1
|
Wang J, Luan R, Liu T, Liu S, Du Y, Su W. Native group-directed double Heck arylation of internal alkenes via selective β-H elimination. Chem Commun (Camb) 2025; 61:6526-6529. [PMID: 40191910 DOI: 10.1039/d5cc00821b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
A Pd-catalyzed, ligand-free method for β,δ-selective consecutive arylation of internal alkenes with aryl iodides has been developed. This transformation employs a native group-directed double Heck arylation, utilizing selective β-H elimination to achieve precise regiochemical control. The protocol demonstrates high efficiency and broad functional group tolerance.
Collapse
Affiliation(s)
- Jiali Wang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No. 8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, Fujian 350108, P. R. China.
| | - Runze Luan
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No. 8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, Fujian 350108, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianming Liu
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No. 8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, Fujian 350108, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siqing Liu
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No. 8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, Fujian 350108, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Du
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No. 8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, Fujian 350108, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiping Su
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, No. 8, Gaoxindadao Road, Shangjie, Minhou, Fuzhou, Fujian 350108, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Aryal V, Inaththappulige SINH, Acharya A, Giri R. Ni-Catalyzed Regioselective Alkylarylation of Unactivated Alkenes in Amines Enabled by Cooperative Ligand Effects of Nitriles and Electron-Deficient Alkenes. J Am Chem Soc 2025; 147:1667-1676. [PMID: 39763054 DOI: 10.1021/jacs.4c12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We report a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ- and δ,ε-alkenylamines with aryl halides and alkylzinc reagents. The reaction is enabled by amine coordination and can use all primary, secondary, and tertiary amines. The reaction constructs two new C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds and produces δ- and ε-arylamines with C(sp3)-branching at the γ- and δ-positions. A variety of aryl and heteroaryl iodides and both the primary and secondary alkylzinc reagents can be used as coupling carbon sources. Mechanistic studies suggest that the reaction is enabled by the cooperative effect of organic nitriles and electron-deficient alkenes (EDAs) as ligands.
Collapse
Affiliation(s)
- Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Ayush Acharya
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Parganiha D, Thorat RA, Dhumale AD, Upadhyay YD, Jha RK, Raju S, Kumar S. Substrate NOBINAc ligand affinity for Pd II-catalyzed enantioselective C-H activation over reactive β-C-H bonds in ferrocenyl amines. Chem Sci 2025; 16:700-708. [PMID: 39677938 PMCID: PMC11641393 DOI: 10.1039/d4sc06867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Ferrocenyl amines as directing groups for C-H activation have limitations as they are prone to undergo oxidation, allylic deamination, and β-hydride elimination. The fundamental challenge observed here is the competition between the desired C-H activation versus the vulnerable β-C-H bond activation of amines and fine-tuning of a suitable oxidant which avoids the oxidation of the β-C-H bond and ferrocene. Herein, the potential of an axially chiral NOBINAc ligand is revealed to implement the enantioselective PdII-catalyzed C-H activation process of ferrocenyl amines. Mechanistically, the affinity between the NOBINAc ligand and sulfonate group of amine facilitated by the Cs+ cation plays an impressive role in the desired reaction outcome via an enhanced substrate ligand affinity. This approach resulted in a Pd-catalyzed enantioselective C-H activation, the first intermolecular annulation, and alkenylation of ferrocenyl amines with allenes and olefins, leading to ferrocene fused tetrahydropyridines and alkenylated ferrocenyl amines with up to 70% yields and 99 : 1 er.
Collapse
Affiliation(s)
- Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Ashwini Dilip Dhumale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Yagya Dutt Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Saravanan Raju
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
4
|
Sahoo A, Dutta S, Sahoo AK. A Precise Route to Tetrasubstituted Allyl Amines via Regioselective Dicarbofunctionalization of Masked Propargyl Amines. Org Lett 2024; 26:9746-9751. [PMID: 39506395 DOI: 10.1021/acs.orglett.4c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Allyl amines are vital components in various biologically important molecules and play a significant role in their function. Presently, most methods are geared toward the preparation of di- and trisubstituted allyl amines, leaving a gap for the development of more versatile approaches. We herein describe an approach to yield tetrasubstituted allyl amines through palladium (Pd)-catalyzed regioselective dicarbofunctionalization of masked N-phthalimide-protected propargyl amines. The cationic Pd-intermediate in conjunction with the masked amine exerts collective control for the reaction regioselectivity. This method accommodates a wide range of alkynes, aryl boronic acids, and aryl diazonium salts offering direct access to a wide range of unusual tetrasubstituted allyl amines.
