1
|
Du Y, Wu H, Yang M, She Y, Yang YF. Nickel-catalyzed reductive arylalkylation of alkenes: 5- exo cyclization vs. 6- endo cyclization vs. 1,2-aryl migration to 6- endo product. Dalton Trans 2025; 54:5419-5424. [PMID: 40029100 DOI: 10.1039/d5dt00094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The detailed mechanisms of Ni-catalyzed reductive arylalkylation of unactivated alkenes with aryl bromides to synthesize benzene-fused 5-exo and 6-endo cyclic compounds were systematically investigated by DFT calculations. Our finding reveals that, under the catalysis of a Ni/biOx system with Zn as a reductant, bromobenzene containing a terminal olefin unit preferentially undergoes traditional Heck cyclization and cross-coupling reactions, favoring the formation of 5-exo cyclization products. In contrast, when Zn is absent, NiIII-alkyl species play a pivotal role, facilitating a rare 1,2-aryl migration followed by H-atom abstration, which selectively yields 6-endo cyclization products.
Collapse
Affiliation(s)
- Yuxin Du
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Hongli Wu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Miao Yang
- Chemical and Life Science Innovation Center, Department of Environment and Life Health, Anhui Vocational and Technical College, Hefei, Anhui 230011, China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Zhao ZZ, Guo P, Pang X, Shu XZ. Nickel-Catalyzed Reductive Alkenylation of Enol Derivatives: A Versatile Tool for Alkene Construction. Acc Chem Res 2024; 57:3356-3374. [PMID: 39486055 DOI: 10.1021/acs.accounts.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
ConspectusKetone-to-alkene transformations are essential in organic synthesis, and transition-metal-catalyzed cross-coupling reactions involving enol derivatives have become powerful tools to achieve this goal. While substantial progress has been made in nucleophile-electrophile reactions, recent developments in nickel-catalyzed reductive alkenylation reactions have garnered increasing attention. These methods accommodate a broad range of functional groups such as aldehyde, ketone, amide, alcohol, alkyne, heterocycles, and organotin compounds, providing an efficient strategy to access structurally diverse alkenes. This Account primarily highlights the contributions from our laboratory to this growing field while also acknowledging key contributions from other researchers.Our early efforts in this area focused on coupling radical-active substrates, such as α-chloroboronates. This method follows the conventional radical chain mechanism, resulting in facile access to valuable allylboronates. Encouraged by these promising results, we subsequently expanded the substrate scope to encompass radical-inactive compounds. By developing new strategies for controlling cross-selectivity, we enabled the coupling of Csp3 electrophiles (e.g., alcohols and sulfonates), Csp2 electrophiles (e.g., bromoalkenylboronates and acyl fluorides), and heavier group-14 electrophiles like chlorosilanes and chlorogermanes with alkenyl triflates. These advances have provided efficient synthetic routes to a wide range of valuable products, including aliphatic alkenes, enones, dienylboronates, and silicon- and germanium-containing alkenes. Notably, these methods are particularly effective for synthesizing functionalized cycloalkenes, which are traditionally challenging to obtain through conventional methods involving alkenyl halide or organometallic couplings. We have also extended the scope of enol derivatives from triflates to acetates. These compounds are among the most accessible, stable, cost-effective, and environmentally friendly reagents, while their application in cross-coupling has been hampered by low reactivity and selectivity challenges. We showcased that by the use of a Ni(I) catalyst, alkenyl acetates could undergo reductive alkylation with a broad range of alkyl bromides, yielding diverse cyclic and acyclic aliphatic alkenes.Furthermore, our work has demonstrated that reductive coupling of enol derivatives with alkenes provides a highly appealing alternative for alkene synthesis. Particularly, this approach offers opportunity to address the regioselectivity challenges encountered in conventional alkene transformations. For instance, achieving regioselective hydrocarbonation of aliphatic 1,3-dienes has been a longstanding challenge in synthetic chemistry. By using a phosphine-nitrile ligand, we developed a nickel-catalyzed reductive alkenylation of 1,3-dienes with alkenyl triflates, delivering a diverse array of 1,4-dienes with high 1,2-branch selectivity (>20:1) while preserving the geometry of the C3-C4 double bond. Additionally, our investigations laid the foundation for enantioselective reductive alkenylation methodologies, offering new pathways for constructing enantioenriched diketones as well as complex carbo- and heterocyclic compounds. The introduced alkenyl functionality can be further diversified, enhancing molecular diversity and complexity.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
4
|
Yao QW, Yin K, Huang YY, Nie JP, Pang X, Shu XZ. Nickel-Catalyzed Enantioselective Reductive N-Cyclization-Thiolation Reaction of Alkene-Tethered Oxime Esters and Disulfides. Org Lett 2024. [PMID: 39331679 DOI: 10.1021/acs.orglett.4c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Asymmetric aza-Heck cyclization and coupling reactions offer efficient access to enantioenriched N-heterocycles, yet the current studies focus primarily on sequential C-N and C-C bond formation. Herein, we report an enantioselective reductive aza-Heck cyclization followed by a C-S coupling sequence, ultimately yielding sulfide-containing enantioenriched pyrrolines. The reaction is conducted under mild conditions and tolerates broad functionalities including alkynes, phenols, anilines, amides, nitriles, and bromides.
