1
|
Suleymanov AA, Fu Y, Müller P, Swager TM. Azacoronene in Helicenes and Conjugated Polymers. Org Lett 2025; 27:3150-3153. [PMID: 40125690 DOI: 10.1021/acs.orglett.5c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In this paper, we report redox-active azacoronene helicenes obtained through nucleophilic substitution of fluorinated helicenes with 3,4-diethylpyrrole, followed by Scholl reactions. Cyclic voltammetry of these compounds displays reversible oxidation events at low oxidation potentials. The oxidized species display distinct optical properties. Additionally, we incorporated the azacoronene/helicene unit into conjugated polymers.
Collapse
Affiliation(s)
- Abdusalom A Suleymanov
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yucheng Fu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Huang Y, Zhou L, Zhang R, Ding Y, Shi D, Zhu L, Lin L, Li Y, Wang Q. Cationic Magnetically Active Nitrogen-Doped Polycyclic Aromatic Hydrocarbon with Record Low Band Gap. Angew Chem Int Ed Engl 2025; 64:e202424128. [PMID: 39777985 DOI: 10.1002/anie.202424128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted significant interest in material chemistry, particularly if they own extremely low band gaps and magnetic properties. However, challenges remain regarding the synthetic accessibility and energy saturation issues. In this study, we introduce NR-11, which consists of eleven aromatic rings in its main conjugation and is separately doped with two electron-rich nitrogen atoms. This unique structure imparts intriguing oxidation characteristics to NR-11. The cationic radical NR-11+⋅ exhibits enhanced stability and demonstrates strong absorption in the range of 1250 nm to 3000 nm, peaking at 2570 nm. As a result, the optical energy gap of NR-11+⋅ is one of the lowest reported to date. Additionally, X-ray crystal structure analysis reveals that NR-11+⋅ displays unusual symmetry-broken charge separation. For the dication, variable-temperature NMR and variable-temperature EPR studies indicate that NR-112+ exhibits a high diradical character with a ▵ES-T of approximately -1 kcal/mol. Additionally, its spins are polarized at two ends of the PAH. Meanwhile, its strong absorption in the near-infrared II region suggests promise in photoacoustic (PA) conversion applications. This work underscores the significance of cationic species of extended long PAHs, highlighting their exceptional properties and potential applications.
Collapse
Affiliation(s)
- Yanxia Huang
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Ruiying Zhang
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yeda Ding
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Dan Shi
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lingyun Zhu
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanming Li
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
3
|
Zhu Y, Lin C, Zhao C, Ou Y, Li Z, Zhu K, Wang J. Covalent Folding of Fluorinated Polyphenylene by Sulfur Fluorine Annulative Substitution. Angew Chem Int Ed Engl 2025; 64:e202420073. [PMID: 39545719 DOI: 10.1002/anie.202420073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/17/2024]
Abstract
We report that fluorinated polyphenylene P50 undergoes folding-like sulfur fluorine annulative substitution (SFAS) to form a well-defined tubular helix H50. This is achieved with atomic precision in an exceptionally efficient manner, involving the simultaneous transformation of 98 C-F bonds with the yield per reaction site approaching 99.9 %. The desired product H50 features a fully fused dibenzothiophene skeleton of 5.8 helical turns in total. It is truly monodisperse (Đ=1.0) in nature, allowing for thorough spectroscopic characterizations. Unambiguous single crystal X-ray structure, distinct chiroptical properties, and intriguing through-cavity threading complexation are described. These results, in addition to those of H50's lower congeners, H34 and H18, illustrate the great potential of folding-like SFAS in shaping random-coiled polymer chains into higher-order functional structures.
Collapse
Affiliation(s)
- Yanpeng Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chaojun Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chaoqun Zhao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yiqiang Ou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhongshu Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kelong Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiaobing Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Hao L, Dong C, Yu D. Polypyrrole Derivatives: Preparation, Properties and Application. Polymers (Basel) 2024; 16:2233. [PMID: 39204453 PMCID: PMC11360100 DOI: 10.3390/polym16162233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Polypyrrole (PPy) has attracted widespread attention due to its excellent environmental stability, high conductivity, simple synthesis, good biocompatibility, and reversible redox properties. PPy derivatives not only inherit the advantages of polypyrrole, but also have some unique properties. The side and N-site substitution of PPy can not only yield polymers with good solubility, but it also endows polymers with special functionalities by controlling the introduced functional groups. The performance of copolymers can also be adjusted by the type of monomer or polymerization ratio. In this review, an overview of the different types, main preparation methods, and the application prospects of PPy derivatives reported to date are summarized and presented. The current challenges and future opportunities in this research area are also prospected.
