1
|
Xie Y, Su G, Ishida M, Zhu B, Baryshnikov G, Sha F, Li C, Wu X, Ågren H, Furuta H, Li Q. Dimerization of Hexaphyrin with an Appendant Pyrrole Possessing a Reactive Site to Alleviate the Steric Hindrance. J Am Chem Soc 2025; 147:5368-5376. [PMID: 39888939 DOI: 10.1021/jacs.4c17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Oxidative dimerization of π-conjugated molecules is a straightforward approach for effectively extending π-conjugation and absorption features. However, it is challenging to construct dimeric species of bulky π-conjugated frameworks because of the steric hindrances and/or poor regioselectivity. To address these issues, a pyrrole unit has been regioselectively appended to the α position of N-confused hexaphyrin (1.1.1.1.1.0) 1 by a facile acid-catalyzed condensation reaction, leading to the formation of pyrrole-appendant 2. Subsequent oxidation of 2 yielded an inner-fused monomer 2F and two fused dimeric species, namely, (2F)2a and (2F)2b. In contrast, oxidation of the corresponding Ni(II) complex 2Ni generated dimer (2Ni)2. Subsequent demetalation resulted in the formation of bipyrrole-linked freebase dimer (2)2, which could chelate Ni(II) and Cu(II) ions to furnish complexes (2Ni)2 and (2Cu)2, respectively. In comparison to the fused dimeric species (2F)2a and (2F)2b, the nonfused dimer (2)2 and its complexes (2Ni)2 and (2Cu)2 exhibit diminished local aromaticity, narrowed HOMO-LUMO gaps, and a red-shifted absorption profile that extends up to 2200 nm. These findings underscore a potent strategy for creating expanded porphyrin dimers, wherein the aromaticity and near-infrared absorption can be fine-tuned by incorporating an appendant pyrrole unit.
Collapse
Affiliation(s)
- Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guangxian Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping SE-60174, Sweden
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Jones TJ, Dutton KG, Dhattarwal HS, Blackburn PT, Saha R, Remsing RC, Lipke MC. Tuning Bro̷nsted Acidity by up to 12 p Ka Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites. J Am Chem Soc 2025; 147:2086-2098. [PMID: 39746663 DOI: 10.1021/jacs.4c15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites (M = H2, ZnII, CoII, CoI) affect the pKa of benzoic acid guests bound in discrete porphyrin nanoprisms (M3TriCage) in CD3CN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H+ transfer processes that are needed to support important electrochemical reactions (e.g., reductions of H+, O2, or CO2). Usefully, the cavities of the host-guest complexes become hydrated at low water concentrations (10-40 mM), providing a good representation of the active sites of porous electrocatalysts in water. Under these conditions, Lewis acidic CoII and ZnII ions increase the Bro̷nsted acidities of the guests by 4 and 8 pKa units, respectively, while reduction of the CoII sites to anionic CoI sites produces an electrostatic potential that lowers acidity by ca. 4 units (8 units relative to the CoII state). Lacking functional metal sites, H6TriCage increases the acidity of the guests by just 2.5 pKa units despite the 12+ charge of this host and contributions from other factors (hydrogen bonding, hydration) that might stabilize the deprotonated guests. Thus, the metal sites have dominant effects on acid-base chemistry in the M3TriCages, providing a larger pKa range (12.75 to ≥24.5) for an encapsulated acid than attained via other confinement effects in proteins and artificial porous materials.