Collapse
Affiliation(s)
- Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kai Yin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Zhejiang Nanjiao Chemistry Co., Ltd., Shaoxing 312369, China
| | - Yi-Yang Huang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun-Peng Nie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Kumar SV, Olusegun J, Guiry PJ. Zn(II)-catalyzed asymmetric [3 + 2] cycloaddition of acyclic enones with azomethine ylides. Org Biomol Chem 2024; 22:7148-7153. [PMID: 38920098 DOI: 10.1039/d4ob00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The Zn(II)/UCD-Imphanol-catalyzed highly endo-selective [3 + 2] asymmetric cycloaddition of acyclic enones and azomethine ylides has been developed. Moderate to high yields (up to 94%) with excellent endo/exo selectivities (99 : 1) and enantioselectivities up to 96.5 : 3.5 er were obtained.
Collapse
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jeremiah Olusegun
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Zou L, Zheng X, Yi X, Lu Q. Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp 3)-H bonds. Nat Commun 2024; 15:7826. [PMID: 39244599 PMCID: PMC11380679 DOI: 10.1038/s41467-024-52248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Enantioselective transformations of hydrocarbons to three-dimensional chiral molecules remain a significant challenge in synthetic chemistry. This study uses asymmetric paired oxidative and reductive catalysis to promote the enantioselective alkylarylation of olefins through the functionalization of C(sp3)-H bonds in alkanes. This asymmetric photoelectrocatalytic approach enables the facile construction of a wide range of enantioenriched α-aryl carbonyls with excellent enantioselectivity (up to 96% ee) from readily accessible starting materials. Notably, aryl bromides, aryl iodides, and even aryl chlorides were compatible with the developed catalytic system. Mechanistic studies reveal that alkanes and electrophiles are simultaneously activated on the electrodes.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - XueZheng Yi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China.
| |
Collapse
|
7
|
Pan Q, Wang K, Xu W, Ai Y, Ping Y, Liu C, Wang M, Zhang J, Kong W. Ligand-Controlled, Nickel-Catalyzed Stereodivergent Construction of 1,3-Nonadjacent Stereocenters. J Am Chem Soc 2024; 146:15453-15463. [PMID: 38795043 DOI: 10.1021/jacs.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
In contrast to the asymmetric synthesis of molecules with a single stereocenter or 1,2-adjacent stereocenters, the simultaneous construction of acyclic 1,3-nonadjacent stereocenters via a single catalyst in an enantioselective and diastereoselective manner remains a formidable challenge. Here, we demonstrate the enantioselective and diastereodivergent construction of 1,3-nonadjacent stereocenters through Ni-catalyzed reductive cyclization/cross-coupling of alkene-tethered aryl bromides and α-bromoamides, which represents the major remaining stereochemical challenge of cyclization/difunctionalization of alkenes. Using Ming-Phos as ligand, a diverse set of oxindoles containing 1,3-nonadjacent stereocenters were obtained with high levels of enantio- and diastereoselectivity. Mechanistic experiments and density functional theory calculations indicate that magnesium salt plays a key role in controlling the diastereoselectivity. Furthermore, another set of complementary stereoisomeric products were constructed from the same set of starting materials using Ph-Phox as ligand.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kuai Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Ai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chuhan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Le L, Yin M, Zeng H, Xie W, Zhou W, Chen Y, Xiong B, Yin SF, Kambe N, Qiu R. Nickel-Catalyzed C(sp 3)-Sb Coupling of Chlorostibines with Unactivated Alkyl Chlorides and In Vitro Anticancer Activity of Products. Org Lett 2024; 26:344-349. [PMID: 38147593 DOI: 10.1021/acs.orglett.3c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In this study, we present a nickel-catalyzed reductive C(sp3)-Sb coupling of unactivated alkyl chlorides with chlorostibines. This approach is highly versatile, tolerating various functional groups such as acetal, alkene, nitrile, amine, ester, silyl ether, thioether, and various heterocyclic compounds. Notably, the late-stage modification of bioactive molecules and the satisfactory anticancer activity against cancerous MDA-MB-231 also demonstrate the potential application.