Collapse
Affiliation(s)
- Lu Hao
- State Key Laboratory of Electrical Insulation and Power Equipments, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China; (L.H.); (C.D.)
- Department of Materials Engineering, Shaanxi Polytechnic Institute, No. 12 Wenhui West Road, Xianyang 712000, China
| | - Changyi Dong
- State Key Laboratory of Electrical Insulation and Power Equipments, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China; (L.H.); (C.D.)
| | - Demei Yu
- State Key Laboratory of Electrical Insulation and Power Equipments, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China; (L.H.); (C.D.)
| |
Collapse
|
5
|
Wang J, Zhang B, Zhang J, Xing H, Shi Y, Tian K, Guo W, Xu J, Liu S, Li X, Xie H, Wang H. Aerobically Autoxidized Self-Charge Concept Derived from Synergistic Pyrrolic Nitrogen and Catechol Configurations in N, O Co-Doped Carbon Cathode Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310928. [PMID: 38308134 DOI: 10.1002/smll.202310928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Aerobically autoxidized self-charging concept has drawn significant attraction due to its promising chemical charge features without external power supply. Particularly, heteroatom-doped carbon materials with abundant oxidizable sites and good conductivity are expected to be ideal cathode materials. However, there is no well-defined aerobically autoxidized self-charging concept based on heteroatom-doped carbon materials, significantly hindering the design of related carbon cathodes. An aerobically autoxidized self-chargeable concept derived from synergistic effect of pyrrolic nitrogen and catechol configuration in carbon cathode using model single pyrrolic nitrogen and oxygen (N-5, O) co-doped carbon and O-enriched carbon is proposed. First, self-charging of N-5, O co-doped carbon cathode can be achieved by aerobic oxidation of pyrrolic nitrogen and catechol to oxidized pyrrolic nitrogen and ortho-quinone configurations, respectively. Second, introducing a single pyrrolic nitrogen configuration enhanced acidic wettability of N-5, O co-doped carbon facilitating air self-charge/galvanic discharge involving proton removal/introduction. Third, synergistic effect of pyrrolic nitrogen and hydroxyl species with the strong electron-donating ability to conjugated carbon-based backbone endows N-5, O co-doped carbon with a higher highest occupied molecular orbital (HOMO) energy level more susceptible to oxidation charging. The assembled Cu/Carbon batteries can drive a timer after every air-charging run. This promising aerobically autoxidized self-charging concept can inspire exploring high-efficiency self-charging devices.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Bosen Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Hanyu Xing
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuning Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Kesong Tian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Wanchun Guo
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Junjie Xu
- Xi'an Rare Metal Materials Institute Co., Ltd, Xi'an, 710016, P. R. China
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueai Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang, 310003, P. R. China
| | - Haiyan Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
6
|
Mathey P, Sobczak Q, Darvish A, Morin JF. Synthesis of an azulene-containing graphene nanoribbon. Chem Commun (Camb) 2024; 60:4854-4857. [PMID: 38619615 DOI: 10.1039/d4cc00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The solution-phase synthesis of a non-benzenoid nanoribbon from an azulene-containing polymer via alkyne benzannulation is reported. The nanoribbon is soluble in common organic solvents and exhibits conductivity values up to 1.5 × 10-3 S cm-1 once doped by protonation in the thin film state.
Collapse
Affiliation(s)
- Pierre Mathey
- Département de Chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Médecine, Québec, Canada G1V 0A6.
| | - Quentin Sobczak
- Département de Chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Médecine, Québec, Canada G1V 0A6.
| | - Ali Darvish
- Département de Chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Médecine, Québec, Canada G1V 0A6.
| | - Jean-François Morin
- Département de Chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Médecine, Québec, Canada G1V 0A6.