Collapse
Affiliation(s)
- Taro J Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Harender S Dhattarwal
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - P Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rupak Saha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Zhang D, Snider RL, Crawley MR, Fang M, Sanchez-Lievanos KR, Ang S, Cook TR. Gram-Scale, One-Pot Synthesis of a Cofacial Porphyrin Bridged by Ortho-xylene as a Scaffold for Dinuclear Architectures. Inorg Chem 2024; 63:22532-22541. [PMID: 39531411 DOI: 10.1021/acs.inorgchem.4c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield. The free base oNC was subsequently metalated with cobalt(II) (Co-oNC), copper(II) (Cu-oNC), and nickel(II) (Ni-oNC) ions to furnish dinuclear complexes that were characterized by mix of mass spectrometry, NMR, EPR, electronic absorption spectroscopy, and for Co-oNC, single-crystal X-ray diffraction. Cofacial cobalt porphyrins are often active as catalysts for the Oxygen Reduction Reaction. Under heterogeneous conditions in water, Co-oNC was 83% selective for the electrocatalytic 4 e-/4 H+ reduction of O2 to H2O, matching homogeneous experiments which revealed consistent selectivity for H2O (88%). This oNC core offers significant advantages over prisms formed by coordination-driven self-assembly: the dipyridnium-xylene coupling can furnish over 1 g of material in a single synthesis and the tethering motif is robust, maintaining a cofacial architecture in acidic and basic solutions. We envision this approach may be generalized to other bis-bromobenzyl building blocks, providing a means to tune metal-metal separation and other structural and electronic properties.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Rachel L Snider
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Ming Fang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Karla R Sanchez-Lievanos
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Spencer Ang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|
4
|
Liu CL, Moussawi MA, Kalandia G, Salazar Marcano DE, Shepard WE, Parac-Vogt TN. Cavity-Directed Synthesis of Labile Polyoxometalates for Catalysis in Confined Spaces. Angew Chem Int Ed Engl 2024; 63:e202401940. [PMID: 38408301 DOI: 10.1002/anie.202401940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The artificial microenvironments inside coordination cages have gained significant attention for performing enzyme-like catalytic reactions by facilitating the formation of labile and complex molecules through a "ship-in-a-bottle" approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods. In this study, we employ host-guest stabilization within a coordination cage to enable a novel cavity-directed synthesis of labile POMs in aqueous solutions under mild conditions. The elusive Lindqvist [M6O19]2- (M=Mo or W) POMs were successfully synthesized at room temperature via the condensation of molybdate or tungstate building blocks within the confined cavity of a robust and water-soluble Pt6L4(NO3)12 coordination cage. Importantly, the encapsulation of these POMs enhances their stability in water, rendering them efficient catalysts for environmentally friendly and selective sulfoxidation reactions using H2O2 as a green oxidant in a pure aqueous medium. The approach developed in this paper offers a means to synthesize and stabilize the otherwise unstable metal-oxo clusters in water, which can broaden the scope of their applications.
Collapse
Affiliation(s)
- Cui-Lian Liu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | | |
Collapse
|
5
|
Zhu H, Ronson TK, Wu K, Nitschke JR. Steric and Geometrical Frustration Generate Two Higher-Order Cu I12L 8 Assemblies from a Triaminotriptycene Subcomponent. J Am Chem Soc 2024; 146:2370-2378. [PMID: 38251968 PMCID: PMC10835662 DOI: 10.1021/jacs.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
Dutton KG, Jones TJ, Emge TJ, Lipke MC. Cage Match: Comparing the Anion Binding Ability of Isostructural Versus Isofunctional Pairs of Metal-Organic Nanocages. Chemistry 2024; 30:e202303013. [PMID: 37907394 DOI: 10.1002/chem.202303013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Affinities of six anions (mesylate, acetate, trifluoroacetate, p-toluenecarboxylate, p-toluenesulfonate, and perfluorooctanoate) for three related Pt2+ -linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6 L3 12+ (1b) and M4 L2 8+ (2) composition (M=(en)Pt2+ , L=(3-py)4 porphyrin) were prepared in a one-pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N-H hydrogen-bond donor ability. Comparisons of isostructural hosts that differ in hydrogen-bonding ability were made between 1b and a related M6 L3 12+ nanoprism (1a, M=(tmeda)Pt2+ ) that lacks N-H groups. Considerable variation in association constants (K1 =1.6×103 M-1 to 1.3×108 M-1 ) and binding mode (exo vs. endo) were found for different host-guest combinations. Strongest binding was seen between p-toluenecarboxylate and 1b, but surprisingly, association of this guest with 1a was only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity between p-toluenecarboxylate and 1a could be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host.
