1
|
Sankar DC, Perali RS. Stereospecific Synthesis of 1,2,3-Trisubstituted Cyclopropanes from Pseudoglycals. Org Lett 2025; 27:2981-2986. [PMID: 40080810 DOI: 10.1021/acs.orglett.5c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Strategic design for constructing optically pure 1,2,3-trisubstituted cyclopropanes with three contiguous stereocenters represents a formidable challenge in synthetic organic chemistry. Herein, we report a simple and highly enantiospecific transformation of pseudoglycals into chiral 1,2,3-trisubstituted cyclopropanes, featuring three consecutive stereocenters, involving a stereospecific [1,4]-Wittig rearrangement. The effects of functional group orientation and conformational preferences were studied. Successful gram-scale preparations and subsequent derivatization reactions yielded various cyclopropane scaffolds with multiple stereocenters.
Collapse
Affiliation(s)
- Drisya Chittadi Sankar
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad-500046, India
| | - Ramu Sridhar Perali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad-500046, India
| |
Collapse
|
2
|
Wang X, Shi Z, Xu M, Lin X, Wang Z. Asymmetric Radical Cyclopropanation of α,β-Unsaturated Amides with α-Boryl and α-Silyl Dibromomethanes via Cr(II)-Based Metalloradical Catalysis. J Am Chem Soc 2025; 147:7282-7292. [PMID: 39973185 DOI: 10.1021/jacs.4c13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Transition-metal-catalyzed asymmetric carbene-transfer reactions represent a powerful strategy for synthesizing chiral cyclopropanes. However, current methods predominantly rely on stabilized carbene-bearing α-π-conjugated groups, restricting access to less stabilized carbenes, such as α-silyl and α-boryl carbenes. Herein, we present an unprecedented Cr(II)-based metalloradical system for the asymmetric cyclopropanation of α,β-unsaturated amides with α-boryl and α-silyl dibromomethanes in the presence of Mn as the reducing agent. Employing a chiral chromium complex, the reaction proceeds under mild conditions, yielding cyclopropanes with three contiguous stereocenters in high diastereo- and enantioselectivities. This method features a Cr-catalyzed radical-based stepwise cyclopropanation mechanism. The broad substrate scope, encompassing various α,β-unsaturated amides, demonstrates the protocol's versatility and robustness. Mechanistic insights, supported by experimental and computational studies, suggest the formation of α-Cr(III)-alkyl radical intermediates, delineating a pathway distinct from that of classical concerted cyclopropanations. This approach provides a powerful tool for synthesizing highly functionalized cyclopropanes, offering high potential for applications in drug discovery and development.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Mingrui Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Xiaoyu Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
- Westlake Institute for Advanced Study, Institute of Natural Sciences, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
3
|
Yang W, Zhao Z, Lan Y, Dong Z, Chang R, Bai Y, Liu S, Li SJ, Niu L. Heterocoupling Two Similar Benzyl Radicals by Dual Photoredox/Cobalt Catalysis. Angew Chem Int Ed Engl 2025; 64:e202421256. [PMID: 39718362 DOI: 10.1002/anie.202421256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Transition-metal-regulated radical cross coupling enables the selective bonding of two distinct transient radicals, whereas the catalytic method for sorting two almost identical transient radicals, especially similar benzyl radicals, is still rare. Herein, we show that leveraging dual photoredox/cobalt catalysis can selectively couple two similar benzyl radicals. Using easily accessible methylarenes and phenylacetates (benzyl N-hydroxyphthalimide (NHPI) esters) as benzyl radical sources, a range of unsymmetrical 1,2-diarylethane classes via the 1°-1°, 1°-2°, 1°-3°, 2°-2°, 2°-3° and 3°-3° couplings were obtained with broad functional group tolerance. Besides the photochemical continuous flow synthesis, the one-pot procedure that directly uses phenylacetic acids and NHPI as the starting materials to avoid the pre-preparation of benzyl NHPI esters for the gram-scale synthesis is also feasible and affords good yields, showcasing the synthetic utility of our protocol.