Collapse
Affiliation(s)
- Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Mingming Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huifan Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wuxing Xie
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| | - Wenjun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Chen
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Nobuaki Kambe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
11
|
Rachii D, Caldwell DJ, Kosukegawa Y, Sexton M, Rablen PR, Malachowski WP. Ni-Catalyzed Enantioselective Intramolecular Mizoroki-Heck Reaction for the Synthesis of Phenanthridinone Derivatives. J Org Chem 2023. [PMID: 37321182 DOI: 10.1021/acs.joc.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Ni-catalyzed enantioselective intramolecular Mizoroki-Heck reaction has been developed to transform symmetrical 1,4-cyclohexadienes with attached aryl halides into phenanthridinone analogues containing quaternary stereocenters. Herein, we report important advances in reaction optimization enabling control of unwanted proto-dehalogenation and alkene reduction side products. Moreover, this approach provides direct access to six-membered ring heterocyclic systems bearing all-carbon quaternary stereocenters, which have been much more challenging to form enantioselectively with nickel-catalyzed Heck reactions. A wide range of substrates were demonstrated to work in good to excellent yields. Good enantioselectivity was demonstrated using a new synthesized chiral iQuinox-type bidentate ligand (L27). The sustainability, low price of nickel catalysts, and significantly faster reaction rate (1 h) versus that of a recently reported palladium-catalyzed reaction (20 h) make this process an attractive alternative.
Collapse
Affiliation(s)
- Diana Rachii
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Dana J Caldwell
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Yui Kosukegawa
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Mary Sexton
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Paul R Rablen
- Chemistry Department, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - William P Malachowski
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| |
Collapse
|
12
|
Qi L, Pan QQ, Wei XX, Pang X, Liu Z, Shu XZ. Nickel-Catalyzed Reductive [4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes. J Am Chem Soc 2023. [PMID: 37285283 DOI: 10.1021/jacs.3c04209] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.
Collapse
Affiliation(s)
- Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
13
|
Ma Z, Sun L, Zhou JS. Catalytic enantioselective alkenylation-heteroarylation of olefins: stereoselective syntheses of 5-7 membered azacycles and oxacycles. Chem Sci 2023; 14:3010-3017. [PMID: 36937582 PMCID: PMC10016361 DOI: 10.1039/d2sc07117g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Catalytic enantioselective domino alkenylation-heteroarylation of nonconjugated iododienes proceeded with excellent stereoselectivity and broad scope of substrates. The reaction enables stereoselective syntheses of substituted azacycles such as piperidine, pyrrolidine azepine and dihydropyrans carrying new quaternary stereocenters. Mechanistically, C-H bonds of heterocycles were activated by lithium alkoxides via reversible deprotonation, rather than conventional palladium(ii)-assisted metalation processes. Many types of heteroarenes can be used, including not only azoles (such as thiazoles, oxazoles, imidazoles and oxadiazoles), but also nonazoles (thiophene, furan and azine N-oxides).