| |
Collapse
|
7
|
Miao J, Zhu Y, Wei Y, Wen X, Shao Z, Zhou B, Wu C, Long M. Plastic wastes-derived N-doped carbon nanotubes for efficient removal of sulfamethoxazole in high salinity wastewater via nonradical peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133344. [PMID: 38147749 DOI: 10.1016/j.jhazmat.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Peroxymonosulfate (PMS) catalytic activation is effective to eliminate organic pollutants from water, thus the development of low-cost and efficient catalysts is significant in applications. The resource conversion of plastic wastes (PWs) into carbon nanotubes (CNTs) is a promising candidate for PMS-based advanced oxidation processes (AOPs), and also a sustainable strategy to realize plastic management and reutilization. Herein, cost-effective PWs-derived N-doped CNTs (N-pCNTs) were synthesized, which displayed efficient activity for PMS activation through an electron transfer pathway (ETP) for sulfamethoxazole (SMX) degradation in high salinity water. The pyrrolic N induced the positively charged surface of N-pCNTs, favoring the electrostatic adsorption of PMS and subsequent generation of active PMS* . A galvanic oxidation process was developed to prove the electron-shuttle dominated ETP for SMX oxidation. Combined with theoretical calculations, the efficiency of ETP was determined by the potential difference between HOMO of SMX and LUMO of N-pCNTs. Such oxidation produced low-toxicity intermediates and resulted in selective degradation of specific sulfonamide antibiotics. This work reveals the feasibility of low-cost N-pCNTs catalysts from PWs serving as an appealing candidate for PMS-AOPs in water remediation, providing a new solution to alleviate environmental issues caused by PWs and also advances the understanding of ETP during PMS activation.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yan Wei
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Wang FF, Wang YX, Wu Q, Chai L, Chen XW, Tan YZ. Nanographene with a Nitrogen-Doped Cavity. Angew Chem Int Ed Engl 2024; 63:e202315302. [PMID: 38009464 DOI: 10.1002/anie.202315302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.
Collapse
Affiliation(s)
- Fei-Fan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Xiang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiong Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling Chai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
Zanetti D, Matuszewska O, Giorgianni G, Pezzetta C, Demitri N, Bonifazi D. Photoredox Annulation of Polycyclic Aromatic Hydrocarbons. JACS AU 2023; 3:3045-3054. [PMID: 38034957 PMCID: PMC10685425 DOI: 10.1021/jacsau.3c00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023]
Abstract
The rise of interest in using polycyclic aromatic hydrocarbons (PAHs) and molecular graphenoids in optoelectronics has recently stimulated the growth of modern synthetic methodologies giving access to intramolecular aryl-aryl couplings. Here, we show that a radical-based annulation protocol allows expansion of the planarization approaches to prepare functionalized molecular graphenoids. The enabler of this reaction is peri-xanthenoxanthene, the photocatalyst which undergoes photoinduced single electron transfer with an ortho-oligoarylenyl precursor bearing electron-withdrawing and nucleofuge groups. Dissociative electron transfer enables the formation of persistent aryl radical intermediates, the latter undergoing intramolecular C-C bond formation, allowing the planarization reaction to occur. The reaction conditions are mild and compatible with various electron-withdrawing and -donating substituents on the aryl rings as well as heterocycles and PAHs. The method could be applied to induce double annulation reactions, allowing the synthesis of π-extended scaffolds with different edge peripheries.
Collapse
Affiliation(s)
- Davide Zanetti
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Oliwia Matuszewska
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Giuliana Giorgianni
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Cristofer Pezzetta
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Nicola Demitri
- Elettra—Sincrotrone
Trieste, S.S. 14 Km 163.5
in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Davide Bonifazi
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
11
|
Porsev VV, Evarestov RA. Current State of Computational Modeling of Nanohelicenes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2295. [PMID: 37630880 PMCID: PMC10458037 DOI: 10.3390/nano13162295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
This review considers the works that focus on various aspects of the theoretical description of nanohelicenes (other equivalent names are graphene spirals, graphene helicoid, helical graphene nanoribbon, or helical graphene)-a promising class of one-dimensional nanostructures. The intrinsic helical topology and continuous π-system lead to the manifestation of unique optical, electronic, and magnetic properties that are also highly dependent on axial and torsion strains. In this paper, it was shown that the properties of nanohelicenes are mainly associated with the peripheral modification of the nanohelicene ribbon. We have proposed a nomenclature that enables the classification of all nanohelicenes as modifications of some prototype classes.