Collapse
Affiliation(s)
- Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| | - Taro J Jones
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| |
Collapse
|
7
|
Zheng J, Yang Y, Ronson TK, Wood DM, Nitschke JR. Redox Triggers Guest Release and Uptake Across a Series of Azopyridine-Based Metal-Organic Capsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302580. [PMID: 37462086 DOI: 10.1002/adma.202302580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Indexed: 09/21/2023]
Abstract
Precise control over guest release and recapture using external stimuli is a valuable goal, potentially enabling new modes of chemical purification. Including redox moieties within the ligand cores of molecular capsules to trigger the release and uptake of guests has proved effective, but this technique is limited to certain capsules and guests. Herein, the construction of a series of novel metal-organic capsules from ditopic, tritopic, and tetratopic ligands is demonstrated, all of which contain redox-active azo groups coordinated to FeII centers. Compared to their iminopyridine-based analogs, this new class of azopyridine-based capsules possesses larger cavities, capable of encapsulating more voluminous guests. Upon reduction of the capsules, their guests are released and may then be re-encapsulated when the capsules are regenerated by oxidation. Since the redox centers are on the ligand arms, they are modular and can be attached to a variety of ligand cores to afford varying and predictable architectures. This method thus shows promise as a generalized approach for designing redox-controlled guest release and uptake systems.
Collapse
Affiliation(s)
- Jieyu Zheng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuchong Yang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Daniel M Wood
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
8
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
9
|
Saha R, Sahoo J, Venkateswarulu M, De M, Mukherjee PS. Shifting the Triangle-Square Equilibrium of Self-Assembled Metallocycles by Guest Binding with Enhanced Photosensitization. Inorg Chem 2022; 61:17289-17298. [PMID: 36252183 DOI: 10.1021/acs.inorgchem.2c02920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shifting a triangle-square equilibrium in one direction is an important problem in supramolecular self-assembly. Reaction of a benzothiadiazole-based diimidazole donor with a cis-Pt(II) acceptor yielded an equilibrium mixture of a triangle ([C18H24N10O6S1Pt1]3≡ PtMCT) and a square ([C18H24N10O6S1Pt1]4≡ PtMCS). We report here the shifting of such equilibrium toward a triangle using a guest (pyrene aldehyde, G1). While both benzothiadiazole and pyrene aldehyde can form reactive oxygen species (ROS) in organic solvents, their therapeutic use in water is restricted due to aqueous insolubility. The enhanced water solubility of the benzothiadiazole unit and G1 by macrocycle formation and host-guest complexation, respectively, enabled enhanced ROS generation by the host-guest complex (G1' ⊂ PtMCT) in water (G1' = hydrated form of G1). The guest-encapsulated metallacycle (G1' ⊂ PtMCT) has shown synergistic antibacterial activity compared to the mixture of macrocycles upon white-light irradiation due to enhanced ROS generation. The mechanism for such enhanced activity was established by measuring the oxidative stress and relative internalization of PtMCs and G1' ⊂ PtMCT.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Blackburn PT, Lipke MC. Effects of a triangular nanocage structure on the binding of neutral and anionic ligands to Co II and Zn II porphyrins. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2128786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- P. Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
11
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
12
|
Sudan S, Fadaei‐Tirani F, Scopelliti R, Ebbert KE, Clever GH, Severin K. LiBF 4 -Induced Rearrangement and Desymmetrization of a Palladium-Ligand Assembly. Angew Chem Int Ed Engl 2022; 61:e202201823. [PMID: 35348279 PMCID: PMC9320841 DOI: 10.1002/anie.202201823] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 02/02/2023]
Abstract
Thirteen palladium-ligand assemblies with different structures and topologies were investigated for the ability to bind lithium ions. In one case, the addition of LiBF4 resulted in a profound structural rearrangement, converting a dincluclear [Pd2 L4 ]4+ complex into a low-symmetry [Pd4 L8 ]8+ assembly with two binding pockets for solvated LiBF4 ion pairs. The rearrangement could only be induced by Li+ , indicating highly specific host-guest interactions. A structural analysis of the [Pd4 L8 ]8+ receptor revealed a compact structure with multiple intramolecular interactions, reminiscent of what is seen for natural and synthetic foldamers.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Kristina E. Ebbert
