1
|
Li TR, Das C, Piccini G, Tiefenbacher K. Tetrafluororesorcin[4]arene Hexameric Capsule Enables the Expansion of the Reactivity Space in Supramolecular Catalysis. J Am Chem Soc 2025; 147:11108-11116. [PMID: 39908571 DOI: 10.1021/jacs.4c17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
This study presents the development and catalytic applications of the tetrafluororesorcin[4]arene hexameric capsule (capsule II) as a novel supramolecular catalyst. It demonstrates unprecedented catalytic activity, enabling the β-selective glycosylation of glycals to 2-deoxy glycosides─a transformation that has not been achieved before in molecular and supramolecular catalysis. Mechanistic investigations, including experimental and computational studies, revealed that the high β-selectivity arises from a proton wire mechanism along the capsule's surface, coupling glycal protonation with nucleophile deprotonation. Control experiments confirmed the unique reactivity of capsule II compared to its nonfluorinated predecessor, capsule I, showcasing its potential to expand the boundaries of supramolecular catalysis.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Chintu Das
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - GiovanniMaria Piccini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Basel 4056, Switzerland
| |
Collapse
|
2
|
Wei Z, Jing X, Zhao S, Yang Y, Duan C. Modulating the Aggregation States of a Pd 6L 4 Cage for Selectivity Flipping during the Stereo-Divergent Semi-Hydrogenation of Alkynes. Angew Chem Int Ed Engl 2025; 64:e202414894. [PMID: 39503072 DOI: 10.1002/anie.202414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Indexed: 11/22/2024]
Abstract
An enzyme-mimicking catalytic system has been established using a singular palladium-based octahedral cage as the supramolecular reactor, deftly unlocking the off-on-off selectivity in the semi-hydrogenation of alkynes. Water serves as a critical regulator, modulating the catalyst states, reaction rates, and endpoints. The choice of solvent system influences the activity of host-guest binding and the reaction types of homogeneous and heterogeneous catalysis, effectively modifying the reaction steps involved in the Z→E isomerization during the semi-hydrogenation of alkynes. Kinetic and inhibition experiments indicate that the catalyst mimics the binding and activation characteristics of enzymes towards substrates, enabling selective transformations within the confined enzyme-mimicking environment. The utility of this switchable cage-confined catalysis has been demonstrated in the synthesis and modification of complex biologically active molecules with controllable E/Z selectivity. This work sheds light on the design and control of artificial supramolecular counterparts of enzymes, offering fundamental insights into the factors influencing the activity and catalytic selectivity of biological macromolecules.
Collapse
Affiliation(s)
- Zhong Wei
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Song Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yang Yang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Zhang D, Wang L, Wu W, Cao D, Tang H. Macrocyclic catalysis mediated by water: opportunities and challenges. Chem Commun (Camb) 2025; 61:599-611. [PMID: 39655486 DOI: 10.1039/d4cc05733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanospaces within enzymes play a crucial role in chemical reactions in biological systems, garnering significant attention from supramolecular chemists. Inspired by the highly efficient catalysis of enzymes, artificial supramolecular hosts have been developed and widely employed in various reactions, paving the way for innovative and selective catalytic processes and offering new insights into enzymatic catalytic mechanisms. In supramolecular macrocycle systems, weak non-covalent interactions are exploited to enhance substrate solubility, increase local concentration, and stabilize the transition state, ultimately accelerating reaction rates and improving product selectivity. In this review, we will focus on the opportunities and challenges associated with the catalysis of chemical reactions by supramolecular macrocycles in the aqueous phase. Key issues to be discussed include limitations in molecular interaction efficiency in aqueous media, product inhibition, and the incompatibility of catalysts or conditions in "one-pot" reactions.