Collapse
Affiliation(s)
- Wei Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yu Lan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Zhou Dong
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Ruiying Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yihang Bai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Shihan Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Shi-Jun Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
| | - Linbin Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
| |
Collapse
|
4
|
Liu M, Wang Y, Gao C, Jia J, Zhu Z, Qiu Y. Electrochemical Cyclopropanation of Unactivated Alkenes with Methylene Compounds. Angew Chem Int Ed Engl 2025; 64:e202425634. [PMID: 39853905 DOI: 10.1002/anie.202425634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Cyclopropanes are prevalent in natural products, pharmaceuticals, and bioactive compounds, functioning as a significant structural motif. Although a series of methods have been developed for the construction of the cyclopropane skeleton, the development of a direct and efficient strategy for the rapid synthesis of cyclopropanes from bench-stable starting materials with a broad substrate scope and functional group tolerance remains challenging and highly desirable. Herein, we present an electrochemical method for the direct cyclopropanation of unactivated alkenes using active methylene compounds. The strategy shows a broad substrate scope with a high level of functional group compatibility, as well as potential application as demonstrated by late-stage cyclopropanation of complex molecules and drug derivatives. Further mechanistic investigations suggest that Cp2Fe (Fc) plays an essential role as an oxidative mediator in generating radicals from active methylene compounds.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chao Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jingpei Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
5
|
Zhang X, Sivaguru P, Pan Y, Wang N, Zhang W, Bi X. The Carbene Chemistry of N-Sulfonyl Hydrazones: The Past, Present, and Future. Chem Rev 2025; 125:1049-1190. [PMID: 39792453 DOI: 10.1021/acs.chemrev.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
N-Sulfonyl hydrazones have been extensively used as operationally safe carbene precursors in modern organic synthesis due to their ready availability, facile functionalization, and environmental benignity. Over the past two decades, there has been tremendous progress in the carbene chemistry of N-sulfonyl hydrazones in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Many carbene transfer reactions of N-sulfonyl hydrazones are unique and cannot be achieved by any alternative methods. The discovery of novel N-sulfonyl hydrazones and the development of highly enantioselective new reactions and skeletal editing reactions represent the notable recent achievements in the carbene chemistry of N-sulfonyl hydrazones. This review describes the overall progress made in the carbene chemistry of N-sulfonyl hydrazones, organized based on reaction types, spotlighting the current state-of-the-art and remaining challenges to be addressed in the future. Special emphasis is devoted to identifying, describing, and comparing the scope and limitations of current methodologies, key mechanistic scenarios, and potential applications in the synthesis of complex molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yongzhen Pan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Nan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenjie Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Roy S, Wang Y, Zhao X, Dayananda T, Chu JM, Zhang Y, Fasan R. Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles. J Am Chem Soc 2024; 146:19673-19679. [PMID: 39008121 PMCID: PMC11672115 DOI: 10.1021/jacs.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yining Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xinyi Zhao
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Thakshila Dayananda
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
7
|
Snabilié DD, Ham R, Reek JNH, de Bruin B. Light Induced Cobalt(III) Carbene Radical Formation from Dimethyl Malonate As Carbene Precursor. Organometallics 2024; 43:1299-1307. [PMID: 38873572 PMCID: PMC11167645 DOI: 10.1021/acs.organomet.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Radical-type carbene transfer catalysis is an efficient method for the direct functionalization of C-H and C=C bonds. However, carbene radical complexes are currently formed via high-energy carbene precursors, such as diazo compounds or iodonium ylides. Many of these carbene precursors require additional synthetic steps, have an explosive nature, or generate halogenated waste. Consequently, the utilization of carbene radical catalysis is limited by specific carbene precursors that access the carbene radical intermediate. In this study, we generate a cobalt(III) carbene radical complex from dimethyl malonate, which is commercially available and bench-stable. EPR and NMR spectroscopy were used to identify the intermediates and showed that the cobalt(III) carbene radical complex is formed upon light irradiation. In the presence of styrene, carbene transfer occurred, forming cyclopropane as the product. With this photochemical method, we demonstrate that dimethyl malonate can be used as an alternative carbene precursor in the formation of a cobalt(III) carbene radical complex.