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44227DortmundGermany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44227DortmundGermany
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
13
|
Lin Y, Gau MR, Carroll PJ, Dmochowski IJ. Counteranions at Peripheral Sites Tune Guest Affinity for a Protonated Hemicryptophane. J Org Chem 2022; 87:5158-5165. [PMID: 35333529 PMCID: PMC9017572 DOI: 10.1021/acs.joc.1c03128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/29/2022]
Abstract
The affinity of small molecules for biomolecular cavities is tuned through a combination of primary and secondary interactions. It has been challenging to mimic these features in organic synthetic host molecules, however, where the cavities tend to be highly symmetric and nonpolar, and less amenable to chemical manipulation. Here, a host molecule composed of a TREN ligand and cyclotriveratrylene moiety was investigated. Size-matched polar guests were encapsulated within the cavity via triple protonation of the TREN moiety with various sulfonic acids. X-ray crystallography confirmed guest encapsulation and identified three methanesulfonates, p-toluenesulfonates, or 2-naphthalenesulfonates hydrogen-bonded with H3TREN at the periphery of the cavity. These structurally diverse counteranions were shown by 1H NMR spectroscopy to differentially regulate guest access at the three portals, and to undergo competitive displacement in solution. This work reveals "counteranion tuning" to be a simple and powerful strategy for modulating host-guest affinity, as applied here in a TREN-hemicryptophane.
Collapse
Affiliation(s)
- Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Sudan S, Fadaei‐Tirani F, Scopelliti R, Ebbert KE, Clever GH, Severin K. LiBF
4
‐Induced Rearrangement and Desymmetrization of a Palladium‐Ligand Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kristina E. Ebbert
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Yao C, Lin H, Daly B, Xu Y, Singh W, Gunaratne HQN, Browne WR, Bell SEJ, Nockemann P, Huang M, Kavanagh P, de Silva AP. Taming Tris(bipyridine)ruthenium(II) and Its Reactions in Water by Capture/Release with Shape-Switchable Symmetry-Matched Cyclophanes. J Am Chem Soc 2022; 144:4977-4988. [PMID: 35274938 PMCID: PMC9097486 DOI: 10.1021/jacs.1c13028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Electron/proton
transfers in water proceeding from ground/excited
states are the elementary reactions of chemistry. These reactions
of an iconic class of molecules—polypyridineRu(II)—are
now controlled by capturing or releasing three of them with hosts
that are shape-switchable. Reversible erection or collapse of the
host walls allows such switchability. Some reaction rates are suppressed
by factors of up to 120 by inclusive binding of the metal complexes.
This puts nanometric coordination chemistry in a box that can be open
or shut as necessary. Such second-sphere complexation can allow considerable
control to be exerted on photocatalysis, electrocatalysis, and luminescent
sensing involving polypyridineRu(II) compounds. The capturing states
of hosts are symmetry-matched to guests for selective binding and
display submicromolar affinities. A perching complex, which is an
intermediate state between capturing and releasing states, is also
demonstrated.
Collapse
Affiliation(s)
- Chaoyi Yao
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Hongyu Lin
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Brian Daly
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Warispreet Singh
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland.,Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - H Q Nimal Gunaratne
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, FSE, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Peter Nockemann
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - Paul Kavanagh
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, Belfast BT9 5AG, Northern Ireland
| |
Collapse
|
16
|
Blackburn PT, Mansoor IF, Dutton KG, Tyryshkin AM, Lipke MC. Accessing three oxidation states of cobalt in M 6L 3 nanoprisms with cobalt-porphyrin walls. Chem Commun (Camb) 2021; 57:11342-11345. [PMID: 34642705 DOI: 10.1039/d1cc04860k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocages with porphyrin walls are common, but studies of such structures hosting redox-active metals are rare. Pt2+-linked M6L3 nanoprisms with cobalt-porphyrin walls were prepared and their redox properties were evaluated electrochemically and chemically, leading to the first time that cobalt-porphyrin nanocages have been characterized in CoI, CoII, and CoIII states.
Collapse
Affiliation(s)
- P Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Alexei M Tyryshkin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|