Collapse
Affiliation(s)
- Vitaly V. Porsev
- Quantum Chemistry Department, Saint-Petersburg State University, St Petersburg 199034, Russia
| | - Robert A. Evarestov
- Quantum Chemistry Department, Saint-Petersburg State University, St Petersburg 199034, Russia
| |
Collapse
|
12
|
Janke S, Boldt S, Nakielski P, Villinger A, Ehlers P, Langer P. Synthesis and Properties of 5-Azaullazines. J Org Chem 2023. [PMID: 37486966 DOI: 10.1021/acs.joc.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
5-Azaullazines, indolizino[6,5,4,3-ija][1,5]naphthyridines, and their benzo-fused analogues were prepared in three steps by combination of Pd catalyzed cross-coupling reactions with Brønsted acid mediated cycloisomerisations. The reaction tolerates various substitution patterns and functional groups and proceeds in high yields. Optical and electrochemical properties of selected products were studied experimentally and by DFT calculations.
Collapse
Affiliation(s)
- Sophie Janke
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Sebastian Boldt
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Pascal Nakielski
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Alexander Villinger
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institute of Catalysis (LIKAT) at the University Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
13
|
Lee J, Ryu H, Park S, Cho M, Choi TL. Living Suzuki-Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Length-Controlled Armchair Graphene Nanoribbons and Their Block Copolymers. J Am Chem Soc 2023. [PMID: 37376993 DOI: 10.1021/jacs.3c04130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The bottom-up synthesis of graphene nanoribbons (GNRs) offers a promising approach for designing atomically precise GNRs with tuneable photophysical properties, but controlling their length remains a challenge. Herein, we report an efficient synthetic protocol for producing length-controlled armchair GNRs (AGNRs) through living Suzuki-Miyaura catalyst-transfer polymerization (SCTP) using RuPhos-Pd catalyst and mild graphitization methods. Initially, SCTP of a dialkynylphenylene monomer was optimized by modifying boronates and halide moieties on the monomers, affording poly(2,5-dialkynyl-p-phenylene) (PDAPP) with controlled molecular weight (Mn up to 29.8k) and narrow dispersity (Đ = 1.14-1.39) in excellent yield (>85%). Subsequently, we successfully obtained N = 5 AGNRs by employing a mild alkyne benzannulation reaction on the PDAPP precursor and confirmed their length retention by size-exclusion chromatography. In addition, photophysical characterization revealed that a molar absorptivity was directly proportional to the length of the AGNR, while its highest occupied molecular orbital (HOMO) energy level remained constant within the given AGNR length. Furthermore, we prepared, for the very first time, N = 5 AGNR block copolymers with widely used donor or acceptor-conjugated polymers by taking advantage of the living SCTP. Finally, we achieved the lateral extension of AGNRs from N = 5 to 11 by oxidative cyclodehydrogenation in solution and confirmed their chemical structure and low band gap by various spectroscopic analyses.
Collapse
Affiliation(s)
- Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanseul Ryu
- Department of Materials, ETH Zürich, Zurich 8093, Switzerland
| | - Songyee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minyoung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zurich 8093, Switzerland
| |
Collapse
|
14
|
Niu W, Ma J, Feng X. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Acc Chem Res 2022; 55:3322-3333. [PMID: 36378659 DOI: 10.1021/acs.accounts.2c00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene nanoribbons (GNRs)─quasi-one-dimensional graphene cutouts─have drawn growing attention as promising candidates for next-generation electronic and spintronic materials. Theoretical and experimental studies have demonstrated that the electronic and magnetic properties of GNRs critically depend on their widths and edge topologies. Thus, the preparation of structurally defined GNRs is highly desirable not only for their fundamental physicochemical studies but also for their future technological development in carbon-based nanoelectronics. In the past decade, significant efforts have been made to construct a wide variety of GNRs with well-defined widths and edge structures via bottom-up synthesis. In addition to extensively studied planar GNRs consisting of armchair, zigzag, or gulf edges, curved GNRs (cGNRs) bearing cove ([4]helicene unit) or fjord ([5]helicene unit) regions along the ribbon edges have received increasing interest after we presented the first attempt to synthesize the fully cove-edged GNRs in 2015. Profiting from their novel edge topologies, cGNRs usually exhibit an unprecedented narrow band gap and high carrier transport mobility in comparison to the planar GNRs with similar widths. Moreover, cGNRs with particular out-of-plane-distorted structures are expected to provide further opportunities in nonlinear optics and asymmetric catalysis. However, the synthesis of cGNRs bearing cove or fjord edges remains underdeveloped due to the absence of efficient synthetic strategies/methods and suitable molecular precursor design.In this Account, we present the recent advances in the bottom-up synthesis and characterization of structurally defined cGNRs containing cove or fjord edges, mainly from our research group. First, the synthetic strategies toward cGNRs bearing cove edges are described, including the design of molecular monomers and polymer precursors as well as the corresponding polymerization methods, such as Ullmann coupling, Yamamoto coupling, A2B2-type Diels-Alder polymerization, followed by Scholl-type cyclodehydrogenation. The synthesis of typical model compounds is also described to support the understanding of the related cGNRs. In addition, the synthesis of cGNRs containing fjord edges from other research groups via the regioselective Scholl reaction, Hopf cyclization or regioselective photochemical cyclodehydrochlorination approach is presented. Second, we discuss the optoelectronic properties of the as-synthesized cGNRs and reveal the design principle to obtain cGNRs with high charge carrier mobilities. Finally, the challenges and prospects in the design and synthesis of cGNRs are offered. We anticipate that this Account will further stimulate the development of cGNRs through a collaborative effort between different disciplines.