Collapse
Affiliation(s)
- Demi D. Snabilié
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Rens Ham
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Bas de Bruin
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
8
|
Wang G, Yuan JL, Zhou R, Zou HB. Iron(II) Phthalocyanine-Catalyzed Homodimerization and Tandem Diamination of Diazo Compounds with Primary Amines: Access to Construct Substituted 2,3-Diaminosuccinonitriles in One-Pot. J Org Chem 2024. [PMID: 38783702 DOI: 10.1021/acs.joc.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We herein first report the homodimerization and tandem diamination of diazo compounds with primary amines catalyzed by the iron(II) phthalocyanine (PcFe(II)), which can construct one C-C bond and two C-N bonds within 20 min in one-pot. Compared to the traditional metal-catalyzed N-H insertion reaction between amines with diazo reagents, the developed reaction almost does not generate the N-H insertion product, but the homodimerization/tandem diamination product. The proposed mechanism studies indicate that primary amines play a crucial role in the homocoupling of diazo compounds via dimerization of iron(III)-acetonitrile radical generated from the reaction between diazoacetonitrile with PcFe(II) coordinated by bis(amines); the β-hydride elimination is involved, and then, the attack of primary amines toward the carbon atoms on the formed C-C bond is followed. Moreover, this novel reaction can be used to effectively prepare substituted 2,3-diaminosuccinonitriles with high yields and even up to >99:1 d.r., encouragingly these products contain both 1,2-diamines and succinonitrile motifs, which are two classes of important organic compounds with significant applications in many yields. This reaction is also suitable for the gram-scale preparation of 2,3-bis(phenylamino)succinonitrile (2a) with a yield of 84%. Therefore, the developed reaction represents a new type of transformation.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Jia-Li Yuan
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Rong Zhou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Huai-Bo Zou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| |
Collapse
|
9
|
Lee WCC, Zhang XP. Metalloradical Catalysis: General Approach for Controlling Reactivity and Selectivity of Homolytic Radical Reactions. Angew Chem Int Ed Engl 2024; 63:e202320243. [PMID: 38472114 PMCID: PMC11097140 DOI: 10.1002/anie.202320243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| | - X. Peter Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| |
Collapse
|
10
|
Xue L, Gao C, Zhang X, Fan X. Synthesis of Acyl Cyclopentaquinolinones through Simultaneous Construction of the Heterocyclic Scaffold and Introduction of the Acyl Group. J Org Chem 2024; 89:6292-6305. [PMID: 38625738 DOI: 10.1021/acs.joc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Presented herein is an effective and concise synthesis of acyl cyclopentaquinolinone derivatives via the cascade reactions of N-(o-ethynylaryl)acrylamides with α-diazo carbonyl compounds. The formation of product involves a visible light-induced radical formation from α-diazo carbonyl compound followed by its addition onto the acrylamide moiety to trigger double radical annulation, single-electron oxidation, and β-elimination. To our knowledge, this is the first example in which the cyclopentaquinolinone scaffold was constructed along with the introduction of an acyl group under visible light irradiation conditions. Compared with literature methods for similar purpose, this newly developed protocol has advantages such as readily accessible substrates, mild reaction conditions, valuable products, concise synthetic procedure, and high sustainability. With all these merits, this method is expected to find wide applications in the construction of related acyl heterocyclic skeletons.