Collapse
Affiliation(s)
- Zhaoming Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Room F312, 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| | - Lantian Sun
- Department of Chemistry, Hong Kong Baptist University 224 Waterloo Road, Kowloon Tong Hong Kong China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Room F312, 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| |
Collapse
|
14
|
Pan Q, Ping Y, Kong W. Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings. Acc Chem Res 2023; 56:515-535. [PMID: 36688822 DOI: 10.1021/acs.accounts.2c00771] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusThe use of quaternary stereocenters during lead candidate optimization continues to grow because of improved physiochemical and pharmacokinetic profiles of compounds with higher sp3 fraction. Pd-catalyzed redox-neutral alkene difunctionalization involving carbopalladation of alkenes followed by nucleophilic-trapping σ-alkyl-palladium intermediates has been developed as an efficient method to construct quaternary stereocenters. However, the low chemoselectivity and air sensitivity of organometallic nucleophiles, as well as their low availability and accessibility, limit the scope of application of this elegant strategy. Recently, Ni-catalyzed reductive cross-coupling has evolved into a privileged strategy to easily construct valuable C(sp3)-C bonds. Despite great progress, the enantioselective coupling of C(sp3) electrophiles still relies on activated or functionalized alkyl precursors, which are often unstable and require multiple steps to prepare. Therefore, Ni-catalyzed reductive difunctionalization of alkenes via selective cyclization/cross-coupling was developed. This strategy not only offers a robust and practical alternative for traditional redox-neutral alkene difunctionalization but also provides strategic complementarity for reductive cross-coupling of activated alkyl electrophiles. In this Account, we summarize the latest results from our laboratory on this topic. These findings mainly include our explorations in modulating the enantioselectivity and cyclization mode of reductive cyclization/cross-couplings.We will first discuss Ni-catalyzed enantioselective reductive cyclization/cross-coupling to construct valuable chiral heterocycles with quaternary stereocenters and focus on the effects of ligands, reductants, and additives and their roles in reductive cross-coupling. A wide range of electrophiles have been explored, including aryl halides, vinyl halides, alkynyl halides, gem-difluoroalkenes, CO2, trifluoromethyl alkenes, and cyano electrophiles. The synthetic potential of this approach has also been demonstrated in the synthesis of biologically active natural products and drug molecules. Second, we will detail how to tune the steric effects of nickel catalysts by modifying bipyridine ligands for regiodivergent cyclization/cross-couplings. Specifically, the use of bidentate ligands favors exo-selective cyclization/cross-coupling, while the use of a carboxylic acid-modified bipyridine ligand permits endo-selective cyclization/cross-coupling. We will also show how to activate the amide substrate by altering the electronic and steric properties of substituents on the nitrogen, thereby enabling the nucleophilic addition of aryl halides to amide carbonyls. Further investigation of ligand properties has led to tunable cyclization/cross-couplings (addition to the amide carbonyl vs 7-endo-cyclization) for the divergent synthesis of pharmacologically important 2-benzazepine frameworks. Finally, we serendipitously discover that modifying the ligands of nickel catalysts and changing the oxidation state of nickel can control the migratory aptitude of different groups, thus providing a switchable skeletal rearrangement strategy. This transformation is of high synthetic value because it represents a conceptually unprecedented new approach to C-C bond activation. Thus, this Account not only summarizes synthetic methods that allow the formation of valuable chiral heterocycles with quaternary stereocenters using a wide variety of electrophiles but also provides insight into the relationship between ligand structure, substrate, and cyclization selectivity.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
15
|
Wun BJ, Hu YC, Chi CY, Chuang GJ. Photoinduced Decarbonylative Rearrangement of Diazabicyclo[2.2.2]Octenones: A Photochemical Approach of Diazabicyclo[4.1.0]heptene Skeleton from Masked o-Benzoquinone. J Org Chem 2023; 88:1235-1244. [PMID: 36606370 DOI: 10.1021/acs.joc.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a photoinduced decarbonylative rearrangement of diazabicyclo[2.2.2]octenone in the facile synthesis of a functionalized diazabicyclo[4.1.0]heptene skeleton, a unique derivative of the hydropyridazine type structure which could be found in a variety of biologically active natural products. The scope of functional group compatibility in the photoreaction was examined by taking advantage of the easy access of the heterobicyclo[2.2.2] structure from the Diels-Alder reaction of masked o-benzoquinones. 4-Phenyl-1,2,4-triazoline-3,5-dione served as the dienophile which provided the adjacent N-N unit in hexahydropyridazine-type products of subsequent photorearrangement.
Collapse
Affiliation(s)
- Bo-Jyun Wun
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Yung-Chen Hu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chu-Yun Chi
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Gary Jing Chuang
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
16
|
Gao W, Zhang D, Zhang X, Cai X, Xie P, Loh TP. One-Pot and Unsymmetrical Bis-Allylation of Malononitrile with Conjugated Dienes and Allylic Alcohols. Org Lett 2022; 24:9355-9360. [PMID: 36519800 DOI: 10.1021/acs.orglett.2c03405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Pd/Ca catalytic system to promote the unsymmetrical bis-allylation of malononitrile was developed by selecting conjugated dienes and allylic alcohols as allylic reagents. This catalytic system suppressed the competitive symmetrical bis-allylation process and guaranteed the desired unsymmetrical bis-allylation with high chemoselectivity. A wide range of conjugated dienes and allylic alcohols were tolerated well in this transformation, and diverse 1,6-dienes were obtained with high efficiency.