Collapse
Affiliation(s)
- Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
15
|
Xiao X, Cheng Q, Bao ST, Jin Z, Sun S, Jiang H, Steigerwald ML, Nuckolls C. Single-Handed Helicene Nanoribbons via Transfer of Chiral Information. J Am Chem Soc 2022; 144:20214-20220. [DOI: 10.1021/jacs.2c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qian Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shantao Sun
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Su F, Zhang S, Chen Z, Zhang Z, Li Z, Lu S, Zhang M, Fang F, Kang S, Guo C, Su C, Yu X, Wang H, Li X. Precise Synthesis of Concentric Ring, Helicoid, and Ladder Metallo-Polymers with Chevron-Shaped Monomers. J Am Chem Soc 2022; 144:16559-16571. [PMID: 35998652 DOI: 10.1021/jacs.2c06251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular geometry represents one of the most important structural features and governs physical properties and functions of materials. Nature creates a wide array of substances with distinct geometries but similar chemical composition with superior efficiency and precision. However, it remains a formidable challenge to construct abiological macromolecules with various geometries based on identical repeating units, owing to the lack of corresponding synthetic approaches for precisely manipulating the connectivity between monomers and feasible techniques for characterizing macromolecules at the single-molecule level. Herein, we design and synthesize a series of tetratopic monomers with chevron stripe shape which serve as the key precursors to produce four distinct types of metallo-macromolecules with well-defined geometries, viz., the concentric hexagon, helicoid polymer, ladder polymer, and cross-linked polymer, via platinum-acetylide couplings. Concentric hexagon, helicoid, and ladder metallo-polymers are directly visualized by transmission electron microscopy, atomic force microscopy, and ultra-high-vacuum low-temperature scanning tunneling microscopy at the single-molecule level. Finally, single-walled carbon nanotubes (SWCNTs) are selected as the guest to investigate the structure-property relationship based on such macromolecules, among which the helicoid metallo-polymer shows high efficiency in wrapping SWCNTs with geometry-dependent selectivity.