Collapse
Affiliation(s)
- Lian Xue
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Clark KF, Murphy JA. Trio of radicals choreographed for versatile chemical reaction. Nature 2024; 628:42-43. [PMID: 38570714 DOI: 10.1038/d41586-024-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
12
|
Kong L, Gan XC, van der Puyl Lovett VA, Shenvi RA. Alkene Hydrobenzylation by a Single Catalyst That Mediates Iterative Outer-Sphere Steps. J Am Chem Soc 2024; 146:2351-2357. [PMID: 38232310 PMCID: PMC11817809 DOI: 10.1021/jacs.3c13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cross-coupling catalysts typically react and unite functionally distinct partners via sequential inner-sphere elementary steps: coordination, migratory insertion, reductive elimination, etc. Here, we report a single catalyst that cross-couples styrenes and benzyl bromides via iterative outer-sphere steps: metal-ligand-carbon interactions. Each partner forms a stabilized radical intermediate, yet heterocoupled products predominate. The system is redox-neutral and, thus, avoids exogenous oxidants, resulting in simple and scalable conditions. Numerous variations of alkene hydrobenzylation are made possible, including access to the privileged heterodibenzyl (1,2-diarylethane) motif and challenging quaternary carbon variants.
Collapse
Affiliation(s)
- Lingran Kong
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Xu-cheng Gan
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Vincent A. van der Puyl Lovett
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States; Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States; Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Teye-Kau JHG, Ayodele MJ, Pitre SP. Vitamin B 12 -Photocatalyzed Cyclopropanation of Electron-Deficient Alkenes Using Dichloromethane as the Methylene Source. Angew Chem Int Ed Engl 2024; 63:e202316064. [PMID: 38015966 DOI: 10.1002/anie.202316064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The cyclopropyl group is of great importance in medicinal chemistry, as it can be leveraged to influence a range of pharmaceutical properties in drug molecules. This report describes a Vitamin B12 -photocatalyzed approach for the cyclopropanation of electron-deficient alkenes using dichloromethane (CH2 Cl2 ) as the methylene source. The reaction proceeds in good to excellent yields under mild conditions, has excellent functional group compatibility, and is highly chemoselective. The scope could also be extended to the preparation of D2 -cyclopropyl and methyl-substituted cyclopropyl adducts starting from CD2 Cl2 and 1,1-dichloroethane, respectively.
Collapse
Affiliation(s)
- John Hayford G Teye-Kau
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| | - Mayokun J Ayodele
- Weaver Labs LLC, 1110 S. Innovation Way Dr., #130, Stillwater, OK 74074, USA
| | - Spencer P Pitre
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, OK 74078, USA
| |
Collapse
|
14
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
15
|
Sailer J, Sharland JC, Bacsa J, Harris CF, Berry JF, Musaev DG, Davies HML. Diruthenium Tetracarboxylate-Catalyzed Enantioselective Cyclopropanation with Aryldiazoacetates. Organometallics 2023; 42:2122-2133. [PMID: 37592951 PMCID: PMC10428512 DOI: 10.1021/acs.organomet.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/19/2023]
Abstract
A series of chiral bowl-shaped diruthenium(II,III) tetracarboxylate catalysts were prepared and evaluated in asymmetric cyclopropanations with donor/acceptor carbenes derived from aryldiazoacetates. The diruthenium catalysts self-assembled to generate C4-symmetric bowl-shaped structures in an analogous manner to their dirhodium counterparts. The optimum catalyst was found to be Ru2(S-TPPTTL)4·BArF [S-TPPTTL = (S)-2-(1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate, BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate], which resulted in the cyclopropanation of a range of substrates in up to 94% ee. Synthesis and evaluation of first-row transition-metal congeners [Cu(II/II) and Co(II/II)] invariably resulted in catalysts that afforded little to no asymmetric induction. Computational studies indicate that the carbene complexes of these dicopper and dicobalt complexes, unlike the dirhodium and diruthenium systems, are prone to the loss of carboxylate ligands, which would destroy the bowl-shaped structure critical for asymmetric induction.