Collapse
Affiliation(s)
- Wenxiu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Dong Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xinying Cai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.,College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
17
|
Ding D, Zhang L, Wen H, Wang C. Cobalt-Catalyzed Asymmetric Reductive Dicarbofunctionalization of 1,3-Dienes with o-Bromoaryl Imines as a Bis-Electrophile. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Decai Ding
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Linchuan Zhang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Zhang C, Wu X, Xia T, Qu J, Chen Y. Ni-catalyzed carbamoylation of unactivated alkenes for stereoselective construction of six-membered lactams. Nat Commun 2022; 13:5964. [PMID: 36216794 PMCID: PMC9551058 DOI: 10.1038/s41467-022-33425-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Nitrogen-based heterocycles have aroused widespread interest due to their reoccurrence in many pharmaceuticals. Amongst these motifs, the enantioenriched lactams are the ubiquitous scaffolds found in myriad biologically active natural products and drugs. Recently, the transition metal-catalyzed asymmetric carbamoylation has been widely employed as a straightforward arsenal for chiral lactam architecture synthesis, including β-lactam and γ-lactam. However, despite the extensive efforts, there still remains no protocol to accomplish the related δ-lactam synthesis. In this manuscript, the Ni-catalyzed enantioselective carbamoylation of unactivated alkenes by the leverage of reductive dicarbofunctionalization strategy allows for the expedient access to two types of mostly common six-membered lactams: 3,4-dihydroquinolinones and 2-piperidinone in high yield and enantioselectivity. This protocol features with good functional group tolerance, as well as broad substrate scope. The newly developed chiral 8-Quinox skeleton ligand is the key parameter for this transformation, which significantly enhances the reactivity and enantioselectivity.
Collapse
Affiliation(s)
- Chenhuan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
19
|
Enantioselective nickel-catalyzed dicarbofunctionalization of 3,3,3-trifluoropropene. Nat Commun 2022; 13:5539. [PMID: 36130927 PMCID: PMC9492779 DOI: 10.1038/s41467-022-33159-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Despite paramount applications of chiral trifluoromethylated compounds in medicinal chemistry and materials science, limited strategies have been developed for catalytic asymmetric synthesis of such valuable fluorinated structures. Here, we report a nickel catalyzed enantioselective dicarbofunctionalization of inexpensive industrial chemical 3,3,3-trifluoropropene (TFP) with readily available tertiary alkyl and aryl iodides. The reaction overcomes the β-F elimination side reaction of TFP, and proceeds efficiently under mild reaction conditions. The protocol possesses advantages, such as synthetic convenience, high enantioselectivity, and excellent functional group tolerance, providing rapid and straightforward access to chiral trifluoromethylated compounds of medicinal interest. Strategies for the catalytic asymmetric synthesis of trifluoromethylated compounds remain scarce. Here, the authors report the nickel-catalyzed enantioselective dicarbofunctionalization of 3,3,3-trifluoropropene.