Collapse
Affiliation(s)
- Dejun Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Li TR, Das C, Cornu I, Prescimone A, Piccini G, Tiefenbacher K. Window[1]resorcin[3]arenes: A Novel Macrocycle Able to Self-Assemble to a Catalytically Active Hexameric Cage. JACS AU 2024; 4:1901-1910. [PMID: 38818056 PMCID: PMC11134363 DOI: 10.1021/jacsau.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The hexameric resorcin[4]arene capsule has been utilized as one of the most versatile supramolecular capsule catalysts. Enlarging its size would enable expansion of the substrate size scope. However, no larger catalytically active versions have been reported. Herein, we introduce a novel class of macrocycles, named window[1]resorcin[3]arene (wRS), that assemble to a cage-like hexameric host. The new host was studied by NMR, encapsulation experiments, and molecular dynamics simulations. The cage is able to bind tetraalkylammonium ions that are too large for encapsulation inside the hexameric resorcin[4]arene capsule. Most importantly, it retained its catalytic activity, and the accelerated conversion of a large substrate that does not fit the closed hexameric resorcin[4]arene capsule was observed. Thus, it will help to expand the limited substrate size scope of the closed hexameric resorcin[4]arene capsule.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Chintu Das
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Ivan Cornu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| |
Collapse
|
5
|
Ferrino G, De Rosa M, Della Sala P, Gaeta C, Talotta C, Soriente A, Cao Z, Maity B, Cavallo L, Neri P. The Resorcinarene Hexameric Capsule as a Supramolecular Photoacid to Trigger Olefin Hydroarylation in Confined Space. Chemistry 2024; 30:e202303678. [PMID: 38373184 DOI: 10.1002/chem.202303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The self-assembled resorcinarene capsule C6 shows remarkable photoacidity upon light irradiation, which is here exploited to catalyze olefin hydroarylation reactions in confined space. An experimental pKa* value range of -3.3--2.8 was estimated for the photo-excited hexameric capsule C6*, and consequently an increase in acidity of 8.8 log units was observed with respect to its ground state (pKa=5.5-6.0). This makes the hexameric capsule the first example of a self-assembled supramolecular photoacid. The photoacid C6* can catalyze hydroarylation reaction of olefins with aromatic substrates inside its cavity, while no reaction occurred between them in the absence of irradiation and/or capsule. DFT calculations corroborated a mechanism in which the photoacidity of C6* plays a crucial role in the protonation step of the aromatic substrate. A further proton transfer to olefin with a concomitant C-C bond formation and a final deprotonation step lead to product releasing.
Collapse
Affiliation(s)
- Giuseppina Ferrino
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Placido Neri
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| |
Collapse
|
6
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
7
|
Li SH, Li BB, Zhao XL, Wu H, Chai RL, Li GY, Zhu D, He G, Zhang HF, Xie KK, Cheng B, Zhao Q. Macrocycle Self-Assembly Hydrogel for High-Efficient Oil-Water Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301934. [PMID: 37271893 DOI: 10.1002/smll.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[33 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[33 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 104 L m-2 h-1 ). This lantern[33 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.
Collapse
Affiliation(s)
- Sheng-Hua Li
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin-Bin Li
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xue-Lin Zhao
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Rui-Lin Chai
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Guang-Yue Li
- Department of Applied Chemistry, College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Di Zhu
- Tianjin Changlu Advanced Materials Research Institute Co., Ltd., Tianjin, 300350, China
| | - Guangrui He
- Tianjin Changlu Advanced Materials Research Institute Co., Ltd., Tianjin, 300350, China
| | - Hai-Fu Zhang
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ke-Ke Xie
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bowen Cheng
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qian Zhao
- Department of Materials, College of Chemical Engineering and Materials Science, Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|
8
|
Horiuchi S, Hayashi M, Umakoshi K. Noncovalent tailoring of coordination complexes by resorcin[4]arene-based supramolecular hosts. Dalton Trans 2023; 52:6604-6618. [PMID: 37128873 DOI: 10.1039/d3dt00710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular recognition of guest molecules in a confined cavity is one of the important phenomena in biological and artificial molecular systems. When the guest is trapped within an artificial nano-space, its conformation is fixed in an unusual fashion by noncovalent interactions with host frameworks, and also the guest is kept away from the bulk solvent by the steric effect of the host. Therefore, host-guest formations lead to the effective modulation of the chemical and physical properties of guests via noncovalent interactions. In contrast to the many examples of organic guests, the