Collapse
Affiliation(s)
- Joshua
K. Sailer
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Caleb F. Harris
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F. Berry
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Center for Scientific Computation, Emory University, 1521
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
17
|
Epping RF, Vesseur D, Zhou M, de Bruin B. Carbene Radicals in Transition-Metal-Catalyzed Reactions. ACS Catal 2023; 13:5428-5448. [PMID: 37123600 PMCID: PMC10127290 DOI: 10.1021/acscatal.3c00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Discovered as organometallic curiosities in the 1970s, carbene radicals have become a staple in modern-day homogeneous catalysis. Carbene radicals exhibit nucleophilic radical-type reactivity orthogonal to classical electrophilic diamagnetic Fischer carbenes. Their successful catalytic application has led to the synthesis of a myriad of carbo- and heterocycles, ranging from simple cyclopropanes to more challenging eight-membered rings. The field has matured to employ densely functionalized chiral porphyrin-based platforms that exhibit high enantio-, regio-, and stereoselectivity. Thus far the focus has largely been on cobalt-based systems, but interest has been growing for the past few years to expand the application of carbene radicals to other transition metals. This Perspective covers the advances made since 2011 and gives an overview on the coordination chemistry, reactivity, and catalytic application of carbene radical species using transition metal complexes and catalysts.
Collapse
Affiliation(s)
- Roel F.J. Epping
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David Vesseur
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Orłowska K, Santiago JV, Krajewski P, Kisiel K, Deperasińska I, Zawada K, Chaładaj W, Gryko D. UV Light Is No Longer Required for the Photoactivation of 1,3,4-Oxadiazolines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - João V. Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kacper Kisiel
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32, 02-668 Warsaw, Poland
| | - Katarzyna Zawada
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Physical Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
20
|
Zhou SS, Shen JH, Liu WK, Sun XY, Song JY, Wang Z, Qi ZH, Wang XW. Chiral oxalamide phosphine (COAP)-Pd-catalyzed enantioselective cascade formal [4 + 1] annulation for enantioenriched 2,3-disubstituted indolines and further DFT study on regio- and stereocontrol. Org Chem Front 2023. [DOI: 10.1039/d3qo00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
COAP-Pd-catalyzed asymmetric cascade formal [4 + 1] annulation was developed between racemic vinyl benzoxazinones and N-tosylhydrazone sodium salts, affording trans-2,3-disubstituted indolines in good yields with high stereoselectivity.
Collapse
Affiliation(s)
- Sheng-Suo Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jun-Hao Shen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wen-Kai Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xing-Yun Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jia-Yu Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Zheng-Hang Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Spontaneous Release of Metalloradicals and Coordinatively Unsaturated Species in Asymmetric Iridium Dimers to Promote C-N Bond Formation. INORGANICS 2022. [DOI: 10.3390/inorganics10120237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
An unusual iridium dimer 1, [(4-cpbo)Ir(μ-Cl)(μ-O)Ir(4-cpbo)] (4-cpbo = 4-chlorophenylbenzoxazolato-N,C2), was obtained by the oxidative addition of oxygen and reductive elimination of chlorine from a precursor [(4-cpbo)2Ir(μ-Cl)]2. This iridium dimer 1 has a metastable structure with an asymmetric bridge, can spontaneously release metalloradicals and coordinatively unsaturated species in solution at room temperature, and exhibits high catalytic ability for synthetic applications.