Collapse
|
20
|
Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Nickel-Catalyzed Enantioselective Reductive Alkyl-Carbamoylation of Internal Alkenes. Angew Chem Int Ed Engl 2022; 61:e202207536. [PMID: 35818326 PMCID: PMC9427719 DOI: 10.1002/anie.202207536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/16/2022]
Abstract
Herein, we leverage the Ni-catalyzed enantioselective reductive dicarbofunctionalization of internal alkenes with alkyl iodides to enable the synthesis of chiral pyrrolidinones bearing vicinal stereogenic centers. The application of newly developed 1-Nap Quinim is critical for formation of two contiguous stereocenters in high yield, enantioselectivity, and diastereoselectivity. This catalytic system also improves both the yield and enantioselectivity in the synthesis of α,α-dialkylated γ-lactams. Computational studies reveal that the enantiodetermining step proceeds with a carbamoyl-NiI intermediate that is reduced by the Mn reductant prior to intramolecular migratory insertion. The presence of the t-butyl group of the Quinim ligand leads to an unfavorable distortion of the substrate in the TS that leads to the minor enantiomer. Calculations also support an improvement in enantioselectivity with 1-Nap Quinim compared to p-tol Quinim.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Wu H, Qu B, Nguyen T, Lorenz JC, Buono F, Haddad N. Recent Advances in Non-Precious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
22
|
Wang F, Pan S, Zhu S, Chu L. Selective Three-Component Reductive Alkylalkenylation of Unbiased Alkenes via Carbonyl-Directed Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Jia XG, Yao QW, Shu XZ. Enantioselective Reductive N-Cyclization-Alkylation Reaction of Alkene-Tethered Oxime Esters and Alkyl Iodides by Nickel Catalysis. J Am Chem Soc 2022; 144:13461-13467. [PMID: 35877185 DOI: 10.1021/jacs.2c05523] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric cross-electrophile difunctionalization of tethered alkenes has become a powerful tool for the production of chiral cyclic scaffolds; however, the current studies all focus on carbocyclization reactions. Herein, we report an N-cyclization-alkylation reaction and thus showcase the potential of heterocyclization for accessing new enantioenriched cyclic architectures. This work establishes a new approach for enantioselective aza-Heck cyclization/cross-coupling sequence, which remains a long-standing unsolved challenge for the synthetic community. The reaction proceeds with primary, secondary, and a few tertiary alkyl iodides, and the use of newly defined ligands gave highly enantioenriched pyrrolines with improved molecular diversity under mild conditions. The presence of imine functionality allows for further structural variations.
Collapse
Affiliation(s)
- Xue-Gong Jia
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
24
|
Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Nickel‐Catalyzed Enantioselective Reductive Alkyl‐Carbamoylation of Internal Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianqing Wu
- East China University of Science and Technology school of chemistry and molecular engeering CHINA
| | - Aneta Turlik
- UCLA: University of California Los Angeles Department of Chemistry and Biochemistry UNITED STATES
| | - Baixue Luan
- East China University of Science and Technology school of chemistry and molecular engineering CHINA
| | - Feng He
- East China University of Science and Technology school of chemistry and molecular engeering CHINA
| | - Jingping Qu
- East China University of Science and Technology school of chemistry and molecular engineering CHINA
| | - Kendall N. Houk
- University of California, Los Angeles 607 Charles E Young Drive East 90095 Los Angeles UNITED STATES
| | - Yifeng Chen
- East China University of Science and Technology School of Chemistry and Molecular Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
25
|
Wu X, Luan B, Zhao W, He F, Wu XY, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202111598. [PMID: 35286744 DOI: 10.1002/anie.202111598] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The construction of multi-stereocenters by a transition metal-catalyzed cross-coupling reaction is a major challenge. The catalytic desymmetric functionalization of unactivated alkenes remains largely unexplored. Herein, we disclose -a desymmetric dicarbofunctionalization of 1,6-dienes via a nickel-catalyzed reductive cross-coupling reaction. The leverage of the underdeveloped chiral 8-Quinox enables the Ni-catalyzed desymmetric carbamoylalkylation of both unactivated mono- and disubstituted alkenes to form pyrrolidinone bearing two nonadjacent stereogenic centers in high enantio- and stereoselectivitives with broad functional-group tolerance. The synthetic application of pyrrolidinones allows the rapid access to complex chiral fused-heterocycles.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
26
|
Li Y, Jin X, Liu P, Zhang H, Yu X, Liu Y, Liu B, Yang W. Copper‐Catalyzed Dynamic Kinetic C−P Cross‐Coupling/Cyclization for the Concise Asymmetric Synthesis of Six‐, Seven‐ and Eight‐Membered
P
‐Stereogenic Phosphorus Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202117093. [DOI: 10.1002/anie.202117093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Yanli Li
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Xiao Jin
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Peng Liu
- Guangzhou Institutes of Biomedicine and Health (GIBH) China Academy of Sciences No. 190 Kaiyuan Avenue, Guangzhou Science Park Guangzhou 510530 China
