective synthesis of C-Aryl glycosides via nickel-catalyzed ortho-C-H glycosylation of 8-aminoquinoline benzamides. Chem Commun (Camb) 2021; 57:8945-8948. [PMID: 34397048 DOI: 10.1039/d1cc03589d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Aryl glycosides are of high value as drug candidates. Here a novel and cost-effective nickel catalyzed ortho-CAr-H glycosylation reaction with high regioselectivity and excellent α-selectivity is described. This method shows great functional group compatibility with various glycosides, showing its synthetic potential. Mechanistic studies indicate that C-H activation could be the rate-determining step.
Collapse
Affiliation(s)
- Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
33
|
Makarov AS, Fadeev AA, Uchuskin MG. Intramolecular iron-catalyzed transannulation of furans with O-acetyl oximes: synthesis of functionalized pyrroles. Org Chem Front 2021. [DOI: 10.1039/d1qo01281a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intramolecular iron(iii)-catalyzed reaction of furyl-tethered O-acetyl oximes yields substituted pyrroles through electrophilic 5-exo-trig ipso-addition of nitrogen to the furan ring.
Collapse
Affiliation(s)
- Anton S. Makarov
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| | - Alexander A. Fadeev
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12800, Czech Republic
| | - Maxim G. Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| |
Collapse
|