Collapse
Affiliation(s)
- Aradhana Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| |
Collapse
|
5
|
Liu Y, Chen H, Wang X. Synergistic Homogeneous Asymmetric Cu Catalysis with Pd Nanoparticle Catalysis in Stereoselective Coupling of Alkynes with Aldimine Esters. J Am Chem Soc 2024; 146:28427-28436. [PMID: 39356822 DOI: 10.1021/jacs.4c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the nature of a transition-metal-catalyzed process, including catalyst evolution and the real active species, is rather challenging yet of great importance for the rational design and development of novel catalysts, and this is even more difficult for a bimetallic catalytic system. Pd(0)/carboxylic acid combined system-catalyzed allylic alkylation reaction of alkynes has been used as an atom-economical protocol for the synthesis of allylic products. However, the asymmetric version of this reaction is still rather limited, and the in-depth understanding of the nature of active Pd species is still elusive. Herein we report an enantioselective coupling between readily available aldimine esters and alkynes using a synergistic Cu/Pd catalyst system, affording a diverse set of α-quaternary allyl amino ester derivatives in good yields with excellent enantioselectivities. Mechanistic studies indicated that it is most likely a synergistic asymmetric molecular Cu catalysis with Pd nanoparticle catalysis. The Pd catalyst precursor is transformed to soluble Pd nanoparticles in situ, which are responsible for activating the alkyne to an electrophilic allylic Pd intermediate, while the chiral Cu complex of the aldimine ester enolate provides chiral induction and works in synergy with the Pd nanoparticles.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongda Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Yu JX, Cheng YY, Zeng XY, Chen B, Tung CH, Wu LZ. 1,3-Difunctionalization of Alkenes by Cobaloxime Photocatalysis. Org Lett 2024; 26:6809-6813. [PMID: 39102516 DOI: 10.1021/acs.orglett.4c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Represented herein is the first 1,3-difunctionalization of alkenes via photocatalysis. A single cobaloxime is used to carry out two catalytic cycles in which cobaloxime is used not only as a photocatalyst to initiate the reaction but also as a metal catalyst for the β-H elimination process. Electron-deficient alkenes, electron-rich alkenes, and unactivated alkenes could be directly converted to 1,3-bisphosphorylated products, even unsymmetric 1,3-bisphosphorylated products, with only H2 as a byproduct under extremely mild reaction conditions.
Collapse
Affiliation(s)
- Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Zhang S, Zhang G, Wang J, Feng Y, Zhang Z, Xie S, Lin Z, Yang S, Lin J, Lin H. Native Amino Group Directed Meta-Selective C-H Arylation of Primary Amines Via Pd/Norbornene Catalysis. Org Lett 2024; 26:2495-2499. [PMID: 38506235 DOI: 10.1021/acs.orglett.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The selective functionalization of remote C-H bonds in free primary amines holds significant promise for the late-stage diversification of pharmaceuticals. However, to date, the direct functionalization of the meta position of amine substrates lacking additional directing groups remains underexplored. In this Letter, we present a successful meta-C-H arylation of free primary amine derivatives using aryl iodides, resulting in synthetically valuable yields. This meta-selective C-H functionalization is achieved through a sequence involving native amino-directed Pd-catalyzed seven-membered cyclometalation, followed by the utilization of a norbornene-type transient mediator.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gong Zhang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yueyao Feng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zemin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Si Xie
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ziying Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shiling Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hua Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
8
|
Kyriakakis G, Kidonakis M, Louka A, Stratakis M. Pd Nanoparticle-Catalyzed Stereospecific Mizoroki-Heck Arylation of cis-1,2-Disilylarylethylenes. J Org Chem 2024; 89:1980-1988. [PMID: 38215468 DOI: 10.1021/acs.joc.3c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In the presence of catalytic amounts of Pd nanoparticles, generated from Pd2dba3/Ag(I), cis-1,2-ditrimethylsilylarylethylenes undergo with aryl iodides a stereospecific Mizoroki-Heck arylation leading to trans-ditrimethylsilyldiarylethylenes. This chemoselectivity is in contrast to that of their trimethylgermyl analogues, which are arylated at the position of the C-Ge bonds. trans-1,2-Ditrimethylsilylarylethylenes are completely unreactive under the standard reaction conditions. The reaction tolerates the presence of boryl, silyl, or bromine substituents on the aryl iodides. From a mechanistic point of view, the process involves syn-arylpalladation followed by syn-dehydropalladation.