Collapse
|
22
|
Nguyen T, Sreekumar S, Wang S, Jiang Q, Montel F, Buono F. Enantioselective Synthesis of trans-Disubstituted Cyclopropyltrifluoroborate Building Blocks through Ru-Catalyzed Cyclopropanation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thach Nguyen
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Sanil Sreekumar
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Shuai Wang
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Qi Jiang
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Florian Montel
- Discovery Research, Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Strasse, Biberach an der Riss 88400, Germany
| | - Frederic Buono
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| |
Collapse
|
23
|
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
24
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
25
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes-Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022; 61:e202202175. [PMID: 35415937 DOI: 10.1002/anie.202202175] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Stereoselective cyclopropanation reaction of alkenes is usually achieved by metal complexes via singlet-metal-carbene intermediates. However, previous transition-metal-catalyzed cyclopropanation of alkenes with acylsilanes afforded low diastereoselectivity. Herein, we report the first visible-light-induced transition-metal-free cyclopropanation reaction of terminal alkenes with trifluoroacetylsilanes and difluoroacetylsilanes. Both aromatic and aliphatic alkenes as well as electron-deficient alkenes are suitable substrates for the highly cis-selective [2+1] cyclization reaction. A combination of experimental and computational studies identified triplet carbenes as being key intermediates in this transformation. The gram scale reaction and late-stage functionalization demonstrated the synthetic potential of this strategy.
Collapse
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xingxing Gong
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
26
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
27
|
Wang S, Li T, Gu C, Han J, Zhao CG, Zhu C, Tan H, Xie J. Decarboxylative tandem C-N coupling with nitroarenes via S H2 mechanism. Nat Commun 2022; 13:2432. [PMID: 35508545 PMCID: PMC9068905 DOI: 10.1038/s41467-022-30176-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aromatic tertiary amines are one of the most important classes of organic compounds in organic chemistry and drug discovery. It is difficult to efficiently construct tertiary amines from primary amines via classical nucleophilic substitution due to consecutive overalkylation. In this paper, we have developed a radical tandem C-N coupling strategy to efficiently construct aromatic tertiary amines from commercially available carboxylic acids and nitroarenes. A variety of aromatic tertiary amines can be furnished in good yields (up to 98%) with excellent functional group compatibility under mild reaction conditions. The use of two different carboxylic acids also allows for the concise synthesis of nonsymmetric aromatic tertiary amines in satisfactory yields. Mechanistic studies suggest the intermediacy of the arylamine–(TPP)Fe(III) species and might provide a possible evidence for an SH2 (bimolecular homolytic substitution) pathway in the critical C-N bond formation step. Aromatic tertiary amines are versatile building blocks in organic synthesis. In this article, the authors report on an iron-catalysed reaction for the decarboxylative C-N coupling from carboxylic acids and nitroarenes, leading to non-symmetric tertiary aromatic amines.
Collapse
Affiliation(s)
- Shuaishuai Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Tingrui Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chengyihan Gu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 200032, Shanghai, China. .,Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, China.
| | - Hairen Tan
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082, Changsha, China.
| |
Collapse
|
28
|
Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes‐Derived Carbenes to Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yizhi Zhang
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Gang Zhou
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xingxing Gong
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Zhuanzhuan Guo
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| | - Xiao Shen
- Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University 299 Bayi Road Wuhan Hubei 430072 China
| |
Collapse
|
29
|
Caló FP, Zimmer A, Bistoni G, Fürstner A. From Serendipity to Rational Design: Heteroleptic Dirhodium Amidate Complexes for Diastereodivergent Asymmetric Cyclopropanation. J Am Chem Soc 2022; 144:7465-7478. [PMID: 35420801 PMCID: PMC9052758 DOI: 10.1021/jacs.2c02258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A heteroleptic dirhodium
paddlewheel complex comprising three chiral
carboxylate ligands and one achiral acetamidate ligand has recently
been found to be uniquely effective in catalyzing the asymmetric cyclopropanation
of olefins with α-stannylated (silylated and germylated) α-diazoacetate
derivatives. A number of control experiments in combination with detailed
computational studies provide compelling evidence that an interligand
hydrogen bond between the −NH group of the amidate and the
ester carbonyl group of the reactive rhodium carbene intermediate
plays a quintessential role in the stereodetermining transition state.