examples of host-guest formation using coordination complex guests have been less explored. This is simply due to the size and shape complementarity problem between small hosts and large coordination complex guests. Resorcin[4]arene-based supramolecular hosts have been shown to provide internal cavities that are large enough to fully accommodate coordination complexes within the internal spaces via effective molecular interactions. In this article, we focus on supramolecular strategies to control the chemical and physical properties of the coordination complex guests within resorcin[4]arene-based supramolecular hosts. By the careful selection of the host and guest complexes, these combinations can produce a new supramolecular system, showing unusual structures, redox, catalytic, and photophysical properties derived from the entrapped coordination complexes.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Mikihiro Hayashi
- Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
9
|
Gutiérrez López MÁ, Tan ML, Frontera A, Matile S. The Origin of Anion-π Autocatalysis. JACS AU 2023; 3:1039-1051. [PMID: 37124310 PMCID: PMC10131205 DOI: 10.1021/jacsau.2c00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion-π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion-π autocatalysis has never been elucidated. Here, we show that anion-π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion-π autocatalysis and sometimes erratic reproducibility further support that the origin of anion-π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion-π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by "anion-π double bonds". This new transition-state model of anion-π autocatalysis provides a plausible mechanism that explains experimental results and brings anion-π catalysis to an unprecedented level of sophistication.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Mei-Ling Tan
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| |
Collapse
|
10
|
Li TR, Piccini G, Tiefenbacher K. Supramolecular Capsule-Catalyzed Highly β-Selective Furanosylation Independent of the S N1/S N2 Reaction Pathway. J Am Chem Soc 2023; 145:4294-4303. [PMID: 36751707 DOI: 10.1021/jacs.2c13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The resorcin[4]arene capsule was found to catalyze β-selective furanosylation reactions for a variety of different furanosyl donors: α-d- and α-l-arabinosyl-, α-l-fucosyl-, α-d-ribosyl-, α-d-xylosyl-, and even α-d-lyxosyl fluorides. The scope is only limited by the inherently finite volume inside the closed capsular catalyst. The catalyst is readily available on a multi-100 g scale and can be recycled for at least seven rounds without significant loss in activity, yield, and selectivity. The mechanistic investigations indicated that the furanosylation mechanism is shifted toward an SN1 reaction on the mechanistic continuum between the prototypical SN1 and SN2 substitution types, as compared to the pyranosylation reaction inside the same catalyst. This is especially true for the lyxosyl donor, as indicated by the nucleophile reaction order of 0.26, and supported by metadynamics calculations. The mechanistic shift toward SN1 is of high interest as it indicates that this catalyst not only enables β-selective furanosylations and pyranoslyations independently of the substrate configuration but in addition also independently of the operating mechanism. To our knowledge, there is no alternative catalyst available that displays such properties.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
11
|
Horiuchi S, Yamaguchi T, Tessarolo J, Tanaka H, Sakuda E, Arikawa Y, Meggers E, Clever GH, Umakoshi K. Symmetry-breaking host-guest assembly in a hydrogen-bonded supramolecular system. Nat Commun 2023; 14:155. [PMID: 36631447 PMCID: PMC9834293 DOI: 10.1038/s41467-023-35850-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Bio-inspired self-assembly is invaluable to create well-defined giant structures from small molecular units. Owing to a large entropy loss in the self-assembly process, highly symmetric structures are typically obtained as thermodynamic products while formation of low symmetric assemblies is still challenging. In this study, we report the symmetry-breaking self-assembly of a defined C1-symmetric supramolecular structure from an Oh-symmetric hydrogen-bonded resorcin[4]arene capsule and C2-symmetric cationic bis-cyclometalated Ir complexes, carrying sterically demanding tertiary butyl (tBu) groups, on the basis of synergistic effects of weak binding forces. The flexible capsule framework shows a large structural change upon guest binding to form a distorted resorcin[4]arene hexameric capsule, providing an asymmetric cavity. Location of the chiral guest inside the anisotropic environment leads to modulation of its Electric Dipole (ED) and Magnetic Dipole (MD) transition moments in the excited state, causing an increased emission quantum yield, longer emission lifetime, and enhancement of the dissymmetry factor (glum) in the circularly polarized luminescence.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan. .,Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany. .,Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Takumi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Hirotaka Tanaka
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany.