Collapse
Affiliation(s)
- Georgios Kyriakakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Marios Kidonakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Anastasia Louka
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| |
Collapse
|
9
|
Landge VG, Mishra A, Thotamune W, Bonds AL, Alahakoon I, Karunarathne A, Young MC. Selective C-H Activation of Unprotected Allylamines by Control of Catalyst Speciation. CHEM CATALYSIS 2023; 3:100809. [PMID: 37982045 PMCID: PMC10653252 DOI: 10.1016/j.checat.2023.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An outstanding challenge in the Pd-catalyzed functionalization of allylamines is the control of stereochemistry. Terminal alkenes preferentially undergo Heck-type reactions, while internal alkenes may undergo a mixture of Heck and C-H activation reactions that give mixtures of stereochemical products. In the case of unprotected allylamines, the challenge in achieving C-H activation is that facile in situ formation of Pd nanoparticles leads to preferential formation of trans rather than cis-substituted products. In this study we have demonstrated the feasibility of using mono-protected amino acid (MPAA) ligands as metal protecting groups to prevent aggregation and reduction, allowing the selective synthesis of free cis-arylated allylamines. This method complements Heck-selective methods, allowing complete stereochemical control over the synthesis of cinnamylamines, an important class of amine that can serve as therapeutics directly or as advanced intermediates. To highlight the utility of the methodology, we have demonstrated rapid access to mu opioid receptor ligands.
Collapse
Affiliation(s)
- Vinod G. Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ankita Mishra
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Audrey L. Bonds
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Indunil Alahakoon
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Michael C. Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
10
|
Luan YY, Li JY, Gou XY, Shi WY, Ding T, Zhang Z, Chen X, Liu XY, Liang YM. Stereoselective Synthesis of Multisubstituted Alkenes via Ruthenium-Catalyzed Remote Migration Arylation of Nonactivated Olefins. Org Lett 2023. [PMID: 37399076 DOI: 10.1021/acs.orglett.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Polysubstituted alkenes are an important class of organic intermediates that widely exist in various natural products and drug molecules. Herein, we reported a stereoselective synthesis of multisubstituted alkenes via ruthenium-catalyzed remote migration arylation of nonactivated olefins. This strategy exhibited wide substrate suitability and excellent functional group tolerance. In addition, we demonstrated the indispensable role of two types of ruthenium through mechanism experiments.
Collapse
Affiliation(s)
- Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jin-Ye Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Tian Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
11
|
Feng Y, Wang J, Yang J, Chen F, Zhang Z, Ke C, Lin J, Lin H. Native Amino Group Directed Site-Selective ε-C(sp 2)-H Iodination of Primary Amines. Org Lett 2023; 25:1348-1352. [PMID: 36825798 DOI: 10.1021/acs.orglett.2c04288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Selective remote C-H activating amines using unmodified NH2 as a native directing group demonstrate compelling synthetic utilities. The 3-arylpropan-1-amine moiety is present in many drugs and candidates in clinical trials. Selective iodination of 3-arylpropan-1-amines on remote aryl rings gives valuable intermediates for modifying bioactive molecules and synthesizing quinolones. Here we report the first palladium-catalyzed selective ε-C(sp2)-H iodination of free 3-arylpropan-1-amines via a seven-membered palladacycle.
Collapse
Affiliation(s)
- Yueyao Feng
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Wang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Yang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Fengyuan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zemin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Chongrong Ke
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
12
|
γ,γ′-Diarylation of allylamines by a directed chain-walk. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
13
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
14
|
Shing Cheung KP, Fang J, Mukherjee K, Mihranyan A, Gevorgyan V. Asymmetric intermolecular allylic C-H amination of alkenes with aliphatic amines. Science 2022; 378:1207-1213. [PMID: 36520916 PMCID: PMC10111612 DOI: 10.1126/science.abq1274] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aliphatic allylic amines are found in a great variety of complex and biorelevant molecules. The direct allylic C-H amination of alkenes serves as the most straightforward method toward these motifs. However, use of widely available internal alkenes with aliphatic amines in this transformation remains a synthetic challenge. In particular, palladium catalysis faces the twin challenges of inefficient coordination of Pd(II) to internal alkenes but excessively tight and therefore inhibitory coordination of Pd(II) by basic aliphatic amines. We report a general solution to these problems. The developed protocol, in contrast to a classical Pd(II/0) scenario, operates through a blue light-induced Pd(0/I/II) manifold with mild aryl bromide oxidant. This open-shell approach also enables enantio- and diastereoselective allylic C-H amination.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Andranik Mihranyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
- Department of Biochemistry, The University of Texas
Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Divergent regioselective Heck-type reaction of unactivated alkenes and N-fluoro-sulfonamides. Nat Commun 2022; 13:6297. [PMID: 36272976 PMCID: PMC9588056 DOI: 10.1038/s41467-022-33996-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
The control of regioselectivity in Heck-type reaction of unactivated alkenes represents a longstanding challenge due to several detachable hydrogens in β–H elimination step, which generally afford either one specific regioisomer or a mixture. Herein, a copper-catalyzed intermolecular Heck-type reaction of unactivated alkenes and N-fluoro-sulfonamides with divergent regioselectivities is reported. The complete switch of regioselectivity mainly depends on the choice of different additives. Employment of alcohol solvent gives access to vinyl products, while the addition of carboxylate leads to the formation of allylic products. In addition, exclusion of these two promoting factors results in β-lactams via a C–N reductive elimination. This protocol shows a broad substrate scope for both alkenes and structurally diverse N-fluoro-sulfonamides, producing the corresponding products with excellent regio- and stereoselectivities. Further control experiments and DFT calculations provide in-depth insights into the reaction mechanism, highlighting the distinct effect of the additives on a bidentate auxiliary-stabilized Cu(III) intermediate. The control of regioselectivity in Heck-type reactions of unactivated alkenes is challenging. Here, the authors realize regiodivergent Heck-type reactions of unactivated alkenes and N-fluoro-sulfonamides.