Collapse
Affiliation(s)
- Feng Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong 523106, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong 523106, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Kumar S, Pratap S, Kumar V, Mishra RK, Gwag JS, Chakraborty B. Electronic, transport, magnetic and optical properties of graphene nanoribbons review. LUMINESCENCE 2022. [PMID: 35850156 DOI: 10.1002/bio.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Low dimensional materials have attracted great research interest from both theoretical and experimental point of view. These materials exhibit novel physical and chemical properties due to the confinement effect in low dimensions. The experimental observations of graphene open a new platform to study the physical properties of materials restricted to two dimensions. This featured article provides a review on the novel properties of quasi one-dimensional (1D) material known as graphene nanoribbon. Graphene nanoribbons can be obtained by unzipping carbon nanotubes (CNTs) or cutting the graphene sheet. Alternatively, it is also called the finite termination of graphene edges. It gives rise different edge geometries namely zigzag and armchair among others. There are various physical and chemical techniques to realize these materials. Depending on the edge type termination, these are called the zigzag and armchair graphene nanoribbons (ZGNR and AGNR). These edges play an important role in controlling the properties of graphene nanoribbons. The present review article provides an overview of the electronic, transport, optical and magnetic properties of graphene nanoribbons. However, there are different ways to tune these properties for device applications. Here, some of them are highlighted such as external perturbations and chemical modifications. Few applications of graphene nanoribbon have and chemical modifications. Few applications of graphene nanoribbon have also been briefly discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Surender Pratap
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Vipin Kumar
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
18
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
19
|
Yang X, Elbert SM, Rominger F, Mastalerz M. A Series of Soluble Thieno-Fused Coronene Nanoribbons of Precise Lengths. J Am Chem Soc 2022; 144:9883-9892. [DOI: 10.1021/jacs.2c02645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Qiu ZL, Chen XW, Huang YD, Wei RJ, Chu KS, Zhao XJ, Tan YZ. Nanographene with Multiple Embedded Heptagons: Cascade Radical Photocyclization. Angew Chem Int Ed Engl 2022; 61:e202116955. [PMID: 35191583 DOI: 10.1002/anie.202116955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/27/2022]
Abstract
Although heptagons are widely found in graphenic materials, the precise synthesis of nanocarbons containing heptagons remains a challenge, especially for the nanocarbons containing multiple-heptagons. Herein, we show that photo-induced radical cyclization (PIRC) can be used to synthesize multi-heptagon-embedded nanocarbons. Notably, a nanographene containing six heptagons (1) was obtained via a six-fold cascade PIRC reaction. The structure of 1 was clearly validated and showed a Monkey-saddle-shaped conformation. Experimental bond analysis and theoretical calculations indicated that the heptagons in 1 were non-aromatic, whereas the peripheral rings were highly aromatic. Compared to planar nanographene with the same number of π electrons, 1 had a similar optical gap due to a compromise between the decreased conjugation in the wrapped structure and enhanced electronic delocalization at the rim. Electrochemical studies showed that 1 had low-lying oxidation potentials, which was attributed to the nitrogen-doping.
Collapse
Affiliation(s)
- Zhen-Lin Qiu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Dong Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong-Jing Wei
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ke-Shan Chu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
21
|
Qiu Z, Chen X, Huang Y, Wei R, Chu K, Zhao X, Tan Y. Nanographene with Multiple Embedded Heptagons: Cascade Radical Photocyclization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Lin Qiu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xuan‐Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu‐Dong Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong‐Jing Wei
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ke‐Shan Chu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
22
|
Dumele O, Đorđević L, Sai H, Cotey TJ, Sangji MH, Sato K, Dannenhoffer AJ, Stupp SI. Photocatalytic Aqueous CO 2 Reduction to CO and CH 4 Sensitized by Ullazine Supramolecular Polymers. J Am Chem Soc 2022; 144:3127-3136. [PMID: 35143726 DOI: 10.1021/jacs.1c12155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There has been rapid progress on the chemistry of supramolecular scaffolds that harness sunlight for aqueous photocatalytic production of hydrogen. However, great efforts are still needed to develop similar photosynthetic systems for the great challenge of CO2 reduction especially if they avoid the use of nonabundant metals. This work investigates the synthesis of supramolecular polymers capable of sensitizing catalysts that require more negative potentials than proton reduction. The monomers are chromophore amphiphiles based on a diareno-fused ullazine core that undergo supramolecular polymerization in water to create entangled nanoscale fibers. Under 450 nm visible light these fibers sensitize a dinuclear cobalt catalyst for CO2 photoreduction to generate carbon monoxide and methane using a sacrificial electron donor. The supramolecular photocatalytic system can generate amounts of CH4 comparable to those obtained with a precious metal-based [Ru(phen)3](PF6)2 sensitizer and, in contrast to Ru-based catalysts, retains photocatalytic activity in all aqueous media over 6 days. The present study demonstrates the potential of tailored supramolecular polymers as renewable energy and sustainability materials.
Collapse
Affiliation(s)
- Oliver Dumele
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J Cotey
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - M Hussain Sangji
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kohei Sato
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Adam J Dannenhoffer
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
23
|
Li QQ, Hamamoto Y, Tan CCH, Sato H, Ito S. 1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Org Chem Front 2022. [DOI: 10.1039/d2qo00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach to π-extended imidazolium salts is developed based on 1,3-dipolar cycloaddition of polycyclic aromatic azomethine ylides with imidoyl chlorides in the presence of cesium fluoride as a key additive.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheryl Cai Hui Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|