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
12
|
Feng H, Chen Y, Wang R, Niu P, Shi C, Yang Z, Cheng M, Jiang J, Wang L. Chiral selection of Tröger's base-based macrocycles with different ethylene glycol chains length in crystallization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Horin I, Slovak S, Cohen Y. Diffusion NMR Reveals the Structures of the Molecular Aggregates of Resorcin[4]arenes and Pyrogallol[4]arenes in Aromatic and Chlorinated Solvents. J Phys Chem Lett 2022; 13:10666-10670. [PMID: 36354303 DOI: 10.1021/acs.jpclett.2c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hexameric assemblies of resorcinarenes and pyrogallolarenes are fascinating structures that can serve as nanoreactors in which new chemistry and catalysis occur. Recently, it was suggested based on SANS or SAXS that C11-resorcin[4]arene (1) forms octameric aggregates of a micellar rather than capsular structure in toluene. Here, using NMR spectroscopy, diffusion NMR, and DOSY performed on solutions of C11-resorcin[4]arene (1), C11-pyrogallol[4]arene (2), and mixtures thereof in protonated and deuterated solvents, we found that, in benzene and toluene, 1 primarily formed hexameric capsules accompanied by a minor product with diffusion characteristics consistent with an octameric assembly. In chloroform, 1 formed hexameric capsules. In toluene, 2D NMR revealed two populations of encapsulated toluene molecules in the same capsule of 1. The addition of tetrahexylammonium bromide to the assemblies of 1 in aromatic solvents drove the equilibrium toward the formation of the hexameric capsules. Interestingly, 2 formed only hexameric capsules in all solvents tested.
Collapse
|
14
|
Ziganshina AY, Mansurova EE, Antipin IS. Colloids Based on Calixresorcins for the Adsorption, Conversion, and Delivery of Bioactive Substances. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Hkiri S, Steinmetz M, Schurhammer R, Sémeril D. Encapsulated Neutral Ruthenium Catalyst for Substrate‐Selective Oxidation of Alcohols. Chemistry 2022; 28:e202201887. [DOI: 10.1002/chem.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140-Chimie de la Matière Complexe Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
16
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
17
|
Lorenzetto T, Fabris F, Scarso A. A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions. Beilstein J Org Chem 2022; 18:337-349. [PMID: 35422886 PMCID: PMC8978922 DOI: 10.3762/bjoc.18.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
The hexameric resorcin[4]arene capsule as a self-assembled organocatalyst promotes a series of reactions like the carbonyl-ene cyclization of (S)-citronellal preferentially to isopulegol, the water elimination from 1,1-diphenylethanol, the isomerization of α-pinene and β-pinene preferentially to limonene and minor amounts of camphene. The role of the supramolecular catalyst consists in promoting the protonation of the substrates leading to the formation of cationic intermediates that are stabilized within the cavity with consequent peculiar features in terms of acceleration and product selectivity. In all cases the catalytic activity displayed by the hexameric capsule is remarkable if compared to many other strong Brønsted or Lewis acids.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| |
Collapse
|
18
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
19
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
20
|
La Manna P, Talotta C, Gaeta C, Cohen Y, Slovak S, Rescifina A, Sala PD, De Rosa M, Soriente A, Neri P. Supramolecular catalysis in confined space: making the pyrogallol[4]arene capsule catalytically active in non-competitive solvent. Org Chem Front 2022. [DOI: 10.1039/d2qo00172a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The confined space inside the hexameric pyrogallol[4]arene capsule (CP6) has been exploited for the catalysis of the 1,3-dipolar cycloaddition (1,3-DC) between the proline-based iminium derivative I and nitrone 3, in the presence of the non-competitive benzene solvent.
Collapse
Affiliation(s)
- Pellegrino La Manna
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| |
Collapse
|