| | - Haijuan Zhang
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Xiuling Yu
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Yanjuan Liu
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Baixue Liu
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| | - Wenqiang Yang
- College of Pharmacy Linyi University Shuangling Road Linyi 276000 (P.R. of China
| |
Collapse
|
27
|
Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xin‐Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
28
|
Li Y, Jin X, Liu P, Zhang H, Yu X, Liu Y, Liu B, Yang W. Copper‐Catalyzed Dynamic Kinetic C–P Cross‐Coupling/ Cyclization for Concise Asymmetric Synthesis of Six‐, Seven‐ and Eight‐Membered P‐Stereogenic Phosphorus Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanli Li
- Linyi University College of Pharmacy CHINA
| | - Xiao Jin
- Linyi University College of Pharmacy CHINA
| | - Peng Liu
- Chinese Academy of Sciences Guangzhou Institutes of Biomedicine and Health guangzhou institutes of biomedicine of health CHINA
| | | | - Xiuling Yu
- Linyi University College of Pharmacy CHINA
| | | | - Baixue Liu
- Linyi University College of Pharmacy CHINA
| | - WenQiang Yang
- Linyi University College of Pharmacy ShuangLing Road 276000 Lin Yi CHINA
| |
Collapse
|
29
|
Wen YT, Kong XT, Liu HC, Wang CT, Wei WX, Wang B, Liu XY, Liang YM. Ni-Catalyzed Remote Radical/Cross-Electrophile Coupling Cascade for Selective C(sp 3)-H Arylation. Org Lett 2022; 24:2399-2403. [PMID: 35312326 DOI: 10.1021/acs.orglett.2c00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An innovative 1,5-HAT cascade strategy has been advanced for the nickel-catalyzed distal arylation via cross-electrophile coupling. Through specific migration, the remote C(sp3)-H bond is regioselectively activated, and Ar-I as the available electrophile is used for the construction of the C(sp3)-C(sp2) bond. This method also has broad applicability for benzylic and aliphatic N-fluorocarboxamides with yields up to 80%. Furthermore, a series of control experiments demonstrated that this reaction is probably initiated by a radical process.
Collapse
Affiliation(s)
- Ya-Ting Wen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Tao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
30
|
Chen ZH, Sun RZ, Yao F, Hu XD, Xiang LX, Cong H, Liu WB. Enantioselective Nickel-Catalyzed Reductive Aryl/Alkenyl-Cyano Cyclization Coupling to All-Carbon Quaternary Stereocenters. J Am Chem Soc 2022; 144:4776-4782. [PMID: 35263101 DOI: 10.1021/jacs.2c01237] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An enantioselective nickel-catalyzed intramolecular reductive cross-coupling of C(sp2) electrophiles and cyano groups is reported. Enantioenriched CN-containing all-carbon quaternary stereocenters are assembled by desymmetrizing cyclization of aryl/alkenyl halide-tethered malononitriles. The use of an organic reductant, (EtO)2MeSiH, is crucial to the enantioselectivity and reactivity. Applications of the method are demonstrated through the synthesis of bioactive molecules and their cyanated analogues and the total synthesis of the natural product diomuscinone. This study exhibits the potential of desymmetrizing reductive coupling strategies to access structurally rigid and synthetically versatile molecules from readily available starting materials.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Rui-Ze Sun
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fei Yao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xu-Dong Hu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Long-Xue Xiang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hengjiang Cong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Zhao TY, Xiao LJ, Zhou QL. Nickel-Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6-Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022; 61:e202115702. [PMID: 35043525 DOI: 10.1002/anie.202115702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/13/2022]
Abstract
We have developed a nickel-catalyzed desymmetric reductive cyclization/coupling of 1,6-dienes. The reaction provides an efficient method for constructing a chiral tertiary alcohol and a quaternary stereocenter by a single operation. The method has excellent diastereoselectivity and high enantioselectivity, a broad substrate scope, as well as good tolerance of functional groups. Preliminary mechanism studies show that alkyl nickel(I) species are involved in the reaction.
Collapse
Affiliation(s)
- Tian-Yuan Zhao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Li-Jun Xiao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Qi-Lin Zhou
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| |
Collapse
|
32
|
Zhao T, Xiao L, Zhou Q. Nickel‐Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6‐Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yuan Zhao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Li‐Jun Xiao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Qi‐Lin Zhou
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| |
Collapse
|
33
|
Zhu Z, Lin L, Xiao J, Shi Z. Nickel‐Catalyzed Stereo‐ and Enantioselective Cross‐Coupling of
gem
‐Difluoroalkenes with Carbon Electrophiles by C−F Bond Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
34
|
Xi L, Du L, Shi Z. Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Ghosh T, Bhakta S. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the recent advances in the field of nickel-catalyzed hydroarylation reaction of alkenes, alkynes, and arenes. All reactions proceeded either through internal hydride transfer or in presence of...