The penalty for distorting this array outweighs steric arguments and
renders two of the four conceivable transitions states unviable. Based
on this mechanistic insight, the design of the parent catalyst is
revisited herein: placement of appropriate peripheral substituents
allows high levels of diastereocontrol to be imposed upon cyclopropanation,
which the original catalyst lacks. Because the new complexes allow
either trans- or cis-configured stannylated cyclopropanes to be made
selectively and in excellent optical purity, this transformation also
marks a rare case of diastereodivergent asymmetric catalysis. The
products are amenable to stereospecific cross coupling with aryl halides
or alkenyl triflates; these transformations appear to be the first
examples of the formation of stereogenic quaternary carbon centers
by the Stille reaction; carbonylative coupling is also achieved. Moreover,
tin/lithium exchange affords chiral lithium enolates, which can be
intercepted with a variety of electrophilic partners. The virtues
and inherent flexibility of this new methodology are illustrated by
an efficient synthesis of two salinilactones, extremely scarce bacterial
metabolites with signaling function involved in the self-regulatory
growth inhibition of the producing strain.
Collapse
Affiliation(s)
| | - Anne Zimmer
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr D-45470, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr D-45470, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr D-45470, Germany
| |
Collapse
|
30
|
Wang J, Xie J, Lee WCC, Wang DS, Zhang XP. Radical differentiation of two ester groups in unsymmetrical diazomalonates for highly asymmetric olefin cyclopropanation. CHEM CATALYSIS 2022; 2:330-344. [PMID: 35494099 PMCID: PMC9049825 DOI: 10.1016/j.checat.2021.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diazomalonates have been demonstrated as effective metalloradicophiles for asymmetric radical olefin cyclopropanation via Co(II)-metalloradical catalysis (MRC). Supported by D 2-symmetric chiral amidoporphyrin ligand, Co(II)-based metalloradical system can efficiently activate unsymmetrical methyl phenyl diazomalonate (MPDM) with effective differentiation of the two ester groups for asymmetric cyclopropanation, enabling stereoselective construction of 1,1-cyclopropanediesters bearing two contiguous chiral centers, including all-carbon quaternary stereogenic center. The Co(II)-catalyzed asymmetric cyclopropanation, which operates at room temperature without slow addition of the diazo compound, is generally applicable to broad-ranging olefins and tolerates various functionalities, providing a streamlined synthesis of chiral 1,1-cyclopropanediesters in high yields with both high diastereoselectivity and enantioselectivity. Combined computational and experimental studies support the underlying stepwise radical mechanism for Co(II)-catalyzed cyclopropanation. In addition to functioning as 1,3-dipoles for forming five-membered structures, enantioenriched (E)-1,1-cyclopropanediesters serve as useful building blocks for stereoselective synthesis of different cyclopropane derivatives. In addition, the enantioenriched (E)-1,1-cyclopropanediesters can be stereoselectively converted to (Z)-diastereomers.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Lead contact
- Correspondence:
| |
Collapse
|
31
|
Ke J, Lee WCC, Wang X, Wang Y, Wen X, Zhang XP. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J Am Chem Soc 2022; 144:2368-2378. [PMID: 35099966 PMCID: PMC9032462 DOI: 10.1021/jacs.1c13154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Alkynyldiazomethanes, generated in situ from the corresponding sulfonyl hydrazones in the presence of a base, can serve as effective metalloradicophiles in Co(II)-based metalloradical catalysis (MRC) for asymmetric cyclopropanation of alkenes. With D2-symmetric chiral amidoporphyrin 2,6-DiMeO-QingPhyrin as the optimal supporting ligand, the Co(II)-based metalloradical system can efficiently activate different α-alkynyldiazomethanes at room temperature for highly asymmetric cyclopropanation of a broad range of alkenes. This catalytic radical process provides a general synthetic tool for stereoselective construction of alkynyl cyclopropanes in high yields with high both diastereoselectivity and enantioselectivity. Combined computational and experimental studies offer several lines of evidence in support of the underlying stepwise radical mechanism for the Co(II)-catalyzed olefin cyclopropanation involving a unique α-metalloradical intermediate that is associated with two resonance forms of α-Co(III)-propargyl radical and γ-Co(III)-allenyl radical. The resulting enantioenriched alkynyl cyclopropanes, as showcased with several stereospecific transformations, may serve as valuable chiral building blocks for stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yong Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xin Wen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