Collapse
|
16
|
Yin F, Chen Y, Luo Z, Li S, Kong L, Wang X. Aryl Halides as Halogenation Reagents in the Bromination and Iodination of Arene-Tethered Diols. Org Lett 2022; 24:6510-6514. [PMID: 36052998 DOI: 10.1021/acs.orglett.2c02358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic halides constitute a valuable class of building blocks that are commonly used in organic synthesis. In this study, we demonstrate usage of aryl bromides and aryl iodides in C-Br or C-I bond formation. Methyl 2-bromobenzoate and 2-nitrophenyl iodides were developed as mild and effective bromination and iodination reagents for functionalization of arene-tethered diols. This efficient cascaded catalysis can be applied to the total syntheses of natural product Mafaicheenamine A and Claulamine A.
Collapse
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yifan Chen
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shang Li
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
17
|
Xi Y, Huang W, Wang C, Ding H, Xia T, Wu L, Fang K, Qu J, Chen Y. Catalytic Asymmetric Diarylation of Internal Acyclic Styrenes and Enamides. J Am Chem Soc 2022; 144:8389-8398. [PMID: 35482430 DOI: 10.1021/jacs.2c03411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enantioselective transformations of olefins are among the most important strategies for the asymmetric synthesis of organic compounds. Chemo-, diastereo-, and stereoselective control of reactions with internal acyclic alkenes for the construction of functionalized acyclic alkanes still remain a persistent challenge. Here, we report a palladium-catalyzed asymmetric regiodivergent Heck-type diarylation of internal acyclic alkenes. The 1,2-diarylation of two accessible acyclic alkenes, cinnamyl carbamates and enamides with diazonium salts and aromatic boronic acids, furnishes products containing vicinal stereogenic centers via the stereospecific formation of carbonyl coordination-assisted transient palladacycles. Moreover, the asymmetric migratory diarylation of enamides enables the formation of incontiguous stereocenters by an interrupted diastereoselective 1,3-chain-walking process. This protocol streamlines access to highly functionalized multisubstituted enantioenriched carbamates and amine derivatives which are embedded in the key biologically active motifs.
Collapse
Affiliation(s)
- Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haojie Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
|
19
|
Kang T, González JM, Li ZQ, Foo K, Cheng PTW, Engle KM. Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - José Manuel González
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zi-Qi Li
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Klement Foo
- Fibrosis Chemistry, Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Peter T. W. Cheng
- Fibrosis Chemistry, Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Keary M. Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Lin C, Chen S, Wang Y, Gao F, Shen L. Ni(ii)-Catalyzed intermolecular selective Heck-type arylation of unactivated alkenes with arylboronic acids. Org Chem Front 2022. [DOI: 10.1039/d1qo01579f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work: directing group-assisted Ni(ii)-catalyzed intermolecular Heck arylation of unactivated alkenes.
Collapse
Affiliation(s)
- Cong Lin
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Sai Chen
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yihua Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
21
|
Landge VG, Bonds AL, Mncwango TA, Mather CB, Saleh Y, Fields HL, Lee F, Young MC. Amine-Directed Mizoroki-Heck Arylation of Free Allylamines. Org Chem Front 2022. [DOI: 10.1039/d2qo00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition metal-catalyzed Mizoroki−Heck reaction is a powerful method to synthesize C–C bonds, allowing access to several important pharmaceuticals. Traditionally free amines have not been compatible with these approaches due...
Collapse
|