Collapse
|
36
|
He JQ, Yang ZX, Zhou XL, Li Y, Gao S, Shi L, Liang D. Exploring the regioselectivity of the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective cyanoalkylalkenylation of 3-aza-1,5-dienes with oxime esters induced by visible light.
Collapse
Affiliation(s)
- Jia-Qin He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhi-Xian Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xue-Lu Zhou
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
37
|
Sun H, Xiong B, Yang Y, Liu J, Zhang X, Lian Z. gem-Difluorovinylation of alkynyl bromoarenes via dual nickel-/palladium-catalyzed cross-electrophile coupling. Org Chem Front 2022. [DOI: 10.1039/d1qo01406d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A dual nickel-/palladium-catalyzed gem-difluorovinylation of alkynyl bromoarenes is presented. This method proceeds smoothly to afford various dihydrobenzofuran compounds containing gem-difluorovinyl fragments with excellent stereoselectivities.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Yang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiangjun Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Ping Y, Song H, Kong W. Recent Advances in Ni-Catalyzed Asymmetric Reductive Difunctionalization of Alkenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Cui K, Li G, Xia JB. Photoredox Nickel-Catalyzed Asymmetric Reductive Cross Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Yu WQ, Fan JH, Chen P, Xiong B, Xie J, Tang K, Liu Y. Transition-Metal-Free Alkylation Strategy: A Facile Access of Alkylated Oxindoles via Alkyl Transfer. Org Biomol Chem 2022; 20:1958-1968. [DOI: 10.1039/d2ob00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient transition-metal-free alkylation/cyclization of activated alkenes using Hantzsch ester derivatives as effective alkyl reagents was described. A wide variety of valuable oxindoles were constructed in a single step with...
Collapse
|
41
|
Wang H, Huang H, Gong C, Diao Y, Chen J, Wu SH, Wang L. Nickel-Catalyzed Chemo- and Regioselective Benzylarylation of Unactivated Alkenes with o-Bromobenzyl Chlorides. Org Lett 2021; 24:328-333. [PMID: 34958584 DOI: 10.1021/acs.orglett.1c03991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chemo- and regioselectively nickel-catalyzed reductive benzylarylation of unactivated alkenes with o-bromobenzyl chlorides is disclosed herein, in which electrophiles participate through a single-component double-site approach. Moreover, its utility is underscored by the concise synthesis of bioactive Indane compounds and postreaction functionalizations leading to structurally diverse scaffolds. Preliminary mechanistic investigations suggest a radical chain reaction mechanism.
Collapse
Affiliation(s)
- Hailong Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Haichao Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Chao Gong
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Jianmei Chen
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
42
|
Zhu Z, Lin L, Xiao J, Shi Z. Nickel-Catalyzed Stereo- and Enantioselective Cross-Coupling of gem-Difluoroalkenes with Carbon Electrophiles by C-F Bond Activation. Angew Chem Int Ed Engl 2021; 61:e202113209. [PMID: 34889493 DOI: 10.1002/anie.202113209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/07/2022]
Abstract
Stereo- and enantioselective cross-electrophile coupling involving C-F bond activation is reported. Treatment of gem-difluoroalkenes with racemic benzyl electrophiles in the presence of a chiral nickel complex using B2 pin2 as a stoichiometric reductant allows the construction of a C(sp2 )-C(sp3 ) bond under mild conditions, affording a broad range of monofluoroalkenes bearing stereogenic allylic centers. Initial mechanistic studies indicate that a radical chain pathway may be operating, wherein the ester group in the gem-difluoroalkene promotes C-F bond activation through oxidative addition to a Ni species.
Collapse
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
43
|
Xing M, Cui H, Zhang C. Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Bromides and Chlorosilanes. Org Lett 2021; 23:7645-7649. [PMID: 34551258 DOI: 10.1021/acs.orglett.1c02887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel nickel-catalyzed highly selective reductive cross-coupling of alkyl bromides and chlorosilanes to construct the C-Si bond has been developed. Under benign reaction conditions, a series of structurally interesting organosilanes can be accessed without Ni-catalyzed isomerization. The utility of this chemistry is illustrated by further transformations of the product. Moreover, the radical mechanism of the reaction is illustrated by control experiments.
Collapse
Affiliation(s)
- Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|