32
|
Sakurai S, Inagaki T, Kodama T, Yamanaka M, Tobisu M. Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes. J Am Chem Soc 2022; 144:1099-1105. [PMID: 35019275 DOI: 10.1021/jacs.1c11497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, catalytically transferable carbenes are limited to electron-deficient and neutral derivatives, and electron-rich carbenes bearing an alkoxy group (i.e., Fischer-type carbenes) cannot be used in catalytic cyclopropanation because of the lack of appropriate carbene precursors. We report herein that acylsilanes can serve as a source of electron-rich carbenes under palladium catalysis, enabling cyclopropanation of a range of alkenes. This reactivity profile is in sharp contrast to that of metal-free siloxycarbenes, which are unreactive toward normal alkenes. The resulting siloxycyclopropanes serve as valuable homoenolate equivalents, allowing rapid access to elaborate β-functionalized ketones.
Collapse
Affiliation(s)
- Shun Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Inagaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Liu W, Lavagnino MN, Gould CA, Alcázar J, MacMillan DWC. A biomimetic S H2 cross-coupling mechanism for quaternary sp 3-carbon formation. Science 2021; 374:1258-1263. [PMID: 34762491 PMCID: PMC8926084 DOI: 10.1126/science.abl4322] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bimolecular homolytic substitution (SH2) is an open-shell mechanism that is implicated across a host of biochemical alkylation pathways. Surprisingly, however, this radical substitution manifold has not been generally deployed as a design element in synthetic C–C bond formation. We found that the SH2 mechanism can be leveraged to enable a biomimetic sp3-sp3 cross-coupling platform that furnishes quaternary sp3-carbon centers, a long-standing challenge in organic molecule construction. This heteroselective radical-radical coupling uses the capacity of iron porphyrin to readily distinguish between the SH2 bond-forming roles of open-shell primary and tertiary carbons, combined with photocatalysis to generate both radical classes simultaneously from widely abundant functional groups. Mechanistic studies confirm the intermediacy of a primary alkyl–Fe(III) species prior to coupling and provide evidence for the SH2 displacement pathway in the critical quaternary sp3-carbon bond formation step.
Collapse
Affiliation(s)
- Wei Liu
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | | | - Colin A. Gould
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Jesús Alcázar
- Discovery Chemistry, Janssen Research and Development, Janssen-Cilag S.A., C/Jarama 75A, Toledo 45007, Spain
| | | |
Collapse
|
34
|
Chan YC, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet-Spengler Reaction with Varied Nitrogen-Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021; 60:24573-24581. [PMID: 34487418 PMCID: PMC8556314 DOI: 10.1002/anie.202109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Herein we report an organocatalytic enantioselective functionalization of heterocyclic carboxaldehydes via the Pictet-Spengler reaction. Through careful pairing of novel squaramide and Brønsted acid catalysts, our method tolerates a breadth of heterocycles, enabling preparation of a series of heterocycle conjugated β-(tetrahydro)carbolines in good yield and enantioselectivity. Careful selection of carboxylic acid co-catalyst is essential for toleration of a variety of regioisomeric heterocycles. Utility is demonstrated via the three-step stereoselective preparation of pyridine-containing analogues of potent selective estrogen receptor downregulator and U.S. FDA approved drug Tadalafil.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Marcus H Sak
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
35
|
Chan Y, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet‐Spengler Reaction with Varied Nitrogen‐Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuk‐Cheung Chan
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Marcus H. Sak
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Scott A. Frank
- Synthetic Molecule Design and Development Eli Lilly and Company Indianapolis IN 46285 USA
| | - Scott J. Miller
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|